EP1118100B1 - Lampes a decharge avec variation d'intensite destinees a des decharges a inhibition dielectrique - Google Patents
Lampes a decharge avec variation d'intensite destinees a des decharges a inhibition dielectrique Download PDFInfo
- Publication number
- EP1118100B1 EP1118100B1 EP99969836A EP99969836A EP1118100B1 EP 1118100 B1 EP1118100 B1 EP 1118100B1 EP 99969836 A EP99969836 A EP 99969836A EP 99969836 A EP99969836 A EP 99969836A EP 1118100 B1 EP1118100 B1 EP 1118100B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- discharge
- operating method
- control length
- control
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/067—Main electrodes for low-pressure discharge lamps
- H01J61/0672—Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S315/00—Electric lamp and discharge devices: systems
- Y10S315/07—Starting and control circuits for gas discharge lamp using transistors
Definitions
- the present invention relates to a method of operating a discharge lamp designed for dielectrically impeded discharges.
- the discharge lamp has a discharge vessel filled with a discharge medium and at least one anode and at least one cathode. At least between the anode and the discharge medium, a dielectric layer is provided to produce dielectrically impeded discharges.
- anode and cathode are not to be understood in this application as limiting the invention to a unipolar operation.
- bipolar case there is at least no electrical difference between the anodes and the cathodes, so that the statements for one of the two electrode groups then apply to all electrodes.
- discharge lamps for dielectrically impeded discharges can be made in a very wide variety of different sizes and geometries and also avoid the typical disadvantages of classical discharge lamps with mercury-containing filling at a relatively high efficiency, an increasing use of such discharge lamps both in terms of their quantitative To be expected as well as in terms of their fields of application.
- the DE 196 36 965 A1 shows discharge lamps for dielectrically impeded discharges, which consequently show a dielectric layer between at least the anode and the discharge medium.
- defined starting points for single discharges are created by localized field reinforcements. This is intended to improve the homogeneity in the power distribution, both in terms of time and in terms of space.
- the DE 197 11 893 A1 largely corresponds to the just cited document and continues its teaching that is counteracted by denser arrangement of the starting points in the edge region of the lamp or alternatively increasing the current density by there burning individual discharges by widening the anodes of a Randunkeling.
- the DE 41 40 497 C2 shows an ultraviolet high-power radiator with dielectrically impeded discharges, in which, in order to improve the homogeneity of the UV radiation, the electric power converted in the edge region is increased by changing the discharge distance or the dielectric capacity.
- the DE 42 22 130 A1 deals in the context of dielectrically impeded discharges with the Zündangesfunktion of local field distortion structures, such as at discharge vessel walls fused quartz drops or dents or humps in the walls.
- the US 5,760,541 describes a discharge lamp with strip-shaped electrodes, the geometric shape of which leads to sinusoidal edges, recesses and other possibilities for field modulation in the discharge lamp. Thereby temporal variations of a light / dark distribution in the discharge lamp are to be remedied, in order to allow a time-invariant local correction of these heterogeneities in favor of applications in scanning devices for transparent media.
- the DE 196 28 770 relates to measures for optimizing the power output of a traveling-wave tube amplifier element on transponder level for satellite applications in order to stabilize the output power of the overall amplifier system with respect to changes in the operating point, aging, frequency changes, temperature fluctuations, etc.
- the GB 2,139,416 describes the local modulation of the radiation output of an electron beam device by means of certain spatial arrangements of permanent magnets and magnetic materials.
- the US 4 584 501 describes a discharge display in which different discharge paths are switched by mechanically operated flaps and optical effects are generated by multiple reflections by using semipermeable mirrors.
- the post-published DE 198 17 479 refers to the division of the electrode arrangement in a silent discharge lamp into various separately operable groups.
- the DE 43 11 197 describes the pulsed operating methods essential to the discharge lamps considered here and the parameter tuning for the generation of a specific discharge type.
- This invention is based on the technical problem of creating a further contribution to the expansion and improvement of the possible uses of discharge lamps for dielectrically impeded discharges.
- this problem is solved by an operating method for a discharge lamp with a discharge vessel containing a discharge medium, an electrode arrangement with an anode and a cathode and with a dielectric layer between at least the anode and the discharge medium, wherein the electrode arrangement along a control length in a changing a burning voltage Is inhomogeneous by defining a discharge distance monotonically varying along the control length, at least at a local average, and the quantitative ratio between a difference between a maximum impact distance d max between the electrodes in the control length and a minimum impact distance d min between the electrodes in the control length to this control length is: (d max - d min ) / SL ⁇ 0.6, and in operation, an electric parameter of the power supply of the discharge lamp is changed to the output of the discharge lamp Taxes.
- the invention also relates to a lighting system with the described discharge lamp as well as with a designed for the just mentioned method ballast.
- the invention is directed to the power control in discharge lamps with dielectrically impeded discharges. It provides for this purpose, along the course of the electrode in the discharge lamp to provide at least one control length.
- This term refers to a section of the electrode structure along which inhomogeneous discharge conditions exist. Due to this inhomogeneity of the discharge prerequisites, a burning voltage of the discharge should change monotonously along the control length, but should at least monotonically change in an effective mean value. A particular discontinuous possibility for monotonous change in the burning voltage will be discussed below.
- firing voltage relates in particular to a minimum firing voltage which does not correspond to the firing voltage of a single discharge, but to the minimum voltage with which a discharge structure can be maintained at a specific point of the electrode arrangement.
- an operating method is preferably considered, in which the active power is coupled in a pulsed manner into the discharge lamp.
- Dielectric Discharge discharge lamps in the context of this invention is the positive current-voltage characteristic.
