EP1118251B1 - Ansteuerschaltung für led und zugehöriges betriebsverfahren - Google Patents

Ansteuerschaltung für led und zugehöriges betriebsverfahren Download PDF

Info

Publication number
EP1118251B1
EP1118251B1 EP00926699A EP00926699A EP1118251B1 EP 1118251 B1 EP1118251 B1 EP 1118251B1 EP 00926699 A EP00926699 A EP 00926699A EP 00926699 A EP00926699 A EP 00926699A EP 1118251 B1 EP1118251 B1 EP 1118251B1
Authority
EP
European Patent Office
Prior art keywords
led
drive circuit
forward current
voltage
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00926699A
Other languages
English (en)
French (fr)
Other versions
EP1118251A1 (de
Inventor
Alois Biebl
Franz Schellhorn
Günther Hirschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH, Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1118251A1 publication Critical patent/EP1118251A1/de
Application granted granted Critical
Publication of EP1118251B1 publication Critical patent/EP1118251B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback

Definitions

  • the power loss in the series resistor is converted into heat, resulting in additional heating - in addition to the self-heating of the LEDs in the strand - leads.
  • the invention relates to a drive circuit for LED and associated operating method according to the preamble of claim 1. It is in particular the reduction of Anêtppe in light emitting diodes (LEDs) by means of a clocked LED drive circuit.
  • resistors were always used to limit the forward current through the LEDs.
  • a common board was used for all the series resistors and, if possible, mounted at an appropriate distance from the LEDs. This distance was selected so that the heating of the series resistors R V did not influence the temperature of the LEDs.
  • Another problem is the choice of the maximum forward current I F of LEDs.
  • the maximum permissible forward current I F can not be selected because at a higher ambient temperature T A the forward current must be reduced. Therefore, one chooses a forward current I F , which is smaller than the maximum allowable ( Figure 3). In this way, although the temperature range for operating the LEDs is increased, but the forward current I F is not optimally utilized.
  • FIG. 3 Power TOPLED, type LA E675 from Siemens
  • the maximum forward current I F may be 70 mA up to an ambient temperature of 70 ° C.
  • FIG. 4a shows the principle of a clocked current control for LEDs.
  • a semiconductor switch for example a current-limiting circuit breaker or preferably a transistor T (in particular pnp-type, but also the npn-type is suitable if a charge pump is additionally used for driving), with its emitter to the supply voltage U Batt (in particular battery voltage in the automobile). If the transistor T is conductive, a current i LED flows through the LED string (which here consists, for example, of four LEDs), specifically until the transistor T is switched off again by a comparator. The comparator has its output connected to the base of the transistor.
  • the one (positive) input of the comparator is connected to a control voltage, the second (negative) input of the comparator to a frequency generator (preferably triangular generator with pulse duration T p and accordingly frequency 1 / T p , since this beosnders good electromagnetic compatibility, but also others Pulse shapes such as sawtooth are possible) connected.
  • a frequency generator preferably triangular generator with pulse duration T p and accordingly frequency 1 / T p , since this beosnders good electromagnetic compatibility, but also others Pulse shapes such as sawtooth are possible
  • the rectangular pulses have a pulse width which corresponds to a fraction of T p .
  • the distance between the rising edges of two pulses corresponds to T p .
  • the LEDs are in series with a means for measuring the current (in particular a measuring resistor R shunt between LEDs and ground (case 1) or between semiconductor switch (transistor T) and terminal of the supply voltage U Batt (case 2)).
  • the clocked current i LED is tapped at the measuring resistor R shunt .
  • Connecting- burnd is formed over an aid of the average value of current i LED.
  • the aid is, for example, an integration means (in case 1), preferably an RC low-pass filter, or a differential amplifier (in case 2).
  • This average value serves as the actual value for a current control which is made available to a controller (for example a PI or PID controller) as an input value.
  • a nominal value, in the form of a reference voltage (U Ref ), for the current regulation is likewise made available to the controller as a second input value.
  • the control voltage U control the output of the controller is set by the controller so that the ACTUAL value always corresponds as well as possible the desired value (in terms of voltage). If the supply voltage U Batt changes during fluctuations, the turn-on duration of the transistor T and the length of the rectangular pulse (FIG. 4b) also adapts accordingly. This technique in itself is known as PWM (Pulse Width Modulation).
  • the circuit according to the invention advantageously enables a detailed query of the operating states of individual LED strings. This allows simple error detection (query for short circuit, interruption) by sequential scanning (so-called LED SCANNING) of the individual LED strands.
  • the previously necessary large series resistor R V is omitted for the adjustment of the current for the LED string.
  • a power loss in the shunt resistor R shunt of only about 5 mW (at current setting with PWM), ie a reduction in power loss by a factor of 50.
  • Another advantage is the simple current limitation of an LED string using a current-limiting semiconductor switch (preferably a transistor).
  • a switch can also serve a current-limiting circuit breaker, which automatically ensures that the clocked forward current I F does not exceed a maximum limit, for example, a limit of 1 A.
  • the circuit arrangement according to the invention is suitable for different requirements, for example for a 12V or 42V vehicle electrical system in the vehicle.
  • FIG. 5 shows a snapshot of an oscillogram of the clocked current profile of the LED drive circuit for a 12 V electrical system. It shows the peak current i LED through the LEDs ( Figure 5a), which is clocked and reaches about 229 mA. The pulse width is about 30 ⁇ s, the subsequent dead time 70 ⁇ s. This results in a mean current i LED of 70 mA.
  • the associated clock frequency at the triangular generator is shown in FIG. 5b, its frequency is approximately 9.5 kHz (corresponding to approximately 100 ⁇ s pulse width).
  • the control voltage U rule is shown as a straight line ( Figure 5c), it has a value of 3.2 V.
  • the circuit arrangement according to the invention makes it possible to regulate the temperature.
  • a temperature sensor preferably in SMD design
  • the forward current I F is reduced in accordance with the specification in the data sheet (FIG. 3).
  • LED string fails in an LED array (consisting of several LED strings), it may be important to immediately report this failure to a service center. This is particularly important in safety equipment, e.g. at traffic lights. Also in the automotive sector (cars, trucks), it is desirable to be informed about the current state of the LEDs, for example, when the taillights are equipped with LEDs.
  • the most common types of errors are open circuit and short circuit.
  • the type of fault short circuit can be practically excluded with LEDs. If LEDs fail, then most of the time by a break in the supply line.
  • a break in an LED is mainly due to heat. The cause lies in the expansion of the resin (epoxy resin as part of the housing) under the action of heat, so that the embedded differently extending bonding wire (connecting line between the LED chip and outer pin) breaks off.
  • the LED drive module In standby mode, the LED drive module remains connected to continuous plus (battery voltage in the vehicle) while it is turned off, i. there is no current flowing through the LEDs. In this state, the drive module may only absorb a small amount of internal current (self-current consumption approaches 0) in order not to load the battery in the vehicle. This is the case when the car is e.g. parked in the garage or parked. An additional power consumption would unnecessarily burden the battery here.
  • the LED control module is switched on and off via a logic input (ENABLE input).
  • the circuit can also perform verpolfest and secure against overvoltage.
  • a polarity reversal protection diode ensures the case of a wrong Connection of the LED control module to the supply voltage (battery) before it is destroyed.
  • a combination of a Zener diode and a normal diode additionally protects the LED drive module against destruction due to overvoltages at the supply voltage pin U Batt .
  • a microcontroller-compatible ENABLE input (logic input) is additionally provided, which enables the control with a microcontroller.
  • the drive module in particular an integrated circuit IC
  • a bus system for example CAN bus in a motor vehicle, Insta bus for domestic installation technology.
  • FIG 6. An embodiment (entire block diagram) for the realization of an interruption detection is shown in FIG 6.
  • the detection of an interruption in the LED string can via the direct monitoring of the control voltage U rule by means of a Interrupt recognizer (see in detail Figure 7) done.
  • Via an evaluation circuit A ( Figure 8), this error case can be displayed on an output (status pin).
  • the circuit of the status output has as a final stage a transistor whose collector is open (ie has no pull-up resistor).
  • the collector of the transistor leads directly to the status pin of the LED drive module ( Figure 8). If an external pull-up resistor R P is connected to the collector of the transistor T OC , it can be connected to an arbitrary voltage V cc . Accordingly, the output signal level depends on the voltage V cc to which the pull-up resistor Rp is connected.
  • the interruption detection in the LED string works according to the principle of scanning (scanning) a voltage (here: control voltage U rule ).
  • Figure 7 shows the complete block diagram of the interruption detection in the LED string according to the principle of sampling a voltage.
  • OSZ internal oscillator
  • the clock (as a rectangular voltage U R ) is applied to an n-bit binary counter (COUNTER).
  • COUNTER binary counter
  • the interpretation of the binary counter must be made.
  • a 3-bit binary counter (for addresses from 0 to 7) is used. With it can be scanned so up to 8 control voltages U rule .
  • the 3-bit binary pattern of the counter controls an analog multiplexer (MUX), which (depending on the applied binary word) scans each of the control voltages U criz1,2 ... one after the other and provides them in turn at the output.
  • MUX analog multiplexer
  • the smallest control voltage U criz_min corresponds to the minimum value of the triangular voltage U D_min .
  • a "low" signal of the control voltage U usually detect (corresponding to 0 volts, interruption in the LED cluster) successfully and prepare it for subsequent storage in a storage medium, such as a flip-flop (FF) at the output of the analog multiplexer (MUX) a comparator (COMP) inserted.
  • a storage medium such as a flip-flop (FF) at the output of the analog multiplexer (MUX) a comparator (COMP) inserted.
  • Its switching threshold U SW must be smaller than the minimum value of the triangular voltage U D , ie U SW ⁇ U D_min .
  • a reset of the flip-flop FF and thus the status output occurs only when the LED driver is turned off, i. if there is a bug in the LED string.
  • FIG. 8 block diagram of the LED drive module.
  • a polarity reversal protection diode between external (U Batt ) and internal power supply ensures in the case of a wrong connection of the LED drive module to the supply voltage (battery) before its destruction.
  • the overvoltage protection is realized with a Zener diode in combination with a reverse polarity diode.
  • the IC also includes a terminal pin for a temperature sensor (eg, an NTC) and a pin for connecting a current reference, and two pins for connecting the LED string.
  • a temperature sensor eg, an NTC
  • An external and thus flexible adjustment (programming) of the forward current I F of an LED string is realized by firstly connecting an internal pull-up resistor R i to the internal voltage supply U V of the IC and to an input for an LED current reference is such that an external resistor R ext to ground with the internal pull-up resistor R i forms a voltage divider and thus sets the desired forward current I F , and that secondly at the input for the LED current reference, a DC voltage to the maximum forward current I F can be adjusted is provided which serves as a measure of the forward current I F.
  • a logic control of the device is realized in that via an input (ENABLE) a logic signal level (low or high) off or on the block.
  • An error message about a STATUS output is realized by the fact that this output has an open collector ("open collector” for bipolar integration) or an open drain (open drain for CMOS integration) and by connecting an external pull-up resistor R P the Output signal level for the error signal level (high signal) can be freely defined.

