EP0824761B1 - Procede permettant de faire fonctionner des lampes a decharge - Google Patents

Procede permettant de faire fonctionner des lampes a decharge Download PDF

Info

Publication number
EP0824761B1
EP0824761B1 EP96914842A EP96914842A EP0824761B1 EP 0824761 B1 EP0824761 B1 EP 0824761B1 EP 96914842 A EP96914842 A EP 96914842A EP 96914842 A EP96914842 A EP 96914842A EP 0824761 B1 EP0824761 B1 EP 0824761B1
Authority
EP
European Patent Office
Prior art keywords
discharge
voltage pulses
lamp
dielectric
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96914842A
Other languages
German (de)
English (en)
Other versions
EP0824761A1 (fr
Inventor
Frank Vollkommer
Lothar Hitzschke
Klaus Stockwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0824761A1 publication Critical patent/EP0824761A1/fr
Application granted granted Critical
Publication of EP0824761B1 publication Critical patent/EP0824761B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps

Definitions

  • the invention relates to a method for operating discharge lamps according to the preamble of claim 1.
  • the method particularly relates to the operation of low-pressure noble gas discharge lamps, such as in automotive engineering can be used for signal and display purposes.
  • From DE-U-89 04 853 is a fluorescent lamp operated with AC voltage known. Be inside the discharge vessel of the lamp spiral-shaped glow electrodes and one from the inside of the discharge space metallic element separated by a dielectric. By means of the heated spiral electrodes becomes one inside the discharge vessel Discharge generated. In addition, the metallic element is in operation put a tension. In this way, the metallic element acts as Capacitor plate on the discharge such that the electrical resistance of the discharge plasma is increased, locally the more, the larger the current density is. The aim is to use the capacitor plate to control the lamp current and consequently spatially homogenize the luminance of the lamp as well as to increase the efficiency of the lamp.
  • EP-A-0 550 047 describes a flat one operated with AC voltage Fluorescent lamp disclosed, the discharge vessel formed by flat plates is. On the inside of the plates is a pair of flat, with dielectric glass layers covered electrodes arranged. additionally the lamp has a pair of galvanic electrodes inside. Both Electrode pairs are either different or high-frequency operated at the same frequency, in the latter case 90 ° out of phase.
  • the sheet-like electrodes capacitively generate a plasma that is stable and is spatially uniform.
  • the galvanic electrodes generate a low pressure discharge with high luminous efficacy, but spatially uneven is. Both discharges complement each other to form a flat light source high luminance and good uniformity. Because of this and because of it
  • the flat geometry makes the lamp particularly suitable for backlighting of liquid crystal displays.
  • an elongated lamp is known with a tubular discharge vessel which is hermetically sealed at both ends and contains neon as the filling gas.
  • the inner wall of the discharge vessel is optionally provided with a phosphor layer, in particular with Y 3 Al 5 O 12 : Ce.
  • the discharge vessel has two unheated electrodes that face each other and are connected to power supplies.
  • the power supply lines which are led outwards at the ends of the discharge vessel, a consequence of voltage pulses.
  • the voltage pulses are different from each other separated by relatively long breaks (low duty cycle). The break times are required for setting the desired color location of the lamp.
  • An object of the invention is to provide a method for pulsed operation of discharge lamps with which the spectral distribution of the radiation specifically emitted by the discharge lamps and the required amount of voltage pulses compared to conventional Procedure can be reduced.
  • the basic idea of the invention is - in addition to the conventional pulsed discharge between the lamp electrodes of a discharge lamp - A dielectric barrier discharge in the discharge vessel too produce.
  • the spectral distribution of the Discharge lamp specifically affects the radiation emitted and the required Voltage pulses in comparison to conventional methods reduced.
  • Dielectric-barrier discharges differ from conventional ones (unhindered) discharges by either an electrode (one-sided dielectric discharge) or both electrodes (two-sided dielectric barrier discharge) by means of a dielectric layer of the discharge is or are separated.
  • the dielectric layer in Shape of an at least partial covering of at least one electrode be realized.
  • the dielectric layer can also pass through the wall of the discharge vessel itself by the electrode (s) outside of the discharge vessel, is arranged approximately on the surface (are).
  • such electrodes are referred to below as “dielectric electrodes”. To distinguish this from the following electrodes, which are immediate, i.e. without intermediate dielectric Interface, adjacent to the discharge, shortening as "galvanic Electrodes ".
  • the method according to the invention provides - in addition to that for generation the consequence of the dielectric unimpeded pulsed discharge of voltage pulses - the use of a time-varying voltage to generate the dielectric barrier discharge.
  • time-varying Voltages are suitable e.g. AC voltages and in particular Sequences of voltage pulses, the individual voltage pulses each are separated from each other by breaks.
  • Suitable pulse shapes e.g. triangular and rectangular.
  • the pulse width is typically in the range between 0.1 ⁇ s and 50 ⁇ s.
  • Essential for an efficient Radiation generation is that the pulses are separated by pauses.