- the lamp current can also be changed by the dielectrically impeded discharges by changing the supply voltage. With conventional discharge lamps, this is counteracted by a negative differential resistance.
- the invention is based on the following observation.
- a significant advantage of the pulsed mode of operation referred to herein is that the dielectric hindrance is utilized to the extent that discharge structures are relatively widely fanned out with the obstructing dielectric Form arise. In these typical discharge structures prevail, at least predominantly, relatively low carrier concentrations, which are essential for the efficiency of the discharge lamp operation.
- lamp current increases in conventional structures are directly associated with an increase in the charge carrier concentrations in the individual discharge structures and thus worsen the efficiency of light generation.
- the invention is based on the basic idea of increasing the current in the discharge lamp by changing the total volume of the discharges, so that the current density in the individual discharge structures can remain essentially the same.
- This volume change of the discharges can basically be done in two different ways within the control length. In one case, an enlargement of a single discharge structure to a curtain-like wide-spread discharge structure is made. In the other case, several partial discharge structures are lined up within the control length, so that a variation of the number of these partial discharge structures within the control length changes the total volume of the discharges. The transition between the two described cases may also be fluent.
- the discharge structures span at least on the anode a finite length range along which the Endladungsausaus GmbHen change in the sense of the present invention location-dependent burning voltage.
- the strung individual discharge structures it is possible in each case to imagine a local mean value formation by each discharge structure, so that the mean values reflect the location dependence of the discharge structures.
- the location dependence of the discharge requirements is responsible for allowing the corresponding limit of the discharge structure to shift within the control length along the electrodes.
- the control length can be made relatively small in relation to the total size of the discharge lamp, ie the discharge lamp can be divided into a plurality of individual control lengths.
- a change in the discharge volume within the individual control lengths can then be compensated appropriately by averaging the generation of light, for example by diffusers, prism sheets or the like. This results in a total of a homogeneous character of the light generation, the change in performance by Current increase or decrease - for example, due to an increase or decrease in the voltage input - must not be associated with a clearly visible change in the discharge structures.
- the invention is directed to an electrode arrangement in which along the control length, the impact distance is changed monotonically at least in a local average.
- a quantitative restriction also applies to the relationship between the fluctuations of the impact distance, ie the difference between the maximum impact distance d max and minimum impact distance d min occurring within a control length, and the control length SL itself as the path length.
- the upper limit for this ratio is 0.6, preferably 0.5. Particularly preferred here is the value 0.4.
- the electrodes with sites (known per se) for local field amplification and thus localization of individual discharges.
- sites known per se
- the movement of individual Eniladungs devise between these locations, each with a discharge discharge for a sufficiently short discharge distance and other locations where the distance is sufficient only for the maintenance of a discharge, not readily possible. It may happen that the area between the locations of local field amplification also makes it impossible to maintain the discharge.
- the invention is preferably directed to the case that these local field amplification areas define a monotonously staggered series of different burning voltages within the control length.
- the firing voltage mentioned in claim 1 also correspond to the ignition voltage for a discharge can and not the minimum burn voltage for their maintenance.
- the term burning voltage must be understood adapted to the particular situation of the electrode assembly.
- the anode width determines the available for the discharge local anode surface and thus the discharge current.
- the discharge current depends on the residual ionization of the discharge medium remaining at the end of a dead time interval between two active power pulses, which determines the re-ignition probability and also the re-ignition voltage.
- a larger anode area and thus a larger-area distribution of the discharge current a smaller voltage drop on the dielectric and thus a larger electric field in the discharge medium result.
- anode width can also be present in connection with the described cathode projections and does not necessarily require substantially smooth cathodes.
- the invention relates to a curtain-like broadening of a discharge structure in the control length by a suitable electrode structure with monotonically location-dependent burning voltage.
- the invention is preferably directed to a dimming circuit for a discharge lamp with dielectrically impeded discharges.
- dimming is meant a power control, in which a certain dimming range can be passed through in a continuous manner or in at least approximately continuous manner by the power control.
- a discontinuous solution this means that there must be a greater number of local field amplification sites within the control lengths in order to make at least approximately continuous power adjustment within that selection of power levels.
- the steepness of an edge rise in pulsed active power injection can be influenced.
- This variant relates to a certain extent to the time derivative of the voltage applied to the lamp voltage in the region of the rise of the individual pulse.
- This is initially an empirical result of the development work that underlies this invention.
- a possible explanation for this control option is that with a steeper voltage increase and thus with a greater involvement of high-frequency Fourier components on the voltage curve, the high-frequency conductivity of the dielectric in particular over a low-frequency or DC conductivity is improved and thus the gas filling in the existing electric field is increased, as already explained in another context.
- a change in the electron energy distribution due to the time derivative of the electric field plays a role here.
- Another time parameter of the active power supply for influencing the burning voltage in the discharge lamp is the so-called dead time between the individual active power pulses, d. H. the time in which no discharge burns between individual pulses.
- d. H the time in which no discharge burns between individual pulses.
- the extent of the residual ionization in turn depends on the probability of re-ignition or the voltage required for re-ignition.
- pulse duration and the repetition frequency of the pulses to be mentioned as additional temporal parameters of the active power supply similar to that explained above can be used to control the power according to this invention.
- the discharge gap it is preferred according to the invention to work with a sinusoidal shape of at least one of the electrodes or with a sawtooth shape of at least one of the electrodes.
- the sinusoidal shape is free of peaks, d. H. consistently shaped around. Such spikes can lead to local field enhancement. This can be undesirable in some cases.
- the field reinforcements can facilitate an initial ignition. On the other hand, they lead - on an anode - to increased current densities and can thus worsen the efficiency of the discharge.