Landscapes

  • Led Devices (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

  • Die Verlustleistung im Vorwiderstand wird in Wärme umgewandelt, was zu einer zusätzlichen Erwärmung - neben der Eigenerwärmung der LEDs im Strang - führt.
  • Technisches Gebiet
  • Die Erfindung geht aus von einer Ansteuerschaltung für LED und zugehöriges Betriebsverfahren gemäß dem Oberbegriff des Anspruchs 1. Es geht dabei insbesondere um die Reduzierung der Ansteuerverlustleistung bei Leuchtdioden (LEDs) mittels einer getakteten LED-Ansteuerschaltung.
  • Stand der Technik
  • Aus der US 3 902 806 ist es bekannt, LEDs zu takten. Dabei wird eine Pulsweitenmodulation verwendet.
  • Bei der Ansteuerung von Leuchtdioden (LEDs) werden in der Regel Vorwiderstände zur Strombegrenzung eingesetzt, siehe beispielsweise US-A 5 907 569. Ein typischer Spannungsabfall an Leuchtdioden (UF) liegt bei einigen Volt (beispielsweise ist bei Power TOPLED UF = 2,1V). Der bekannte Vorwiderstand Rv, in Reihe zur LED (siehe Figur 1), erzeugt besonders dann eine hohe Verlustleistung, wenn die Batteriespannung UBatt hohen Spannungsschwankungen (wie im Kfz üblich) unterliegt. Der Spannungsabfall an der LED bleibt auch bei derartigen Spannungsschwankungen noch konstant, d.h. die restliche Spannung fällt am Vorwiderstand Rv ab. Somit wird Rv abwechselnd mehr oder weniger stark belastet. In der Praxis werden meist mehrere LEDs in Reihe (Strang) geschaltet, um eine bessere Effizienz in der Ansteuerung zu erreichen (Figur 2). Je nach Bordnetz (12 V oder 42 V) können dementsprechend viele LEDs zu einem Strang zusammengefaßt werden. Im 12V-Bordnetz gibt es eine untere Grenze der Batteriespannung UBatt, bis zu der gesetzlich vorgeschriebene Sicherheitseinrichtungen (z.B. Warnblinkanlage) funktionsfähig sein müssen. Sie beträgt 9 Volt. D.h. es können hier bis zu 4 Power TOPLEDs zu einem Strang zusammengefaßt werden (4 x 2,1V = 8,4V).
  • Das technische Problem besteht darin, die zusätzliche Erwärmung (Ansteuerverlustleistung durch die Vorwiderstände) zu eliminieren. Dafür gibt es mehrere Gründe. Zum ersten entstehen enorme Verluste im Vorwiderstand; dies kann bei größeren LED-Arrays zu mehreren Watt Verlustleistung führen. Zum zweiten schränkt gerade diese Erwärmung durch Vorwiderstände den Betriebsbereich der LEDs ein. Bei einer erhöhten Umgebungstemperatur TA muß der maximale Durchlaßstrom IF = f (TA) verringert werden, um die LEDs vor Zerstörung zu schützen. D.h. der maximale Durchlaßstrom IF darf nicht über den gesamten Bereich der Umgebungstemperatur von 0 bis 100 °C konstant gehalten werden. Zusätzlich kommt beim Betrieb von LEDs mit Vorwiderständen noch als Problem die schwankende Versorgungsspannung hinzu, wie es bei Automobilen (Schwankung von 8 bis 16V im 12V-Bordnetz; Schwankung von 30 bis 60V im zukünftigen 42V-Bordnetz) häufig der Fall ist. Schwankende Versorgungsspannungen führen zu schwankenden Durchlaßströmen IF, was dann unterschiedliche Leuchtdichten und damit verbunden Helligkeitsschwankungen bei den LEDs hervorruft.
  • Bisher wurden zur Begrenzung des Durchlaßstroms durch die LEDs immer Vorwiderstände eingesetzt. In den meisten Fällen wurde für alle Vorwiderstände eine gemeinsame Platine verwendet und diese, wenn möglich, in einem geeigneten Abstand zu den LEDs montiert. Dieser Abstand wurde so ausgewählt, daß die Erwärmung der Vorwiderstände RV keinen Temperatureinfluß auf die LEDs nahmen.
  • Ein weiteres Problem ist die Wahl des maximalen Durchlaßstroms IF von LEDs. Beim Betrieb von LEDs mit Vorwiderständen RV kann nicht der maximal zulässige Durchlaßstrom IF gewählt werden, da bei einer höheren Umgebungstemperatur TA der Durchlaßstrom verringert werden muß. Man wählt deshalb einen Durchlaßstrom IF, der kleiner ist als der maximal zulässige (Figur 3). Auf diese Weise wird zwar der Temperaturbereich zum Betreiben der LEDs vergrößert, aber der Durchlaßstrom IF wird nicht optimal ausgenützt. Am Beispiel von Figur 3 (Power TOPLED, Typ LA E675 der Fa. Siemens) sieht man den Durchlaßstrom IF in Abhängigkeit von der Umgebungstemperatur TA. Der maximale Durchlaßstrom IF darf hier 70 mA bis zu einer Umgebungstemperatur von 70°C betragen. Ab einer Umgebungstemperatur von 70°C muß dann der Durchlaßstrom IF linear verringert werden bis er bei der maximal zulässigen Umgebungstemperatur von 100°C nur noch 25 mA beträgt. Für die optimale Ausnutzung dieser Betriebsweise von LEDs müßte ein variabler Vorwiderstand RV eingesetzt werden.
  • Ein weiteres Problem sind Spannungsschwankungen. Bis jetzt gibt es keine Ansteuerschaltungen für LEDs, die sich im praktischen Einsatz befinden, um die Spannungsschwankungen und somit Durchlaßstromschwankungen (Helligkeitsschwankungen) zu verhindern. Sie müssen daher notgedrungen toleriert werden.
  • Darstellung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung, eine Ansteuerschaltung für LED gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die möglichst wenig Abwärme und Verlustleistung erzeugt.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
  • Um den Vorwiderstand Rv und damit die große Ansteuerverlustleistung zu eliminieren, wird mit einer getakteten LED-Ansteuerung gearbeitet. Figur 4a zeigt das Prinzip einer getakteten Stromregelung für LEDs. Ein Halbleiterschalter, beispielsweise ein strombegrenzender Leistungsschalter oder bevorzugt ein Transistor T (insbesondere vom pnp-Typ, aber auch der npn-Typ ist geeignet, wenn zusätzlich eine Ladepumpe zur Ansteuerung verwendet wird), ist mit seinem Emitter an die Versorgungsspannung UBatt (insbesondere Batteriespannung im Automobil) angeschlossen. Ist der Transistor T leitend, fließt ein Strom iLED durch den LED-Strang (der hier beispielsweise aus vier LEDs besteht), und zwar so lang, bis durch einen Komparator der Transistor T wieder abgeschaltet wird. Der Komparator ist mit seinem Ausgang an die Basis des Transistors angeschlossen. Der eine (positive) Eingang des Komparators ist an eine Regelspannung, der zweite (negative) Eingang des Komparators an einen Frequenzgenerator (bevorzugt Dreiecksgenerator mit Pulsdauer Tp und dementsprechend Frequenz 1/Tp, da dieser beosnders gute elektromagnetische Verträglichkeit beisitzt, aber auch andere Pulsformen wie Sägezahn sind möglich) angeschlossen. Ist die aktuelle Amplitude der Dreiecksspannung UD am Komparator größer als die Regelspannung URegel, wird der Transistor T eingeschaltet. Es fließt der Strom iLED. Sinkt die aktuelle Amplitude der Dreiecksspannung unter den konstanten Wert der Regelspannung URegel am Komparator, wird der Transistor T wieder ausgeschaltet. Dieser Rhythmus wiederholt sich regelmäßig mit der Frequenz f, mit der der Dreiecksgenerator arbeitet.
  • Auf diese Weise wird der über die LEDs fließende Strom getaktet (Figur 4b). Die Rechteckpulse besitzen eine Pulsbreite, die einem Bruchteil von Tp entspricht. Der Abstand zwischen den ansteigenden Flanken zweier Pulse entspricht Tp.
  • Die LEDs liegen in Serie mit einem Mittel zum Messen des Stroms (insbesondere ein Meßwiderstand RShunt zwischen LEDs und Masse (Fall 1) oder auch zwischen Halbleiterschalter (Transistor T) und Klemme der Versorgungsspannung UBatt (Fall 2)). Der getaktete Strom iLED wird am Meßwiderstand RShunt abgegriffen. Anschlie-ßend wird über ein Hilfsmittel der Mittelwert des Stroms i LED gebildet. Das Hilfsmittel ist beispielsweise ein Integrationsmittel (im Fall 1), bevorzugt ein RC-Tiefpaß, oder ein Differenzverstärker (im Fall 2). Dieser Mittelwert dient als IST-Wert für eine Stromregelung, der einem Regler (beispielsweise ein PI- oder PID-Regler) als Eingangswert zur Verfügung gestellt wird. Ein SOLL-Wert, in Form einer Referenzspannung (URef), für die Stromregelung wird ebenfalls dem Regler als zweiter Eingangswert zur Verfügung gestellt. Die Regelspannung URegel am Ausgang des Reglers wird vom Regler so eingestellt, daß der IST-Wert immer möglichst gut dem SOLL-Wert (spannungsmäßig) entspricht. Wenn sich bei Schwankungen die Versorgungsspannung UBatt verändert, paßt sich auch die Einschaltdauer des Transistors T und die Länge des Rechteckpulses (Figur 4b) entsprechend an. Diese Technik an sich ist als PWM (Pulsweitenmodulation) bekannt.