- the sinusoid has the advantage that it runs symmetrically from an extremum to two sides, d. H. allowing curtain-like mounting of a discharge structure in two directions simultaneously.
- the center of gravity of the discharge structure remains constant, which may be advantageous in terms of the external appearance of the discharge lamp.
- the sawtooth shape may of course also be rounded in view of the tip of the sawtooth which has just been mentioned as a possible disadvantage. Also, it may be symmetrical on both sides, but also asymmetrically, ie the sawtooth shape consists for example of a short steep and a long but less steep ramp. An essential point of the sawtooth shape is the linearity of the ramp, ie the linearity of the spatial dependence of the discharge distance.
- the control length has largely the same relationships between the outer engagement in an electrical parameter and the resulting widening of the discharge structure.
- Another preferred quantitative relationship between the minimum stroke distance d min and the maximum stroke distance d max within the same control length can be given as follows.
- a ratio of the minimum impact distance to the maximum impact distance of about 0.3, preferably 0.4 and 0.5, and below 0.9.
- control length does not necessarily have to correspond to the maximum possible distance between a minimum electrode spacing and maximum electrode spacing given by the geometric electrode structure.
- control length is meant in this case the actual extent of the electrode arrangement utilized by the power control according to the invention.
- electrode structures for example the already mentioned sine or sawtooth shapes, which can be "used” from two opposite sides.
- a particular portion of the sine of one possible discharge side and another portion of the other possible discharge side may be associated, generally of course the nearest portion, respectively.
- any layers located on the electrodes, in particular on the cathode are relatively smooth.
- any layers located on the electrodes, in particular on the cathode are relatively smooth.
- a reasonable quantitative limit is a granularity of 8 ⁇ m, from which it is possible to lower a discharge structure to the width on such a layer.
- smaller granularities of 5, 3 or 1 ⁇ m and below are more suitable. It can be assumed that the graininess is a fundamental problem of all layers and is not limited to phosphor layers.
- the phosphor layers are occasionally relatively coarse-grained. If, for certain reasons, there is no sufficiently fine-grained alternative to a phosphor layer, it is preferred in accordance with the invention to leave the cathode completely free of phosphorus, ie to omit it during the deposition of the phosphor. Other layers, such as fine-grained TiO 2 or Al 2 O 3 reflective layers, are not necessarily affected.
- a lamp is driven by bipolar voltage pulses, i. a voltage pulse generated by the ballast is followed by an inverse sign (polarity).
- the lamp here has a two-sided dielectric barrier, i. all electrodes are covered with a dielectric layer.
- the bipolar operating method is suitable in particular for the electrodes described here, which are similar in terms of their discharge physics and can take over the role of both a temporary anode and a cathode alternately in terms of time.
- An advantage of the bipolar operating method can be, for example, a symmetrization of the discharge conditions in the lamp.
- problems are particularly effectively avoided, for.
- ion migrations in the dielectric which can lead to blackening, or the efficiency of the discharge deteriorating space charge accumulations.
- ballast for the bipolar operating method is for example a modified flux converter into consideration.
- the modifications aim to provide direction reversal of the primary circuit current causing the voltage pulse in the secondary circuit in the transformer of the flux transformer. This is generally easier than corresponding electrotechnical Take measures to reverse direction on the secondary circuit side.
- the transformer can for this purpose have two primary-circuit side windings, which are each associated with one of the two current directions, that are used for a primary circuit current only one of the two directions.
- this can be done by using two clocking switches in the primary circuit, each clocking the current through an associated one of the two windings.
- each of the two current directions is assigned its own clock switch and its own primary-circuit-side winding of the transformer.
- ballast according to the invention When a ballast according to the invention is used on an AC power source, it may be advantageous to use two storage capacitors with respect to the two primary-circuit side current directions, which are alternately charged from the AC source in half-period fashion.
- the half-periods of one sign of one of the storage capacitors and the half-cycles of the other sign of the other storage capacitor are used. From these two storage capacitors then the currents for each direction can be removed. This can be done with the described double execution of the primary circuit winding of the transformer, but such is not really necessary here. Rather, a single primary-circuit side winding can be supplied alternately by respective switches of the two storage capacitors, each storage capacitor is associated with a respective current direction.
- a corresponding rectifier circuit can be used, the details of which are readily apparent to those skilled in the art.
- the invention is directed not only to an operating method for a corresponding discharge lamp but also to a lighting system, which designates a suitable set of a discharge lamp and a ballast.
- the ballast is designed with regard to the inventive method, d. H. in that the ballast has a power control device with which a suitable electrical parameter of the power supply of the discharge lamp can be influenced by the ballast in order to utilize the correspondingly designed electrode structure in the discharge lamp for a change of the discharge volume.
- FIG. 1 shows one above the other four times the same electrode arrangement of a straight strip-shaped cathode 1 and a sawtooth strip-shaped anode 2.
- a dielectric cover 4 is shown schematically on the anode 2.
- a period length of the strip structure of the anode 2 is shown as a control length SL.
- each control length contains a discharge structure 3.
- each control length SL is almost completely filled by four individual triangular discharges 3.
- this does not necessarily correspond to a discontinuous power control without the possibility of a continuous dimming operation, because in the intervals between the power stages, each with different discharge structure number also quite a continuous change in the performance of each discharge structure is possible.
- the largest impact distance d max is within each control length SL on the right edge and is only from the last of the strands within a control length stringing individual discharges 3 in the FIG. 1 reached in the example below.
- each with a discharge structure is still to be noted that this discharge structure 3 "attacks" each at a tip of the sawtooth, so their ignition is facilitated to the initial start of operation of the discharge lamp by the local field overshoot.
- the discharge structures 3 is predetermined and thus there is a certain Restionisation in the neighborhood, the corresponding ignition of the other illustrated discharge structures 3 is already facilitated.
- FIG. 1 Important for understanding this FIG. 1 is that the underlying four electrode pairs are not to be understood as a total electrode pattern, because then would also burn between the sawtooth anodes 2 and the strip-shaped cathode 1 of the neighboring structure also discharges. Rather, it is four individual representations of an illustrative greatly simplified embodiment.
- FIG. 2 On the other hand, there is an alternative in that the anodes 2 are sinusoidal in this example. In this case as well, initially triangular single discharges 3 are formed in the area of the minimum discharge gap.
- FIG. 3 shows in comparison to FIG. 2 the same electrode arrangement of a cathode 1 and two anodes 2, but here a higher power level is shown.
- FIGS. 2 and 3 As shown, there is no second or third individual discharge structure 3 besides those already in FIG. 2 identifiable added. Rather, the in figure 2 relatively narrow discharge structure 3 pulled like a curtain in the width and now covers both a larger length of the sinusoidal anode 2 and on the strip-shaped cathode first
- FIG. 3 it can be seen that the individual discharge structures 3 shown here on the anode 2 have already approximately reached the control length SL drawn in the left region.
- the same control length SL is in FIG. 2 only partially filled by the anode side of the discharge structure 3.
- FIG. 2 and FIG. 3 each show only a section of a larger electrode arrangement of alternating juxtaposed cathode strip 1 and anode strip 2. Therefore, the drawn control length SL does not correspond to the entire period length of the sine wave but only half the period length.
- the respective period halves with distances beyond the marked maximum discharge spacing d max to the cathodes 1 shown here are assigned to discharge structures to a further cathode 1, not shown.
- a low pressure can be, for example, a pressure below 80 Torr or below 60 Torr.
- a xenon pressure of 100 Torr was chosen.
- FIG. 4 Another example shows FIG. 4 , but with respect to the FIGS. 2 and 3 insofar as a permutation has been made, as here the cathodes 1 have a sinusoidal shape.
- This sinusoidal shape is in turn assigned to two anodes 2 lying on opposite sides of a sinusoidal cathode 1 at half-period lengths.
- the strip-shaped anodes 2 which are straight in this example each occur twice, so that each anode 2 carries discharges only on one side.
- the geometrical variables control length SL, minimum impact distance d min and maximum impact distance d max correspond to the example in FIGS. 2 and 3 ,
- FIG. 5 Another variant shows FIG. 5 wherein both the cathodes 1 and the anodes 2 are sinusoidal.
- the respective adjacent sine wave strips are phase-shifted from each other by half a period, so that they face each other with their maxima or minima, thus resulting in each case by the sinusoidal modulation of the discharge distance between the adjacent electrodes.
- each electrode in each case only half a period length occurs as a control length SL, so that the maximum impact distance d max does not correspond to the actually geometrically occurring maximum distance.
- FIG. 4 corresponding concrete embodiment finally shows FIG. 6 .
- 6 is a glass base plate of a flat radiator, ie a flat-shaped discharge lamp with dielectrically impeded discharges with two glass plates as Hauptbegrenzungshuntn shown.
- On this bottom plate 6 of the flat radiator is an electrode pattern according to FIG. 4 applied as a metal screen print pattern.
- the actual electrodes 1 and 2 are located within a frame 7, which connects the bottom plate 6 shown with a cover plate, not shown, and seals the discharge volume to the outside. In this case, the electrode strips are guided in an extension with respect to their sections within their discharge volume just below the seal 7 of the glass soldering frame.
- each of the electrode types 1 and 2 is commonly connected to a bus-type outer conductor 8 at the cathodes and 9 at the anodes.
- a dielectric of 0.6 mm thickness was used, namely a soft glass layer. 250 microns thickness were used in the examples of the Figures 2-6 , this being glass solder.
- the minimum impact widths d min the maximum impact widths d max and the control length were applied in the exemplary embodiments according to FIG FIG. 1 , according to the FIGS. 2 and 3 , according to the FIGS. 4 and 6 and according to the FIG. 5 the following values (in mm): example d min d max SL FIG. 1 10 12 31 FIGS. 2 and 3 5 8th 8th FIG. 4 and 6 4 6 9 FIG. 5 5 9 9
- the control of the power in the respective discharge lamps was done by varying the voltage amplitude of the pulsed power supply.
- FIG. 7 schematically shows the electrode structure of another flat radiator according to the invention, which is also designed for the bipolar Radiostage. Therefore, the entire electrode structure, consisting of a first type of electrodes 10 of a first polarity and a second type of electrodes 11 of a second polarity, covered with a glass solder layer (not shown) of thickness about 150 microns (two-sided dielectrically impeded discharge).
- the first type of electrodes 10 consists of a series of electrode strips arranged in pairs, with all electrode pairs being connected to one another, ie lying at the same electrical potential. Each pair consists of two mirror-image sawtooth-like electrode strips. Each "saw tooth" of these electrodes has a long flat and a short steep ramp.
- the long ramp acts as a control length.
- the second type of electrode 11 comprises line-like electrode strips, which are also arranged in pairs between the electrode pairs of the first kind. In addition, all line-like electrode strips are oriented parallel to each other and connected to each other, ie they are at the same electrical potential.
- the minimum distance between the sawtooth-like electrode strip and the next adjacent line-like electrode strip, ie between a "sawtooth” and the next adjacent line electrode is about 3 mm, the maximum distance, ie between a "notch” and the next adjacent line electrode, about 5 mm.
- the discharge vessel (not shown) of the flat radiator is similar to the embodiment in FIG FIG. 6 formed by a floor and a front plate and a frame.