  • Der Vorteil einer getakteten Stromregelung für LED-Stränge liegt vornehmlich im schnellen Ausgleich von Versorgungsschwankungen von UBatt mittels PWM. Daher bleibt der Mittelwert des LED-Stroms (i LED) konstant. Es gibt also keine Helligkeitsveränderungen der LEDs bei Spannungsschwankungen mehr. Ein weiterer Vorteil ist der Schutz vor Zerstörung gegen überhöhte Temperatur, wie oben erläutert (in Abhängigkeit von der Umgebungstemperatur TA).
  • Die erfindungsgemäße Schaltung ermöglicht vorteilhaft eine detaillierte Abfrage der Betriebszustände von einzelnen LED-Strängen. Dies ermöglicht die einfache Fehlererkennung (Abfrage auf Kurzschluß, Unterbrechung) durch sequentielles Abtasten (sog. LED-SCANNING) der einzelnen LED-Stränge.
  • Hinzu kommt, daß der bisher notwendige große Vorwiderstand RV für die Einstellung des Strom für den LED-Strang entfällt. Als Beispiel sei eine Autobatterie mit 12 V genannt, an der ein LED-Strang mit vier LEDs des Typs Power TOPLED (U = 2,1V typ.) angeschlossen ist. Damit ergäbe sich bei einer konventionellen Stromeinstellung eine Verlustleistung im Stromeinstellungswiderstand Rv von etwa 250 mW. Dagegen ergibt sich mit der erfindungsgemäßen Anordnung eine Verlustleistung im Shuntwiderstand RShunt von lediglich etwa 5 mW (bei Stromeinstellung mit PWM), also eine Verringerung der Verlustleistung um den Faktor 50.
  • Ein weiterer Vorteil ist die einfache Strombegrenzung eines LED-Stranges unter Verwendung eines strombegrenzenden Halbleiterschalters (bevorzugt ein Transistor). Als Schalter kann auch ein strombegrenzender Leistungsschalter dienen, der automatisch dafür sorgt, daß der getaktete Durchlaßstrom IF einen maximalen Grenzwert nicht überschreitet, beispielsweise einen Grenzwert von 1 A.
  • Die erfindungsgemäße Schaltungsanordnung ist für unterschiedliche Anforderungen geeignet, beispielsweise für ein 12V oder auch 42V Bordnetz im Kfz.
  • Figur 5 zeigt als Momentaufnahme ein Oszillogramm des getakteten Stromverlaufs der LED-Ansteuerschaltung für ein 12 V- Bordnetz. Es zeigt den Spitzenstrom iLED durch die LEDs (Figur 5a), der getaktet ist und etwa 229 mA erreicht. Die Pulsbreite ist etwa 30 µs, die anschließende Totzeit 70 µs. Daraus ergibt sich ein mittlerer Strom i LED von 70 mA.
  • Des weiteren ist in Figur 5b die zugehörige Taktfrequenz am Dreiecksgenerator gezeigt, seine Frequenz beträgt etwa 9,5 kHz (entsprechend etwa 100 µs Pulsbreite). Die Regelspannung URegel ist als Gerade dargestellt (Figur 5c), sie hat einen Wert von 3,2 V.
  • Der bisher notwendige große Vorwiderstand Rv zur Stromeinstellung ist somit entfallen. Dieser wird durch einen kleinen Meßwiderstand in der Größenordnung von RShunt = 1Ω ersetzt.
  • Schwankungen der Versorgungsspannung UBatt werden jetzt kompensiert und der Durchlaßstrom IF läßt sich einfach konstant regeln. Denn wenn sich der Wert der Versorgungsspannung ändert, ändert sich ebenfalls die Regelspannung URegel und damit die Einschaltzeit des Transistors. Durch diese Pulsweitenmodulation, bei der eine Zunahme der Versorgungsspannung eine Verkürzung der Transistoreinschaltzeit bewirkt (umgekehrt gilt das gleiche), wird automatisch immer auf einen konstanten Strom, der in Form einer Referenzspannung URef am Regler eingestellt ist, geregelt (siehe Figur 4a). Da also der Durchlaßstrom IF im LED-Strang konstant ist, können sich auch keine Helligkeitsschwankungen bei veränderlichen Versorgungsspannungen mehr einstellen.
  • Die erfindungsgemäße Schaltungsanordnung ermöglicht es, die Temperatur zu regeln. Nach Figur 3 (am Beispiel der Power TOPLEDs) darf ja der maximale Durchlaßstrom IF von hier 70 mA nicht über den gesamten zulässigen Temperaturbereich (bis TA = 100°C Umgebungstemperatur) konstant gehalten werden. Ab einer Umgebungstemperatur von TA = 70°C muß der Durchlaßstrom IF verringert werden und bei TA= 100°C schließlich abgeschaltet werden. Zur Realisierung einer Temperaturregelung wird ein Temperaturfühler (bevorzugt in SMD-Bauform) auf die Platine im LED-Array mit aufgebracht und zwar an der zu erwartenden heißesten Stelle. Wird vom Temperaturfühler eine Umgebungstemperatur von mindestens TA = 70°C gemessen, erfolgt eine Verringerung des Durchlaßstroms IF, gemäß der Vorgabe im Datenblatt (Figur 3). Bei einer Umgebungstemperatur TA = 100°C wird der Durchlaßstrom IF abgeschaltet. Diese Maßnahme der Temperaturregelung ist erforderlich, um die Leuchtdioden vor thermischer Zerstörung durch Überhitzung zu schützen und somit ihre Lebensdauer nicht zu verkürzen.
  • Die Erkennung von Fehlfunktionen im LED-Strang fällt mit dieser Schaltungsanordnung leicht. Fällt ein LED-Strang in einem LED-Array (bestehend aus mehreren LED-Strängen) aus, kann es wichtig sein, diesen Ausfall sofort an eine Wartungsstelle zu melden. Besonders wichtig ist dies bei sicherheitstechnischen Einrichtungen, z.B. bei Ampelanlagen. Auch im Automobilbereich (PKW, LKW) ist es wünschenswert, über den momentanen Zustand der LEDs informiert zu werden, beispielsweise wenn die Rücklichter mit LEDs ausgerüstet sind.
  • Die bekanntesten Fehlerarten sind Unterbrechung und Kurzschluß. Die Fehlerart Kurzschluß kann bei LEDs praktisch ausgeschlossen werden. Wenn LEDs ausfallen, dann meistens durch eine Unterbrechung der Zuleitung. Eine Unterbrechung in einer LED ist vorwiegend auf Wärmeeinwirkung zurückzuführen. Die Ursache liegt in der Ausdehnung des Harzes (Epoxidharz als Teil des Gehäuses) unter Wärmeeinwirkung, so daß der darin eingebettete, sich unterschiedlich ausdehnende Bonddraht (Verbindungsleitung zwischen LED-Chip und Außenpin) abbricht.
  • Eine andere Möglichkeit der Zerstörung wird ebenfalls durch Wärmeeinwirkung hervorgerufen. Durch zu große Hitze erweicht das Harz (also das Material, aus dem das Gehäuse besteht) und wird zähflüssig. Der Chip kann sich lösen und beginnt zu wandern. Dadurch kann der Bonddraht ebenfalls reißen.
  • Generell sind also durch starke Wärmeeinwirkung mechanische Defekte (wie Bonddrahtriß) zu erwarten. Durch eine Schaltung zur Unterbrechungserkennung in einem LED-Strang ist es möglich, das Auftreten eines Fehlers an einen Ausgang (z.B. Status-Pin bei einem Halbleiterbaustein) zu signalisieren. Logisch 1 (high) bedeutet beispielsweise Auftreten eines Fehlers, Logisch 0 (low) bedeutet ordnungsgemäßer Zustand.
  • Die erfindungsgemäße Ansteuerschaltung läßt sich als kompakter LED-Ansteuerbaustein (IC) realisieren, der sich durch die Möglichkeit der Konstantstromregelung des Durchlaßstroms (IF = const.) bei LEDs auszeichnet. Weitere Vorteile sind die externe und damit flexible Durchlaßstromeinstellung, die kleine Verlustleistung durch Schaltbetrieb (Entfallen-des großen Vorwiderstandes RV), die Unterbrechungserkennung im LED-Strang und die Temperaturregelung zum Schutz der LEDs. Hinzu kommt die geringe Eigenstromaufnahme der LED-Ansteuerschaltung (sparsamer Standby-Betrieb).
  • Im Standby-Betrieb bleibt der LED-Ansteuerbaustein an Dauerplus (Batteriespannung im Kfz) angeschlossen, während er ausgeschaltet ist, d.h. es fließt kein Strom durch die LEDs. In diesem Zustand darf der Ansteuerbaustein nur geringen Eigenstrom (Eigenstromaufnahme geht gegen 0) aufnehmen, um die Batterie im Kfz nicht zu belasten. Das ist der Fall, wenn das Auto z.B. in der Garage abgestellt oder geparkt wird. Ein zusätzlicher Stromverbrauch würde hier die Batterie unnötig belasten. Ein- und ausgeschaltet wird der LED-Ansteuerbaustein über einen Logik-Eingang (ENABLE-Eingang).