- the plates are made of glass of thickness 2 mm and dimensions 105 mm by 137 mm.
- the frame height and width are each 5 mm.
- a light-reflecting layer of Al 2 O 3 or TiO 2 is applied on the bottom plate and the frame. This is followed by a three-band phosphor layer on all inner surfaces.
- a voltage pulse frequency of 80 kHz leaves control the number of delta-shaped partial discharges between each "sawtooth" and the next adjacent line electrode with the peak voltage as a control variable.
- a peak voltage of 1.35 kV corresponding to an average power consumption of 3.5 W, a partial discharge in each case burns between the tip of each sawtooth and the next adjacent line electrode.
- FIG. 8 schematically shows a variant of the electrode structure FIG. 7 , It is different from the one in FIG. 7 essentially in that the second type of electrode, ie the line-like electrode strips, is missing here.
- the sawtooth-like electrode strips are combined into two groups 12, 13 in such a way that, in pairs, two mirror-inverted electrodes of different polarity face one another.
- a power increase as in the description to FIG.
- FIG. 9 shows a schematic circuit diagram of a ballast, which is designed for the bipolar operating method variant.
- external voltage pulses of alternating polarity are applied to the dielectrically impeded discharge lamp L, for example from the one in FIG. 7 or 8 described type, created.
- the transformer T has two primary windings, which in FIG. 9 drawn with opposite winding sense. Each of the primary windings is electrically connected in series with an associated switching transistor T Q with its own control device SE.
- the two control devices can also be understood as two functions of a uniform control device; is to be symbolized only that the two primary windings are not clocked together, but alternately.
- FIG. 10 shows corresponding real curves of the outer lamp voltage U L and the lamp current I L.
- the measured external lamp voltage U L is composed of the voltage of the actual Pulse and the voltage of the natural oscillation of the secondary circuit. The latter, however, has at least no decisive influence on the discharge. Decisive are rather the actual voltage pulses, which cause the corresponding lamp current pulses of the ignition and the backfire and finally in the already in the WO 94/23442 revealed active power pulse operation result. Both the ignition pulses of the external lamp voltage and the lamp current pulses of the ignition and the reignition can be seen that it is a bipolar operating method.
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Claims (30)
- Procédé pour faire fonctionner une lampe à décharge ayant une enceinte de décharge comprenant un milieu de décharge, un dispositif d'électrodes ayant une anode ( 2 ) et une cathode ( 1 ) et une couche ( 4 ) diélectrique entre au moins l'anode ( 2 ) et le milieu de décharge,
dans lequel le dispositif ( 1, 2 ) d'électrodes, le long d'une longueur ( SL ) de commande, est inhomogène d'une façon modifiant une tension d'arc, en définissant le long de la longueur ( SL ) de commande une distance de décharge se modifiant de manière monotone au moins dans une valeur moyenne locale,
caractérisé en ce que l'on a, pour la relation quantitative, entre une différence, entre une distance de décharge dmax maximum entre les électrodes ( 1, 2 ) dans la longueur ( SL ) de commande et une distance de décharge dmin minimum entre les électrodes ( 1, 2 ) dans la longueur ( SL ) de commande, à cette longueur ( SL ) de commande : ( dmax - dmin ) / SL ≤ 0,6,
et en fonctionnement, on modifie un paramètre électrique de l'alimentation en puissance de la lampe à décharge pour commander la puissance de la lampe à décharge. - Procédé suivant la revendication 1, dans lequel l'inhomogénéité est constituée supplémentairement d'une modification de la largeur d'anode.
- Procédé suivant l'une des revendications précédentes, dans lequel l'inhomogénéité est constituée supplémentairement d'une modification de l'épaisseur de la couche ( 4 ) diélectrique.
- Procédé suivant l'une des revendications précédentes, dans lequel, dans la commande de puissance, on modifie le volume de décharge à l'intérieur de la longueur ( SL ) de commande.
- Procédé suivant la revendication 4, dans lequel on réalise la modification du volume de décharge dans la commande de puissance en élargissant en rideau une structure de décharge à l'intérieur de la longueur ( SL ) de commande.
- Procédé suivant la revendication 4, dans lequel on réalise une modification du volume de décharge dans la commande de puissance en créant, à l'intérieur de la longueur de commande, un nombre de décharges individuelles pouvant être réglées.
- Procédé suivant l'une des revendications 1 à 6, dans lequel il y a le long de la longueur ( SL ) de commande un nombre d'emplacements de cathode pour l'amplification locale du champ, ces emplacements d'amplification locale du champ définissant une rangée étagée de manière monotone de tensions d'arc différentes.
- Procédé suivant la revendication 7, dans lequel, dans la commande de puissance, on modifie, dans la longueur ( SL ), le nombre de structures ( 3 ) individuelles de décharge, chacune des structures ( 3 ) de décharge étant disposée respectivement à l'un des emplacements d'amplification locale du champ.
- Procédé suivant l'une des revendications précédentes, dans lequel les électrodes ( 1, 2 ) de la lampe à décharge ont un certain nombre de longueurs ( SL ) de commande en série.
- Procédé suivant l'une des revendications précédentes, dans lequel on modifie le paramètre électrique de l'alimentation en puissance d'une façon continue pour la gradation de la lampe à décharge.
- Procédé suivant l'une des revendications précédentes, dans lequel le paramètre électrique est une amplitude de tension d'une injection pulsée de puissance utile.
- Procédé suivant l'une des revendications précédentes, dans lequel le paramètre électrique est une pente de montée du front d'une injection pulsée de puissance utile.
- Procédé suivant l'une des revendications précédentes, dans lequel le paramètre électrique est un temps mort d'une injection pulsée de puissance utile.
- Procédé suivant l'une des revendications précédentes, dans lequel le paramètre électrique est une durée d'impulsion d'une injection pulsée de puissance utile.
- Procédé suivant l'une des revendications précédentes, dans lequel le paramètre électrique est une fréquence de répétition des impulsions d'une injection pulsée de puissance utile.
- Procédé suivant l'une des revendications précédentes, dans lequel au moins l'une des électrodes ( 1, 2 ) a une forme sinusoïdale.
- Procédé suivant l'une des revendications précédentes, dans lequel au moins l'une des électrodes ( 2, 10, 12, 13 ) a une forme en dent de scie.
- Procédé suivant la revendication 17, dans lequel la forme en dent de scie de l'électrode ( 10, 12, 13 ) est formée par une succession alternée de rampes raides courtes et de rampes moins raides longues.
- Procédé suivant la revendication 17 ou 18, dans lequel une électrode en forme de dent de scie et une électrode qui en est symétrique comme en un miroir sont disposées par paire et parallèlement l'une à l'autre.
- Procédé suivant la revendication 19, dans lequel deux électrodes ( 11 ) parallèles linéaires sont disposées en deux paires ( 10 ) voisines d'électrodes.
- Procédé suivant l'une des revendications précédentes, dans lequel on a : ( dmax - dmin ) - SL ≤ 0,5 et, d'une manière particulièrement préférée, ( dmax - dmin ) - SL ≤ 0,4.
- Procédé suivant l'une des revendications précédentes, dans lequel on a, pour la relation quantitative de la distance de décharge dmin minimum à de la distance de décharge dmax maximum entre les électrodes ( 1, 2 ) dans la même longueur ( SL ) de commande : 0,3 < dmin / dmax < 0, 9, de préférence 0,4 < dmin / dmax < 0, 9, et d'une manière particulièrement préférée 0,5 < dmin / dmax < 0,9.
- Procédé suivant l'une des revendications précédentes, dans lequel des couches recouvrant la cathode ( 1 ) ont une granulométrie inférieure ou égale à 8 µm.
- Procédé suivant l'une des revendications précédentes, dans lequel la cathode est exempte de couches de matière luminescente.
- Procédé suivant l'une des revendications précédentes, en utilisant un ballast ayant un circuit ( P ) primaire d'alimentation en puissance, un circuit ( S ) secondaire comportant la lampe ( L ) à décharge ainsi qu'un transformateur ( T ) reliant le circuit ( P ) primaire au circuit ( S ) secondaire, le ballast étant conçu pour appliquer à la lampe ( L ) à décharge des tensions ( UL ) extérieures ayant des signes alternant d'une impulsion de tension à l'autre.
- Procédé suivant la revendication 25, dans lequel le sens du courant ( IW1 ) du côté primaire dans le transformateur ( T ) alterne d'une impulsion de tension à une autre.
- Procédé suivant la revendication 26, dans lequel le transformateur a deux enroulements ( W1 ) du côté du circuit primaire, qui sont associés respectivement à l'un des deux sens de courant.
- Procédé suivant la revendication 27, dans lequel le circuit primaire a deux commutateurs ( TQ ), qui cadencent respectivement le courant dans l'un des deux enroulements ( W1 ).
- Procédé suivant l'une des revendications 25 à 28, dans lequel le circuit primaire est alimenté par une source de courant alternatif, qui charge en alternance par demi-période les deux condensateurs d'accumulation, chaque condensateur d'accumulation étant associé respectivement à l'un des deux sens de courant.
- Système d'éclairage ayant une lampe à décharge comprenant une enceinte de décharge contenant un milieu de décharge, un dispositif d'électrodes ayant une anode ( 2 ) et une cathode ( 1 ) et une couche ( 4 ) diélectrique entre au moins l'anode ( 2 ) et le milieu de décharge,
dans lequel le dispositif ( 1, 2 ) d'électrodes est inhomogène le long de la longueur ( SL ) de commande dans une forme modifiant une tension d'arc, en définissant le long de la longueur ( SL ) de commande une distance de décharge se modifiant de manière monotone au moins dans une valeur locale moyenne ,
et comprenant un ballast,
caractérisé en ce que l'on a, pour la relation quantitative, entre une différence, entre une distance de décharge dmax maximum entre les électrodes ( 1, 2 ) dans la longueur ( SL ) de commande et une distance de décharge dmin minimum entre les électrodes ( 1, 2 ) dans la longueur ( SL ) de commande, à cette longueur ( SL ) de commande : ( dmax - dmin ) / SL ≤ 0,6,
et le ballast a un dispositif de commande de puissance pour commander la puissance de la lampe à décharge en modifiant un paramètre électrique de l'alimentation en puissance de la lampe à décharge.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19844720 | 1998-09-29 | ||
DE19844720A DE19844720A1 (de) | 1998-09-29 | 1998-09-29 | Dimmbare Entladungslampe für dielektrisch behinderte Entladungen |
PCT/DE1999/002885 WO2000019485A1 (fr) | 1998-09-29 | 1999-09-13 | Lampes a decharge avec variation d'intensite destinees a des decharges a inhibition dielectrique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1118100A1 EP1118100A1 (fr) | 2001-07-25 |
EP1118100B1 true EP1118100B1 (fr) | 2009-12-09 |
Family
ID=7882702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99969836A Expired - Lifetime EP1118100B1 (fr) | 1998-09-29 | 1999-09-13 | Lampes a decharge avec variation d'intensite destinees a des decharges a inhibition dielectrique |
Country Status (11)
Country | Link |
---|---|
US (1) | US6376989B1 (fr) |