  • Die Schaltungsanordnung läßt sich außerdem verpolfest ausführen und gegen Überspannung sichern. Eine Verpolschutzdiode sorgt für den Fall eines verkehrten Anschlusses des LED-Ansteuerbausteins an die Versorgungsspannung (Batterie) vor dessen Zerstörung. Eine Kombination von einer Zenerdiode und einer normalen Diode schützt den LED-Ansteuerbaustein zusätzlich vor Zerstörung durch Überspannungen am Versorgungsspannungs-Pin UBatt.
  • In einer besonders bevorzugten Ausführungsform wird zusätzlich noch ein Microcontroller-kompatibler ENABLE-Eingang (Logik-Eingang) bereitgestellt, der die Ansteuerung mit einem Microcontroller ermöglicht. Somit ist es möglich den Ansteuerbaustein (insbesondere eine integrierte Schaltung IC) für LEDs in ein Bussystem zu integrieren (beispielsweise CAN-Bus im Kfz, Insta-Bus für Hausinstallationstechnik).
  • Figuren
  • Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
  • Figur 1
    eine bekannte Ansteuerung für LEDs
    Figur 2
    ein weiteres Ausführungsbeispiel einer bekannte Ansteuerung für LEDs
    Figur 3
    die Abhängigkeit des Durchlaßstroms einer LED von der Umgebungstemperatur
    Figur 4
    das Grundprinzip einer getakteten Stromregelung für LED (Figur 4a) nebst einer Erläuterung des Spitzenstroms und Mittelwerts (Figur 4b)
    Figur 5
    den Stromverlauf einer getakteten Stromregelung für LED
    Figur 6
    eine getaktete Stromregelung mit Unterbrechererkennung
    Figur 7
    die Realisierung einer Unterbrechererkennung für einen LED-Strang
    Figur 8
    Blockschaltbild einer LED-Ansteuerschaltung
    Beschreibung der Zeichnungen
  • Die Figuren 1 bis 5 wurden bereits oben beschrieben.
  • Ein Ausführungsbeispiel (gesamtes Blockschaltbild) für die Realisierung einer Unterbrechungserkennung zeigt Figur 6. Die Detektion einer Unterbrechung im LED-Strang kann über die direkte Überwachung der Regelspannung URegel mittels eines Unterbrechungserkenners (siehe hierzu im Detail Figur 7) erfolgen. Im Falle einer Unterbrechung ist die Regelspannung Null (URegel = 0). Über eine Auswerteschaltung A (Figur 8) kann dieser Fehlerfall an einem Ausgang (Status-Pin) angezeigt werden.
  • Günstig ist es, diesen Ausgang als Open-Collector Schaltung auszuführen (Figur 8), da dann der Anwender der Schaltung, der später den LED-Ansteuerbaustein (IC) verwendet, von der Ausgangssignalhöhe unabhängig ist. Die Schaltung des StatusAusgangs besitzt als Endstufe einen Transistor, dessen Kollektor offen ist (also keinen Pull-up-Widerstand besitzt). Der Kollektor des Transistors führt direkt an den Status-Pin des LED-Ansteuerbausteins (Figur 8). Wird an den Kollektor des Transistors TOC ein externer Pull-up-Widerstand RP angeschlossen, kann dieser mit einer beliebigen Spannung Vcc verbunden werden. Die Ausgangssignalhöhe hängt demnach von der Spannung Vcc ab, an die der Pull-up-Widerstand Rp angeschlossen ist.
  • Die technische Realisierung einer Unterbrechungserkennung im LED-Strang ist in Figur 7 gezeigt. Die Unterbrechungserkennung im LED-Strang funktioniert nach dem Prinzip des Abtastens (Scannen) einer Spannung (hier: Regelspannung URegel). Die Regelspannung URegel besitzt einen Minimalwert, der so groß ist wie die kleinste Spannung UD_min des Dreieckgenerators. Wie aus Figur 5 hervorgeht, liegt sie bei etwa 2 V. Dabei ist vorausgesetzt, daß die Regelung aktiv ist und keine Unterbrechung im LED-Strang herrscht. Im Falle einer Unterbrechung im LED-Strang hat die Regelspannung den Wert 0 Volt (URegel = 0 V).
  • Figur 7 zeigt das komplette Blockschaltbild der Unterbrechungserkennung im LED-Strang nach dem Prinzip des Abtastens einer Spannung. Vom internen Oszillator (OSZ), der mit einer bestimmten Frequenz läuft (hier: ca. 9,5 kHz), wird der Takt (als Rechteck-Spannung UR) auf einen n-bit Binärzähler (COUNTER) gegeben. Je nachdem, wieviele LED-Stränge (und dementsprechend wieviele Regelspannungen URegel) abgetastet werden sollen, hat die Auslegung des Binärzählers zu erfolgen. Beispielhaft wird ein 3-bit-Binärzähler (für Adressen von 0 bis 7) verwendet. Mit ihm können also bis zu 8 Regelspannungen URegel abgetastet werden.
  • Das 3-bit-Binärmuster des Zählers steuert einen Analogmultiplexer (MUX), der (abhängig vom anliegenden Binärwort) alle Regelspannungen URegel1,2... nacheinander abtastet und sie der Reihe nach am Ausgang zur Verfügung stellt. Die kleinste Regelspannung URegel_min (Regelung aktiv und keine Unterbrechung im LED-Strang) entspricht dem Minimalwert der Dreiecksspannung UD_min.
  • Um ein "Low-Signal" der Regelspannung URegel (entsprechend 0 Volt, Unterbrechung im LED-Strang) erfolgreich zu detektieren und es für die anschließende Speicherung in einem Speichermedium, beispielsweise einem Flip-Flop (FF) vorzubereiten, wird am Ausgang des Analogmultiplexers (MUX) ein Komparator (COMP) eingefügt. Dessen Umschaltschwelle USW muß kleiner sein als der Minimalwert der Dreiecksspannung UD, also USW < UD_min.
  • Wird jetzt ein "Low-Signal" bei einer abgetasteten Regelspannung URegel detektiert, wird am Komparatorausgang ein "High-Signal" gesetzt. Dieses High-Signal wird dann im Flip-Flop (FF) solange gespeichert, bis der Fehler (Unterbrechung im LED-Strang) wieder behoben ist.
  • Der Statusausgang (Status = Ausgang des FF) hat folgende Bedeutung:
  • High-Signal =
    Unterbrechung in einem LED-Strang
    Low-Signal =
    keine Unterbrechung
  • Ein Reset des Flip-Flops FF und damit des Statusausgangs erfolgt erst, wenn der LED-Ansteuerbaustein ausgeschaltet wird, d.h. wenn eine Fehlerbehebung im LED-Strang stattfindet.
  • Das Rücksetzen (Reset) des Statusausgangs kann auf 2 Arten geschehen:
    • Ausschalten des LED-Ansteuerbausteins (IC) über ENABLE Eingang. Der LED-Ansteuerbaustein (IC) ist über diesen Ausgang in einem System zusammen mit einem Microcontroller (µC) integriert (Figur 8). Im Kfz-Bereich kann die Ansteuerung z.B. über CAN-Bus erfolgen.
    • Abklemmen der Versorgungsspannung am LED-Ansteuerbaustein (IC). Wird der ENABLE-Eingang nicht benötigt, ist dieser mit der Batteriespannung zu verbinden. In einfachen Systemen ohne Microcontroller-Ansteuerung ist diese Methode anzuwenden.
  • Die Schaltungsanordnung für Verpoffestigkeit und Überspannungsschutz ist ebenfalls in Figur 8 (Blockschaltbild des LED-Ansteuerbaustein) dargestellt. Eine Verpolschutzdiode zwischen externer (UBatt) und interner Spannungsversorgung sorgt für den Fall eines verkehrten Anschlusses des LED-Ansteuerbausteins an die Versorgungsspannung (Batterie) vor dessen Zerstörung. Der Überspannungsschutz wird mit einer Zenerdiode in Kombination mit einer gegengepolten Diode realisiert.
  • Der IC enthält außerdem einen Anschlußpin für einen Temperatursensor (beispielsweise ein NTC) und einen Pin für den Anschluß einer Stromreferenz sowie zwei Pins zum Anschluß des LED-Strangs.
  • Eine externe und damit flexible Einstellung (Programmierung) des Durchlaßstromes IF eines LED-Strangs ist dadurch realisiert, daß erstens ein interner Pull-up-Widerstand Ri mit der internen Spannungsversorgung UV des IC und mit einem Eingang für eine LED-Stromreferenz verbunden ist, so daß ein externer Widerstand Rext gegen Masse mit dem internen Pull-up-Widerstand Ri einen Spannungsteiler bildet und sich so die gewünschte Durchlaßstromstärke IF einstellt, und daß zweitens am Eingang für die LED-Stromreferenz eine Gleichspannung, die bis zur maximalen Durchlaßstromstärke IF eingestellt werden kann, zur Verfügung gestellt wird, die als Maß für die Durchlaßstromstärke IF dient.
  • Eine Logikansteuerung des Bausteins (IC) ist dadurch realisiert, daß über einen Eingang (ENABLE) ein logischer Signalpegel (low oder high) den Baustein aus- oder einschaltet.
  • Eine Fehlermeldung über einen STATUS-Ausgang ist dadurch realisiert, daß dieser Ausgang einen offenen Kollektor ("Open Collector" für bipolare Integration) oder auch ein offenes Drain (Open Drain für CMOS Integration) besitzt und durch Anschluß eines externen Pullup-Widerstandes RP die Ausgangssignalhöhe für den Fehlersignalpegel (high-Signal) frei definiert werden kann.