EP (1) | EP1118100B1 (fr) |
JP (1) | JP4934842B2 (fr) |
KR (1) | KR100456351B1 (fr) |
CN (1) | CN1279574C (fr) |
AT (1) | ATE451714T1 (fr) |
CA (1) | CA2345747C (fr) |
DE (2) | DE19844720A1 (fr) |
HU (1) | HUP0104436A3 (fr) |
TW (1) | TW469474B (fr) |
WO (1) | WO2000019485A1 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19844721A1 (de) | 1998-09-29 | 2000-04-27 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Entladungslampe für dielektrisch behinderte Entladungen mit verbesserter Elektrodenkonfiguration |
DE19845228A1 (de) * | 1998-10-01 | 2000-04-27 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Dimmbare Entladungslampe für dielektrisch behinderte Entladungen |
US6541924B1 (en) * | 2000-04-14 | 2003-04-01 | Macquarie Research Ltd. | Methods and systems for providing emission of incoherent radiation and uses therefor |
DE10048187A1 (de) * | 2000-09-28 | 2002-04-11 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Entladungslampe für dielektrisch behinderte Entladungen mit Stützelementen zwischen einer Bodenplatte und einer Deckenplatte |
DE10048409A1 (de) | 2000-09-29 | 2002-04-11 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Entladungslampe mit kapazitiver Feldmodulation |
DE10057881A1 (de) * | 2000-11-21 | 2002-05-23 | Philips Corp Intellectual Pty | Gasentladungslampe mit Leuchtstoffschicht |
DE10063930C1 (de) | 2000-12-20 | 2002-08-01 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Stille Entladungslampe mit steuerbarer Farbe und Bildanzeigeeinrichtung mit dieser stillen Entladungslampe sowie Verfahren zum Betreiben derselben |
DE10063931A1 (de) | 2000-12-20 | 2002-07-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Bildanzeigeeinrichtung aus einer Vielzahl stiller Gasentladungslampen |
DE10214156A1 (de) | 2002-03-28 | 2003-10-09 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Entladungslampe für dielektrisch behinderte Entladungen mit gewellter Deckenplattenstruktur |
DE10310144A1 (de) * | 2003-03-07 | 2004-09-16 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Entladungslampe für dielektrisch behinderte Entladungen mit zurückspringend überhändenden Entladungselektrodenabschnitten |
DE102004055328B3 (de) * | 2004-11-16 | 2006-04-13 | Institut für Niedertemperatur-Plasmaphysik e.V. | Vorrichtung nach dem Prinzip einer dielektrisch behinderten Entladung zur Strahlungserzeugung |
DE102006026333A1 (de) | 2006-06-02 | 2007-12-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Entladungslampe für dielektrisch behinderte Entladungen mit flachem Entladungsgefäß |
DE102006026332A1 (de) | 2006-06-02 | 2007-12-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Entladungslampe für dielektrisch behinderte Entladungen mit rippenartigen Stützelementen zwischen Bodenplatte und Deckenplatte |
DE102008018790A1 (de) | 2008-04-15 | 2009-10-22 | Wobben, Aloys | Windenergieanlage mit Stromschienen |
EP2687454A1 (fr) | 2012-07-17 | 2014-01-22 | ALWA GmbH & Co. KG Konstruktion & Formenbau | Dispositif d'empilage d'au moins deux plaques de support |
US11469690B2 (en) | 2020-11-24 | 2022-10-11 | Toyota Motor Engineering & Manufacturing North America, Inc. | Electrode pairs having saw-tooth configuration and artificial muscles including same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834560A (ja) * | 1981-08-21 | 1983-03-01 | 周 成祥 | 放電灯ディスプレイ装置 |
FI70347C (fi) * | 1983-05-03 | 1986-09-15 | Enso Gutzeit Oy | Foerfarande och anordning foer aostadkommande av en av intensitetfoerdelning justerbar elektronridao |
US4584501A (en) * | 1984-06-27 | 1986-04-22 | Cocks Franklin H | Flat plate luminous display device |
JPS62262362A (ja) * | 1986-05-07 | 1987-11-14 | Canon Inc | 平面型光源装置 |
DE4140497C2 (de) * | 1991-12-09 | 1996-05-02 | Heraeus Noblelight Gmbh | Hochleistungsstrahler |
DE4222130C2 (de) * | 1992-07-06 | 1995-12-14 | Heraeus Noblelight Gmbh | Hochleistungsstrahler |
JP3213771B2 (ja) * | 1992-08-21 | 2001-10-02 | 松下電器産業株式会社 | 水平点灯式高圧放電ランプ |
JP3540333B2 (ja) * | 1992-11-20 | 2004-07-07 | 三菱電機株式会社 | 蛍光ランプ装置 |
DE4311197A1 (de) * | 1993-04-05 | 1994-10-06 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Verfahren zum Betreiben einer inkohärent strahlenden Lichtquelle |
JP3221228B2 (ja) * | 1994-04-28 | 2001-10-22 | 松下電器産業株式会社 | 高圧放電ランプ |
JP3576661B2 (ja) * | 1995-10-27 | 2004-10-13 | Necライティング株式会社 | 希ガス放電灯 |
JP3655686B2 (ja) * | 1996-01-30 | 2005-06-02 | Necライティング株式会社 | 希ガス放電灯及び原稿照射装置 |
US5760541A (en) | 1996-02-26 | 1998-06-02 | Hewlett-Packard Company | Electrode for external electrode fluorescent lamp providing improved longitudinal stability of intensity striations |
DE19628770A1 (de) * | 1996-07-17 | 1998-01-22 | Bosch Gmbh Robert | Verfahren zur Beeinflussung der Leistungsabgabe eines Verstärkerelementes sowie Anordnung |
DE19636965B4 (de) * | 1996-09-11 | 2004-07-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle |
JPH10247474A (ja) * | 1997-01-06 | 1998-09-14 | Sony Corp | 平面照明灯及びその製造方法 |
JPH10199687A (ja) * | 1997-01-08 | 1998-07-31 | Canon Inc | 蛍光燈インバータ装置 |
DE19711892A1 (de) * | 1997-03-21 | 1998-09-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flachstrahler |
DE19711893A1 (de) * | 1997-03-21 | 1998-09-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Flachstrahler |
EP0926705A1 (fr) | 1997-12-23 | 1999-06-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Radiateur plat à densité lumineuse de surface modulée localement |
-
1998
- 1998-09-29 DE DE19844720A patent/DE19844720A1/de not_active Withdrawn
-
1999
- 1999-08-18 TW TW088114096A patent/TW469474B/zh not_active IP Right Cessation
- 1999-09-13 WO PCT/DE1999/002885 patent/WO2000019485A1/fr active IP Right Grant
- 1999-09-13 JP JP2000572895A patent/JP4934842B2/ja not_active Expired - Fee Related
- 1999-09-13 CA CA002345747A patent/CA2345747C/fr not_active Expired - Fee Related
- 1999-09-13 CN CNB998115495A patent/CN1279574C/zh not_active Expired - Fee Related
- 1999-09-13 KR KR10-2001-7004055A patent/KR100456351B1/ko not_active IP Right Cessation
- 1999-09-13 US US09/806,135 patent/US6376989B1/en not_active Expired - Fee Related
- 1999-09-13 HU HU0104436A patent/HUP0104436A3/hu unknown
- 1999-09-13 DE DE59915110T patent/DE59915110D1/de not_active Expired - Lifetime
- 1999-09-13 EP EP99969836A patent/EP1118100B1/fr not_active Expired - Lifetime
- 1999-09-13 AT AT99969836T patent/ATE451714T1/de not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2345747A1 (fr) | 2000-04-06 |
CN1320272A (zh) | 2001-10-31 |
WO2000019485A1 (fr) | 2000-04-06 |
TW469474B (en) | 2001-12-21 |
DE59915110D1 (de) | 2010-01-21 |
EP1118100A1 (fr) | 2001-07-25 |
JP2002526893A (ja) | 2002-08-20 |
DE19844720A1 (de) | 2000-04-06 |
KR20010075479A (ko) | 2001-08-09 |
US6376989B1 (en) | 2002-04-23 |
ATE451714T1 (de) | 2009-12-15 |
HUP0104436A3 (en) | 2002-04-29 |
KR100456351B1 (ko) | 2004-11-09 |
JP4934842B2 (ja) | 2012-05-23 |
CA2345747C (fr) | 2008-12-23 |
CN1279574C (zh) | 2006-10-11 |
HUP0104436A2 (hu) | 2002-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1118100B1 (fr) | Lampes a decharge avec variation d'intensite destinees a des decharges a inhibition dielectrique | |
DE19636965B4 (de) | Elektrische Strahlungsquelle und Bestrahlungssystem mit dieser Strahlungsquelle | |
EP0733266B1 (fr) | Procede permettant de faire fonctionner une source de rayonnenent a emission incoherente | |
DE19718395C1 (de) | Leuchtstofflampe und Verfahren zu ihrem Betrieb | |
EP0824761B1 (fr) | Procede permettant de faire fonctionner des lampes a decharge | |
DE19526211A1 (de) | Verfahren zum Betreiben von Entladungslampen bzw. -strahler | |
EP1118101B1 (fr) | Lampe a decharge destinee a des decharges a inhibition dielectrique et dotee d'electrodes de configuration amelioree | |
DE69711278T2 (de) | Beleuchtungsanordnung mit entladungslampe | |
WO2000013204A2 (fr) | Ballast electronique pour lampe a decharges dielectriquement empechees | |
EP1177711B1 (fr) | Procede de fonctionnement impulsionnel ameliore pour une lampe a decharge silencieuse | |
EP0912992B1 (fr) | Spot plat | |
EP1118099B1 (fr) | Lampe a decharge a intensite reglable pour decharges dielectriquement inhibees | |
DE19711892A1 (de) | Flachstrahler | |
WO2003032362A2 (fr) | Lampe a decharge a barriere dielectrique, et procede et montage pour allumer et faire fonctionner cette lampe | |
EP0990262B1 (fr) | Lampe a decharge a electrodes protegees par un dielectrique | |
EP2195825A1 (fr) | Lampe à décharge haute pression et procédé de fonctionnement par résonance d'une lampe à décharge haute pression en mode longitudinal et système associé | |
DE2953233T1 (de) | Pre-ionising arrangement for electrical discharge apparatus such as a gas laser | |
EP1320869B1 (fr) | Lampe a decharge avec modulation de champ capacitive | |
DE3588118T2 (de) | Entladungsangeregter Laser zur Erzeugung kurzer Pulse | |
DE3035143A1 (de) | Wellenleiter-gaslaser | |
DE10016736A1 (de) | Gasentladungslampe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010305 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20040908 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 59915110 Country of ref document: DE Date of ref document: 20100121 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20091209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091209 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091209 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100409 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091209 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091209 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100320 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100310 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091209 |
|
26N | No opposition filed |
Effective date: 20100910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091209 |
|
BERE | Be: lapsed |
Owner name: OSRAM G.M.B.H. Effective date: 20100930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100913 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59915110 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100913 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120927 Year of fee payment: 14 Ref country code: FR Payment date: 20121002 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121023 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59915110 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE Effective date: 20130205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59915110 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE Effective date: 20130822 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59915110 Country of ref document: DE Effective date: 20140401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140401 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130913 |