Claims (16)

  1. Ansteuerschaltung für LED, insbesondere für ein LED-Array, das aus einem oder mehreren Strängen von LEDs besteht, wobei ein Strang aus mehreren in Serie angeordneten LEDs besteht, wobei die LED bzw. das LED-Array an eine Versorgungsspannung (UBatt) angeschlossen sind, dadurch gekennzeichnet, daß zwischen der LED bzw. dem LED-Array und der Versorgungsspannung als Teil der Ansteuerschaltung ein Halbleiterschalter (T) mit zwei Zweigen in Serie angeordnet ist, der es ermöglicht, im zur LED bzw. LED-Array führenden ersten Zweig den Durchlaßstrom (iLED) für die LED bzw. das LED-Array getaktet zuzuführen, und daß in diesem ersten Zweig für den Durchlaßstrom (iLED), insbesondere zwischen LEDs und Masse, als Teil der Ansteuerschaltung ein Mittel zum Messen des Durchlaßstroms (iLED), insbesondere ein Meßwiderstand (RShunt), in Serie zur LED bzw. LED-Array angeordnet ist, wobei als Teil der Ansteuerschaltung ein Regelkreis, der an den zweiten Zweig des Halbleiterschalters angeschlossen ist, den Halbleiterschalter (T) so regelt, daß ein konstanter Mittelwert des Durchlaßstroms erzielt wird, indem der Regelkreis ein Integrationsglied, das den IST-Wert des Mittelwertes des Durchlaßstroms liefert, sowie einen daran angeschlossenen Regler, der den IST-Wert des Mittelwertes des Durchlaßstroms mit einem externen Sollwert vergleicht, umfasst , wobei der Regler einen Ausgangswert der Regelspannung liefert, und der Regelkreis weiterhin einen Komparator umfaßt, der das Signal eines Frequenzgenerators, insbesondere eines Dreieckgenerators (OSZ), mit dem Ausgangswert der Regelspannung (URegel) vergleicht, wobei die Regelung durch Pulsweitenmodulation erfolgt.
  2. Ansteuerschaltung nach Anspruch 1, dadurch gekennzeichnet, daß der Halbleiterschalter ein Transistor (T) ist.
  3. Ansteuerschaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Regelspannung (URegel) von einem Mittel zur Unterbrechungserkennung überwacht wird.
  4. Ansteuerschaltung nach Anspruch 3, dadurch gekennzeichnet, daß ein LED-Array aus mehreren LED-Strängen dadurch überwacht wird, daß ein Frequenzgeber (OSZ) seinen Takt auf einen Binärzähler gibt, der einen Analogmultiplexer (MUX) steuert, der die Regelspannungen (URegel1,2...) aller LED-Stränge des Arrays abtastet.
  5. Ansteuerschaltung nach Anspruch 4 dadurch gekennzeichnet, daß das Ausgangssignal des Multiplexers über einen Komparator (COMP) an ein Speichermedium (FF) gegeben wird.
  6. Ansteuerschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie als integrierter Baustein (IC) realisiert ist, der an die LED bzw. das LED-Array und die Versorgungsspannung angeschlossen wird.
  7. Ansteuerschaltung nach Anspruch 6, dadurch gekennzeichnet, daß im Baustein (IC) eine externe und damit flexible Einstellung (Programmierung) des Durchlaßstroms (iLED) eines LED-Strangs dadurch realisiert ist, daß erstens ein interner Pull-up-Widerstand Ri mit der internen Spannungsversorgung (UV) des Bausteins (IC) und mit einem Eingang für eine LED-Stromreferenz verbunden ist, so daß ein externer Widerstand (Rext) gegen Masse mit dem internen Pull-up-Widerstand (Rj) einen Spannungsteiler bildet und sich so die gewünschte Durchlaßstromstärke (iLED) einstellt, und daß zweitens am Eingang für die LED-Stromreferenz eine Gleichspannung, die bis zur maximalen Durchlaßstromstärke (iLED) eingestellt werden kann, zur Verfügung gestellt wird, die als Maß für die Durchlaßstromstärke (iLED) dient.
  8. Ansteuerschaltung nach Anspruch 6, dadurch gekennzeichnet, daß eine Logikansteuerung des Bausteins (IC) dadurch realisiert ist, daß über einen Eingang (ENABLE) ein logischer Signalpegel (low oder high) den Baustein aus- oder einschaltet.
  9. Ansteuerschaltung nach Anspruch 6, dadurch gekennzeichnet, daß im Baustein (IC) eine Fehlermeldung über einen STATUS-Ausgang des Bausteins (IC) dadurch realisiert ist, daß dieser Ausgang einen offenen Kollektor ("Open Collector" für bipolare Integration) oder ein offenes Drain (Open Drain für CMOS Integration) besitzt und durch Anschluß eines externen Pullup-Widerstandes RP die Ausgangssignalhöhe für den Fehlersignalpegel (high-Signal) frei definiert werden kann.
  10. Ansteuerschaltung nach Anspruch 6, dadurch gekennzeichnet, daß im Baustein (IC) ein Schutz gegen Verpolung bei Anschluss des Bausteins (IC) an eine Versorgungsspannung (z.B. Kfz-Batterie) dadurch realisiert ist, daß eine Verpolschutzdiode die internen Schaltkreise des Bausteins schützt.
  11. Ansteuerschaltung nach Anspruch 6, dadurch gekennzeichnet, daß im Baustein (IC) ein Schutz gegen auftretende Überspannungen am Eingang des Bausteins für die Versorgungsspannung dadurch realisiert ist, daß am Eingangs-Pin für die Versorgungsspannung (UBatt) eine Kombination aus Zenerdiode und gegengepolter Diode wirksam ist.
  12. Verfahren zum Betreiben einer LED, insbesondere eines LED-Array, dadurch gekennzeichnet, daß der Durchlaßstrom (iLED) der LED mittels eines schnellen Halbleiterschalters (Transistor T) getaktet wird, und daß der IST-Wert des Mittelwertes des Durchlaßstroms mit einem externen Sollwert über ein Mittel zur Regelung verglichen wird, wobei die Regelung durch Pulsweitenmodulation erfolgt.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Ausgangssignal des Mittel zur Regelung mit dem Signal eines Frequenzgenerators (OSZ), insbesondere eines Dreieckgenerators, verglichen wird.
  14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Signal aus dem Mittel zur Regelung von einem Mittel zur Unterbrechungserkennung, insbesondere einem Flip-Flop (FF) oder mittels LED-Scanning, überwacht wird.
  15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass zusätzlich eine temperaturabhängige Regelung des Durchlaßstrom der LEDs dadurch realisiert ist, daß über einen Sensoreingang ein temperaturfühlendes Element (insbesondere ein NTC) anschließbar ist und oberhalb eines bestimmten Schwellwerts der Umgebungstemperatur TA der Durchlaßstrom (iLED) nach einer vorgegebenen Kennlinie zurückgeregelt wird.
  16. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß ein Betrieb der Schaltung mit unterschiedlichen Versorgungsspannungen möglich ist, indem die interne Spannungsversorgung sich aus jeder Eingangsspannung (UBatt) eine stabile interne Versorgungsspannung erzeugt.
EP00926699A 1999-06-30 2000-04-01 Ansteuerschaltung für led und zugehöriges betriebsverfahren Expired - Lifetime EP1118251B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19930174A DE19930174A1 (de) 1999-06-30 1999-06-30 Ansteuerschaltung für LED und zugehöriges Betriebsverfahren
DE19930174 1999-06-30
PCT/DE2000/000989 WO2001003474A1 (de) 1999-06-30 2000-04-01 Ansteuerschaltung für led und zugehöriges betriebsverfahren

Publications (2)

Publication Number Publication Date
EP1118251A1 EP1118251A1 (de) 2001-07-25
EP1118251B1 true EP1118251B1 (de) 2006-06-21

Family

ID=7913192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00926699A Expired - Lifetime EP1118251B1 (de) 1999-06-30 2000-04-01 Ansteuerschaltung für led und zugehöriges betriebsverfahren

Country Status (7)

Country Link
US (1) US6400101B1 (de)
EP (1) EP1118251B1 (de)
JP (1) JP2003504797A (de)
AT (1) ATE331422T1 (de)
CA (1) CA2341657A1 (de)
DE (2) DE19930174A1 (de)
WO (1) WO2001003474A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019103660A1 (de) * 2019-02-13 2020-08-13 Vossloh-Schwabe Deutschland Gmbh Betriebsschaltung für das Betreiben mehrerer Lasten

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214825A (ja) * 1999-01-20 2000-08-04 Nec Corp バックライト表示装置及び方法
JP2001117681A (ja) * 1999-08-06 2001-04-27 Fujitsu Takamisawa Component Ltd Pc切替器
DE19945546B4 (de) * 1999-09-23 2005-06-23 Reitter & Schefenacker Gmbh & Co. Kg Verfahren zur Ansteuerung von Leuchtmitteln von Fahrzeugen, vorzugsweise von Kraftfahrzeugen, sowie Vorrichtung zur Durchführung des Verfahrens
DE19950135A1 (de) * 1999-10-18 2001-04-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Ansteuerschaltung für LED und zugehöriges Betriebsverfahren
GB2355816B (en) * 1999-10-26 2004-01-14 Mitel Corp Efficient controlled current sink for LED backlight panel
US20070020573A1 (en) * 1999-12-21 2007-01-25 Furner Paul E Candle assembly with light emitting system
US6628252B2 (en) * 2000-05-12 2003-09-30 Rohm Co., Ltd. LED drive circuit
DE10034262C1 (de) * 2000-07-14 2001-09-20 Infineon Technologies Ag Halbleitervorrichtung mit Temperaturregelung, insb. geeignet für den Kfz-Bereich
US7262752B2 (en) 2001-01-16 2007-08-28 Visteon Global Technologies, Inc. Series led backlight control circuit
US6717559B2 (en) * 2001-01-16 2004-04-06 Visteon Global Technologies, Inc. Temperature compensated parallel LED drive circuit
DE10101852A1 (de) * 2001-01-17 2002-04-04 Infineon Technologies Ag Schaltungsanordnung
DE10115388A1 (de) 2001-03-28 2002-10-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Ansteuerschaltung für ein LED-Array
US6720883B2 (en) * 2001-05-03 2004-04-13 Electronic Controls Company Warning device status circuit including a status output device
US6577512B2 (en) * 2001-05-25 2003-06-10 Koninklijke Philips Electronics N.V. Power supply for LEDs
US6734639B2 (en) * 2001-08-15 2004-05-11 Koninklijke Philips Electronics N.V. Sample and hold method to achieve square-wave PWM current source for light emitting diode arrays
EP1313353A1 (de) * 2001-11-19 2003-05-21 Nokia Corporation Verfahren und Anordnung zum Betreiben einer Leuchtdiode
US6586890B2 (en) * 2001-12-05 2003-07-01 Koninklijke Philips Electronics N.V. LED driver circuit with PWM output
US6870328B2 (en) * 2001-12-19 2005-03-22 Toyoda Gosei Co., Ltd. LED lamp apparatus for vehicles
GB0130411D0 (en) * 2001-12-20 2002-02-06 Koninkl Philips Electronics Nv Active matrix electroluminescent display device
GB0204212D0 (en) * 2002-02-22 2002-04-10 Oxley Dev Co Ltd Led drive circuit
DE10214447A1 (de) * 2002-03-30 2003-10-16 Hella Kg Hueck & Co Regeleinrichtung zum Regeln von elektrischen Leuchtmitteln und Scheinwerfer mit einer solchen Regeleinrichtung
DE10220306C1 (de) * 2002-05-07 2003-12-11 Kostal Leopold Gmbh & Co Kg Elektrische Schaltungsanordnung sowie Verfahren zur Überprüfung der Intaktheit eines Photodiodenarrays
JP4206693B2 (ja) * 2002-05-17 2009-01-14 株式会社日立製作所 画像表示装置
JP3745310B2 (ja) * 2002-05-31 2006-02-15 ソニー株式会社 発光素子駆動装置およびそれを用いた携帯装置
DE10236870A1 (de) * 2002-08-12 2004-02-26 Hella Kg Hueck & Co. Leuchte mit einer Schaltungsanordnung zum Ansteuern von Leuchtdioden und Verfahren zum Abgleichen einer solchen Schaltungsanordnung
DE60328251D1 (de) * 2002-10-16 2009-08-20 Ccs Inc Stromversorgungssystem für eine Lumineszenzdiodeneinheit
US7012793B2 (en) * 2002-12-06 2006-03-14 Delta Electronics, Inc. Power converter with polarity reversal and inrush current protection circuit
US6893140B2 (en) * 2002-12-13 2005-05-17 W. T. Storey, Inc. Flashlight
US7262559B2 (en) * 2002-12-19 2007-08-28 Koninklijke Philips Electronics N.V. LEDS driver
DE10302322B4 (de) * 2003-01-20 2009-05-20 Diehl Aerospace Gmbh Beleuchtungssystem für Flugzeugkabinen
US20040141329A1 (en) * 2003-01-20 2004-07-22 Walter Fleischmann Lighting system for aircraft cabins
US6864641B2 (en) 2003-02-20 2005-03-08 Visteon Global Technologies, Inc. Method and apparatus for controlling light emitting diodes
CN100479204C (zh) 2003-03-13 2009-04-15 奥斯兰姆奥普托半导体有限责任公司 具有磷光效应的荧光转化发光二极管及其应用
JP4959325B2 (ja) 2003-05-07 2012-06-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光ダイオードのための電流制御の方法および回路
DE10324609B4 (de) * 2003-05-30 2014-11-13 Osram Gmbh Ansteuerschaltung und LED-Array sowie Verfahren zum Betreiben eines LED-Arrays
EP2079276B1 (de) * 2003-08-27 2018-10-10 Osram Sylvania, Inc. Antriebsschaltung für eine LED-Fahrzeugleuchte
JP2005080353A (ja) * 2003-08-29 2005-03-24 Toyoda Gosei Co Ltd Led用電源装置
JP2007504674A (ja) * 2003-09-04 2007-03-01 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Ledの温度依存性電力供給システム及び方法
GB0325731D0 (en) * 2003-09-09 2003-12-10 Sentec Ltd Controller circuit
GB0322823D0 (en) * 2003-09-30 2003-10-29 Oxley Dev Co Ltd Method and drive circuit for controlling leds
KR100666549B1 (ko) * 2003-11-27 2007-01-09 삼성에스디아이 주식회사 유기전계 발광표시장치 및 그의 구동방법
US7304442B2 (en) * 2003-12-02 2007-12-04 Walter R. Colwell Three component protective head gear powered by a rechargeable battery
US7075250B2 (en) * 2003-12-02 2006-07-11 Seto Holdings, Inc. Three-component protective head gear powered by a rechargeable battery
US7119498B2 (en) * 2003-12-29 2006-10-10 Texas Instruments Incorporated Current control device for driving LED devices
GB0402974D0 (en) * 2004-02-11 2004-03-17 Bhagat Peter Apparatus for the control of lighting and associated methods
US7633463B2 (en) * 2004-04-30 2009-12-15 Analog Devices, Inc. Method and IC driver for series connected R, G, B LEDs
US20050248517A1 (en) * 2004-05-05 2005-11-10 Visteon Global Technologies, Inc. System and method for luminance degradation reduction using thermal feedback
EP1608064A1 (de) * 2004-06-14 2005-12-21 Delphi Technologies, Inc. Treiberschaltung für Pulsbreitenmodulation
KR20070046837A (ko) * 2004-07-02 2007-05-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 표시 장치의 백라이트 에미터를 구동하기 위한 방법, 회로,및 장치
US8600217B2 (en) * 2004-07-14 2013-12-03 Arturo A. Rodriguez System and method for improving quality of displayed picture during trick modes
WO2006016706A1 (en) * 2004-08-13 2006-02-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method thereof
US8733966B2 (en) * 2004-08-20 2014-05-27 Mag Instrument, Inc. LED flashlight
KR101061847B1 (ko) 2004-08-20 2011-09-02 삼성전자주식회사 전원 공급 장치 및 백라이트 장치
FR2875672B1 (fr) * 2004-09-21 2007-05-11 3D Plus Sa Sa Dispositif electronique avec repartiteur de chaleur integre
DE102004050655A1 (de) 2004-10-18 2006-06-01 Volkswagen Ag Fahrzeug-Beleuchtungsvorrichtung und Verfahren zum Steuern einer Fahrzeug-Beleuchtungsvorrichtung
JP4529657B2 (ja) * 2004-11-17 2010-08-25 パナソニック電工株式会社 発光ダイオード点灯装置、及び照明器具
DE102004055884A1 (de) * 2004-11-19 2006-05-24 Audi Ag Leuchteinrichtung für ein Kraftfahrzeug umfassend eine oder mehrere LED's
GB2421633B (en) 2004-12-21 2007-02-14 Richard Peter James Barton Lamp assembly for pulse operation
WO2006072929A1 (en) * 2005-01-06 2006-07-13 Infra-Com Ltd Communication diode driver circuit
KR100628719B1 (ko) * 2005-02-15 2006-09-28 삼성전자주식회사 Led구동장치
US7567223B2 (en) * 2005-03-01 2009-07-28 Honeywell International Inc. Light-emitting diode (LED) hysteretic current controller
US7378805B2 (en) * 2005-03-22 2008-05-27 Fairchild Semiconductor Corporation Single-stage digital power converter for driving LEDs
US8016470B2 (en) * 2007-10-05 2011-09-13 Dental Equipment, Llc LED-based dental exam lamp with variable chromaticity
JP4749049B2 (ja) * 2005-06-15 2011-08-17 ローム株式会社 定電流回路および電子機器
US7492108B2 (en) * 2005-08-11 2009-02-17 Texas Instruments Incorporated System and method for driving light-emitting diodes (LEDs)
KR100735460B1 (ko) 2005-09-09 2007-07-03 삼성전기주식회사 온도 보상 기능을 갖는 led 구동 제어 회로
US7986112B2 (en) 2005-09-15 2011-07-26 Mag Instrument, Inc. Thermally self-stabilizing LED module
WO2007035883A2 (en) * 2005-09-20 2007-03-29 California Micro Devices Corporation Driving parallel strings of series connected leds
DE102005061204A1 (de) * 2005-12-21 2007-07-05 Perkinelmer Elcos Gmbh Beleuchtungsvorrichtung, Beleuchtungssteuergerät und Beleuchtungssystem
EP1804229B1 (de) * 2005-12-28 2016-08-17 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung und Prüfungsverfahren dafür
JP2007188692A (ja) * 2006-01-12 2007-07-26 Denso Corp Ledランプ装置
KR100755624B1 (ko) * 2006-02-09 2007-09-04 삼성전기주식회사 필드 순차 칼라 모드의 액정 표시 장치
CA2643182C (en) 2006-03-13 2014-09-02 Tir Technology Lp Adaptive control apparatus and method for a solid-state lighting system
EP1874097B1 (de) 2006-06-28 2010-06-16 Osram Gesellschaft mit Beschränkter Haftung LED-Schaltung mit Stromregelung
US7583034B2 (en) 2006-09-26 2009-09-01 Semiconductor Components Industries, L.L.C. LED controller and method therefor
DE102006046729B4 (de) * 2006-10-02 2008-12-11 Infineon Technologies Ag Stromversorgungsschaltung mit temperaturabhängigem Ausgangsstrom und Schaltungsanordnung mit einer Stromversorgungschaltung
TWI326563B (en) * 2006-10-18 2010-06-21 Chunghwa Picture Tubes Ltd Light source driving circuit
TWI352949B (en) * 2006-11-01 2011-11-21 Chunghwa Picture Tubes Ltd Light source driving circuit
US7741825B2 (en) 2006-11-02 2010-06-22 Infineon Technologies Ag Power supply circuit with temperature-dependent drive signal
TWI349902B (en) * 2006-11-16 2011-10-01 Chunghwa Picture Tubes Ltd Controlling apparatuses for controlling a plurality of led strings and related light modules
CN100562200C (zh) * 2006-12-15 2009-11-18 鸿富锦精密工业(深圳)有限公司 太阳能路灯控制电路
US7948190B2 (en) * 2007-04-10 2011-05-24 Nexxus Lighting, Inc. Apparatus and methods for the thermal regulation of light emitting diodes in signage
EP1981313A1 (de) * 2007-04-13 2008-10-15 MAGNETI MARELLI SISTEMI ELETTRONICI S.p.A. Diagnosesystem für die Außenbeleuchtungsvorrichtungen eines Fahrzeugs
US8378583B2 (en) 2007-06-22 2013-02-19 Osram Gesellschaft Mit Beschraenkter Haftung Feedforward control of semiconductor light sources
US10938303B2 (en) * 2007-08-10 2021-03-02 Rohm Co., Ltd. Driving device
JP2009044081A (ja) * 2007-08-10 2009-02-26 Rohm Co Ltd 駆動装置
DE102007038892A1 (de) * 2007-08-17 2009-04-09 Texas Instruments Deutschland Gmbh Hochgeschwindigkeits-LED-Treiber
DE102007041131B4 (de) * 2007-08-30 2015-07-23 Osram Gmbh Anordnung, Verwendung und Verfahren zur Ansteuerung von Licht emittierenden Bauelementen
DE102007043076A1 (de) * 2007-09-10 2009-03-12 Robert Bosch Gmbh Ansteuerschaltung
US8277092B2 (en) 2007-10-12 2012-10-02 Truck-Lite Co., Llc Lamp assembly utilizing light emitting diodes
JP5169134B2 (ja) * 2007-10-22 2013-03-27 船井電機株式会社 バックライト用led駆動回路
US8648774B2 (en) 2007-12-11 2014-02-11 Advance Display Technologies, Inc. Large scale LED display
US8922458B2 (en) * 2007-12-11 2014-12-30 ADTI Media, LLC Data and power distribution system and method for a large scale display
US8040070B2 (en) 2008-01-23 2011-10-18 Cree, Inc. Frequency converted dimming signal generation
DE102008017483A1 (de) * 2008-04-03 2009-10-08 Steinel Gmbh Leuchtenvorrichtung
JP4647674B2 (ja) * 2008-04-17 2011-03-09 株式会社小糸製作所 点灯回路
WO2009134885A1 (en) * 2008-04-29 2009-11-05 Ivus Industries, Inc. Wide voltage, high efficiency led driver circuit
US7952293B2 (en) * 2008-04-30 2011-05-31 Lsi Industries, Inc. Power factor correction and driver circuits
US8432108B2 (en) * 2008-04-30 2013-04-30 Lsi Industries, Inc. Solid state lighting, driver circuits, and related software
WO2009140141A1 (en) * 2008-05-13 2009-11-19 Express Imaging Systems, Llc Gas-discharge lamp replacement
US8125163B2 (en) 2008-05-21 2012-02-28 Manufacturing Resources International, Inc. Backlight adjustment system
US9022612B2 (en) * 2008-08-07 2015-05-05 Mag Instrument, Inc. LED module
US8169165B2 (en) 2009-01-14 2012-05-01 Mag Instrument, Inc. Multi-mode portable lighting device
US9247598B2 (en) * 2009-01-16 2016-01-26 Mag Instrument, Inc. Portable lighting devices
KR20120032472A (ko) * 2009-05-01 2012-04-05 익스프레스 이미징 시스템즈, 엘엘씨 수동 냉각을 구비한 가스-방전 램프 교체
US8217591B2 (en) * 2009-05-28 2012-07-10 Cree, Inc. Power source sensing dimming circuits and methods of operating same
JP2012529081A (ja) 2009-06-03 2012-11-15 マニュファクチャリング・リソーシズ・インターナショナル・インコーポレーテッド Ledバックライトの動的減光
US7994730B2 (en) * 2009-06-04 2011-08-09 Apple Inc. Pulse width modulation (PWM) closed loop LED current driver in an embedded system
US10264637B2 (en) 2009-09-24 2019-04-16 Cree, Inc. Solid state lighting apparatus with compensation bypass circuits and methods of operation thereof
US9713211B2 (en) 2009-09-24 2017-07-18 Cree, Inc. Solid state lighting apparatus with controllable bypass circuits and methods of operation thereof
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US9464801B2 (en) 2009-09-25 2016-10-11 Cree, Inc. Lighting device with one or more removable heat sink elements
US9353933B2 (en) * 2009-09-25 2016-05-31 Cree, Inc. Lighting device with position-retaining element
US9068719B2 (en) * 2009-09-25 2015-06-30 Cree, Inc. Light engines for lighting devices
US8777449B2 (en) * 2009-09-25 2014-07-15 Cree, Inc. Lighting devices comprising solid state light emitters
US9285103B2 (en) 2009-09-25 2016-03-15 Cree, Inc. Light engines for lighting devices
US8602579B2 (en) 2009-09-25 2013-12-10 Cree, Inc. Lighting devices including thermally conductive housings and related structures
US9030120B2 (en) * 2009-10-20 2015-05-12 Cree, Inc. Heat sinks and lamp incorporating same
US9217542B2 (en) 2009-10-20 2015-12-22 Cree, Inc. Heat sinks and lamp incorporating same
KR101101683B1 (ko) * 2009-12-16 2011-12-30 삼성전기주식회사 Pwm를 이용한 발광 소자 구동 장치
JP2011151325A (ja) * 2010-01-25 2011-08-04 Kyosan Electric Mfg Co Ltd Led駆動回路、灯器及び信号灯器
US20110193487A1 (en) * 2010-02-11 2011-08-11 Goeken Group Corp. Direct AC Drive for LED Lamps
US8773007B2 (en) 2010-02-12 2014-07-08 Cree, Inc. Lighting devices that comprise one or more solid state light emitters
US9518715B2 (en) * 2010-02-12 2016-12-13 Cree, Inc. Lighting devices that comprise one or more solid state light emitters
WO2011100195A1 (en) 2010-02-12 2011-08-18 Cree, Inc. Solid state lighting device, and method of assembling the same
CN102844619B (zh) 2010-02-12 2016-12-28 科锐公司 具有散热件的照明设备
EP2534407A2 (de) 2010-02-12 2012-12-19 Cree, Inc. Beleuchtungsvorrichtungen mit einem oder mehreren festkörper-lichtsendern
US8476836B2 (en) 2010-05-07 2013-07-02 Cree, Inc. AC driven solid state lighting apparatus with LED string including switched segments
JP2012003865A (ja) * 2010-06-14 2012-01-05 Toshiba Lighting & Technology Corp Led点灯装置
US9241401B2 (en) 2010-06-22 2016-01-19 Express Imaging Systems, Llc Solid state lighting device and method employing heat exchanger thermally coupled circuit board
US8629632B2 (en) * 2010-11-11 2014-01-14 Maxim Integrated Products, Inc. LED backlight driver
TWI440390B (zh) * 2011-03-04 2014-06-01 E Ink Holdings Inc 發光二極體電路的補償方法與裝置
US8698404B2 (en) 2011-03-24 2014-04-15 Microsemi Corporation Brightness control for LED lighting
DE102011015282B4 (de) * 2011-03-28 2022-03-10 Austriamicrosystems Ag Gesteuerte Versorgungsschaltung
US10030863B2 (en) 2011-04-19 2018-07-24 Cree, Inc. Heat sink structures, lighting elements and lamps incorporating same, and methods of making same
US9839083B2 (en) 2011-06-03 2017-12-05 Cree, Inc. Solid state lighting apparatus and circuits including LED segments configured for targeted spectral power distribution and methods of operating the same
WO2012172420A1 (en) 2011-06-17 2012-12-20 Stevan Pokrajac Light emitting diode driver circuit
US9510413B2 (en) 2011-07-28 2016-11-29 Cree, Inc. Solid state lighting apparatus and methods of forming
US8742671B2 (en) 2011-07-28 2014-06-03 Cree, Inc. Solid state lighting apparatus and methods using integrated driver circuitry
DE102011053190B4 (de) * 2011-09-01 2017-11-23 Hella Kgaa Hueck & Co. Steuergerät für Leuchten, zum Beispiel Kfz-Leuchten, insbesondere LED-Leuchten
KR102047433B1 (ko) 2011-09-23 2019-12-04 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 디스플레이 특성들의 환경 적응을 위한 시스템 및 방법
US8575845B2 (en) * 2011-12-14 2013-11-05 Texas Instruments Incorporated Method and apparatus to measure light intensity
US9554445B2 (en) 2012-02-03 2017-01-24 Cree, Inc. Color point and/or lumen output correction device, lighting system with color point and/or lumen output correction, lighting device, and methods of lighting
US10378749B2 (en) 2012-02-10 2019-08-13 Ideal Industries Lighting Llc Lighting device comprising shield element, and shield element
CN102682721B (zh) * 2012-06-05 2014-10-29 深圳市华星光电技术有限公司 一种led背光系统及显示装置
US8680781B1 (en) 2012-09-07 2014-03-25 Infineon Technologies Austria Ag Circuit and method for driving LEDs
ITPD20120260A1 (it) * 2012-09-07 2014-03-08 Automotive Lighting Italia Spa Circuito di pilotaggio di sorgenti luminose
US8803445B2 (en) * 2012-09-07 2014-08-12 Infineon Technologies Austria Ag Circuit and method for driving LEDs
FR2996403B1 (fr) * 2012-09-28 2015-05-22 Renault Sa Procede de regulation de la tension aux bornes d'un ensemble de diodes d'eclairage d'un projecteur de vehicule, et vehicule correspondant
FR2996404B1 (fr) * 2012-09-28 2015-05-29 Renault Sa Procede d'elaboration d'une consigne de fonctionnement pour un ensemble de diodes d'eclairage d'un projecteur de vehicule, et vehicule correspondant
WO2014158642A1 (en) 2013-03-14 2014-10-02 Manufacturing Resources International, Inc. Rigid lcd assembly
KR101603537B1 (ko) * 2013-04-05 2016-03-15 주식회사 씨티에스 센싱 모듈을 이용한 led 조명등
US9690137B2 (en) 2013-07-03 2017-06-27 Manufacturing Resources International, Inc. Airguide backlight assembly
US10078020B2 (en) * 2013-08-23 2018-09-18 Whirlpool Corporation Methods and apparatus to determine home appliance cabinet temperature using a light emitting diode (LED)
US10191212B2 (en) 2013-12-02 2019-01-29 Manufacturing Resources International, Inc. Expandable light guide for backlight
US10527276B2 (en) 2014-04-17 2020-01-07 Manufacturing Resources International, Inc. Rod as a lens element for light emitting diodes
JP2015216580A (ja) * 2014-05-13 2015-12-03 権太郎 北角 情報送信機能を備えた調光型照明装置およびその情報受信装置
WO2016054085A1 (en) 2014-09-30 2016-04-07 Express Imaging Systems, Llc Centralized control of area lighting hours of illumination
US10649273B2 (en) 2014-10-08 2020-05-12 Manufacturing Resources International, Inc. LED assembly for transparent liquid crystal display and static graphic
WO2016064542A1 (en) 2014-10-24 2016-04-28 Express Imaging Systems, Llc Detection and correction of faulty photo controls in outdoor luminaires
US9603210B1 (en) * 2014-12-24 2017-03-21 Sandia Corporation High speed, high current pulsed driver circuit
US9924583B2 (en) 2015-05-14 2018-03-20 Mnaufacturing Resources International, Inc. Display brightness control based on location data
US10593255B2 (en) 2015-05-14 2020-03-17 Manufacturing Resources International, Inc. Electronic display with environmental adaptation of display characteristics based on location
US10607520B2 (en) 2015-05-14 2020-03-31 Manufacturing Resources International, Inc. Method for environmental adaptation of display characteristics based on location
US10261362B2 (en) 2015-09-01 2019-04-16 Manufacturing Resources International, Inc. Optical sheet tensioner
AT517629B1 (de) * 2015-09-02 2018-02-15 Zkw Group Gmbh LED Strom-Kodierung durch erweiterten Shunt-Widerstand
CN105611665A (zh) * 2015-11-24 2016-05-25 芜湖锐芯电子科技有限公司 一种分流led电路
DE202015106998U1 (de) * 2015-12-22 2017-03-23 Tridonic Gmbh & Co Kg Schutzschaltung zur Kurzschlusssicherung für LED Betriebsschaltungen
JP2017135225A (ja) * 2016-01-27 2017-08-03 シーシーエス株式会社 Led光射出装置に用いられる電源装置
US10586508B2 (en) 2016-07-08 2020-03-10 Manufacturing Resources International, Inc. Controlling display brightness based on image capture device data
CN108243529B (zh) * 2016-12-26 2024-05-03 厦门通士达照明有限公司 一种led调光驱动电路
US10904992B2 (en) 2017-04-03 2021-01-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11375599B2 (en) 2017-04-03 2022-06-28 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
EP3474404B1 (de) 2017-10-23 2023-08-23 Goodrich Lighting Systems GmbH Äussere flugzeugbeleuchtungseinheit und flugzeug damit
US10164374B1 (en) 2017-10-31 2018-12-25 Express Imaging Systems, Llc Receptacle sockets for twist-lock connectors
TW202405777A (zh) 2017-12-25 2024-02-01 日商半導體能源研究所股份有限公司 顯示器及包括該顯示器的電子裝置
US10764975B2 (en) * 2018-03-30 2020-09-01 Facebook Technologies, Llc Pulse-width-modulation control of micro light emitting diode
US10578658B2 (en) 2018-05-07 2020-03-03 Manufacturing Resources International, Inc. System and method for measuring power consumption of an electronic display assembly
WO2019241546A1 (en) 2018-06-14 2019-12-19 Manufacturing Resources International, Inc. System and method for detecting gas recirculation or airway occlusion
US11526044B2 (en) 2020-03-27 2022-12-13 Manufacturing Resources International, Inc. Display unit with orientation based operation
CN112233610A (zh) * 2020-10-16 2021-01-15 Tcl华星光电技术有限公司 一种背光恒流控制电路和背光结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504776A (en) * 1980-11-12 1985-03-12 Bei Electronics, Inc. Power saving regulated light emitting diode circuit
DE3911293A1 (de) * 1989-04-07 1990-10-11 Karl Heinz Ronkholz Schaltungsanordnung zur ansteuerung von lichtkoerpern
DE4022498A1 (de) * 1990-07-14 1992-01-16 Stahl R Schaltgeraete Gmbh Explosionsgeschuetzter leuchtmelder mit universalnetzteil
DE19711885A1 (de) * 1997-03-21 1998-09-24 Erich Kaifler Schaltung für Lampen mit definierter Hellikeitsänderung
US5907569A (en) 1997-05-28 1999-05-25 Lucent Technologies Inc. Circuit for controlling the output power of an uncooled laser or light emitting diode
DE19728763B4 (de) * 1997-07-07 2007-10-31 Reitter & Schefenacker Gmbh & Co. Kg Schaltungseinrichtung zum Schutz von strombetriebenen Leuchtmitteln, insbesondere von LEDs, zu Signal- oder Beleuchtungszwecken
DE19732828C2 (de) 1997-07-30 2001-01-18 Siemens Ag Schaltungsanordnung zur Ansteuerung eines Leuchtdioden-Arrays
DE19734750C2 (de) * 1997-08-12 2003-04-30 Reitter & Schefenacker Gmbh Heckleuchte von Kraftfahrzeugen
DE19748446A1 (de) * 1997-11-03 1999-05-06 Mannesmann Vdo Ag Vorrichtung zur Ansteuerung von Leuchtdioden
JPH11214183A (ja) * 1998-01-22 1999-08-06 Hochiki Corp 発光回路
US6161910A (en) * 1999-12-14 2000-12-19 Aerospace Lighting Corporation LED reading light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019103660A1 (de) * 2019-02-13 2020-08-13 Vossloh-Schwabe Deutschland Gmbh Betriebsschaltung für das Betreiben mehrerer Lasten

Also Published As

Publication number Publication date
CA2341657A1 (en) 2001-01-11
DE50013044D1 (de) 2006-08-03
US6400101B1 (en) 2002-06-04
WO2001003474A1 (de) 2001-01-11
EP1118251A1 (de) 2001-07-25
DE19930174A1 (de) 2001-01-04
JP2003504797A (ja) 2003-02-04
ATE331422T1 (de) 2006-07-15

Similar Documents

Publication Publication Date Title
EP1118251B1 (de) Ansteuerschaltung für led und zugehöriges betriebsverfahren
EP1151639B1 (de) Ansteuerschaltung für led und zugehöriges betriebsverfahren
EP1246511B1 (de) Ansteuerschaltung für ein LED-Array
DE19841490B4 (de) Schaltungsanordnung zum Schutz einer Serienschaltung aus mindestens zwei Leuchdioden vor dem Ausfall
EP0490079B1 (de) Überspannungsschutzvorrichtung
DE19614354C2 (de) Steuerschaltung für eine MOS-Gate-gesteuerte Leistungshalbleiterschaltung
DE102007006179B4 (de) Schaltungsanordnung und Verfahren zum Betreiben einer induktiven Last
EP0870646B1 (de) Elektronischer Blinkgeber
DE102006046729B4 (de) Stromversorgungsschaltung mit temperaturabhängigem Ausgangsstrom und Schaltungsanordnung mit einer Stromversorgungschaltung
DE102006061183A1 (de) Energieversorgungssteuerung
DE19732828A1 (de) Schaltungsanordnung zur Ansteuerung eines Leuchtdioden-Arrays
DE102008023857A1 (de) Halbleiterelement-Treiberschaltung
EP0393233B1 (de) Signalübertragungssystem
DE102006055610A1 (de) Verfahren zur gepulsten Bestromung von Glühlampen in Kraftfahrzeugen
DE102014203232A1 (de) Fahrzeugleuchte
DE10213254B4 (de) Lastbetriebssystem und Verfahren dazu
DE3338764A1 (de) Schaltungsanordnung zum ein- und ausschalten und ueberwachen elektrischer verbraucher
EP2342824B1 (de) Vor kurzschluss geschützte halbbrückenschaltung mit halbleiterschaltern
DE10118144B4 (de) Ansteuervorrichtung für eine elektrische Last
DE102005053738A1 (de) PWM-Signalerzeugungsschaltung und PWM-Steuerschaltung
DE2809712A1 (de) Batterieladesystem, insbesondere fuer kraftfahrzeuge
EP1659831B1 (de) Leuchteinrichtung für ein Kraftfahrzeug umfassend eine oder mehrere LED&#39;s
DE19841270A1 (de) Ansteuerschaltung zum Erzeugen eines konstanten Stromes durch zumindest eine Leuchtdiode
DE10329367B4 (de) LED-Array, LED-Modul sowie Verwendung des LED-Moduls in einer Signalanlage
DE60004591T2 (de) Spannungsreglerschaltung für Lasten an Bord eines Fahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50013044

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061002

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE EN O

Effective date: 20070103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110616

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110422

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140422

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140422

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140418

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190418

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50013044

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000