  • typical Pulse-pause ratios are in the range between 0.001 and 0.1.
  • the pulse sequences disclosed in WO 94/23442 are also particularly suitable.
  • the optical spectrum of the radiation emitted by the lamp is through the ratio of the conventional (dielectric free) or the dielectrically impeded discharge coupled medium electrical Achievements can be influenced.
  • the reason for this is the different Particle kinetics of both types of discharge.
  • the ratio of the coupled electrical power changes accordingly also the radiation components of the respective spectral components of both Discharge types on the total radiation of the discharge lamp and consequently also the entire spectrum or the color locus.
  • the ratio of the services is determined by the pulse train (s), in particular the Time periods and amplitudes of the pulses and pauses or, if applicable, the frequency the AC voltage, the electrode configurations as well as type and pressure affects the lamp filling.
  • Typical electrical power ratios from unhindered unloading to disabled unloading lie in the Range between 0.01 and 100, preferably in the range between 0.5 and 10.
  • the influencing of the color locus can be done by using a suitable one Phosphor are supported.
  • a suitable one Phosphor are supported.
  • the inner wall of the discharge vessel provided with a fluorescent layer, which the UV or VUV radiation of the discharge converted into light.
  • ionizable filling and possibly the phosphor layer depends on the application.
  • Noble gases are particularly suitable, e.g. Neon, argon, krypton and xenon as well as mixtures of noble gases.
  • other fillers can also be used, e.g. all those who are usually used in light production, in particular Hg and rare gas-Hg mixtures as well as rare earths and their halides.
  • Unhindered discharges result in a relatively broadband excitation of the atoms of the filling, ie atomic states of various excitation levels are occupied.
  • this excitation includes, for example, the neon lines in the red area of the optical spectrum.
  • the use of the dielectric barrier discharge and particularly the use of the pulsed dielectric barrier discharge permits selective coupling of the energy in such a way that essentially only the resonance level and a few levels in the immediate vicinity of the resonance level are excited.
  • the atoms in metastable states very efficiently form short-lived, excited molecules, so-called excimers, in the case of neon, for example, Ne 2 * . When the excimers decay, molecular band radiation arises.
  • Ne 2 * has an intensity maximum at approximately 85 nm.
  • This short-wave invisible radiation can be converted into visible radiation, in the aforementioned example in the yellow spectral range, by phosphors, for example Y 3 Al 5 O 12 : Ce.
  • the two pulse trains synchronized with each other in order to ensure that lamp operation is uniform over time to ensure.
  • this is achieved by that the same sequence of voltage pulses both for generating the dielectrically disabled as well as the dielectrically unimpeded discharge is used.
  • the pulsed dielectric disabled unloaded unloaded unloading in time upstream that enough starting electrons for the unhindered Unloading be provided. This way, the disabled Discharge - in addition to the advantage of independent adjustability the spectral distribution of the emitted radiation - necessary for the operation of the required voltage can be reduced.
  • a permanent lowering of the necessary voltage pulses for the Unhindered discharge can be achieved by the fact that the dielectric pulses applied to those of the galvanic electrodes Lead electrodes in time.
  • this requires either two synchronizable supply devices or a specific measure, around the two pulse sequences in the desired manner to postpone.
  • the electrode configurations are targeted chosen so that the ignition voltage of the dielectric barrier discharge is smaller than that of the unhindered discharge.
  • the first requirement is the current supply of a galvanic and a dielectric electrode electrically contacted with each other.
  • the second condition requires a sufficiently short distance between the dielectrically handicapped electrodes compared to the unhindered. In the case of tubular discharge vessels with longitudinally arranged ones This can be easily accomplished by galvanic electrodes, for example two electrodes on the outer wall of the vessel transverse to be ordered.
  • a dielectric barrier Discharge uses, which on the one hand efficiently stimulates fluorescent UV or. VUV radiation generated and on the other hand the operating voltage of the unhindered discharge reduced.
  • Discharge lamp suitable method shows in the simplest Only one version apart from the two galvanic electrodes additional third electrode.
  • a first of the two galvanic electrodes takes on two functions in this case. For one, it serves how usual, together with the second galvanic electrode of the generation conventional unhindered unloading. On the other hand, it serves together with the additional third electrode generating a one-sided dielectric barrier discharge.
  • the third Electrode must necessarily be a dielectric electrode.
  • an additional fourth electrode is advantageous.
  • the fourth, dielectric electrode then also serves together with the third dielectric electrode generating a double-sided dielectric disabled discharge.
  • the shape of the dielectric electrodes is advantageously based on the shape of the Discharge vessel adapted. Suitable for tubular discharge vessels there are, for example, strip-shaped metallic electrodes that run along the Lamp longitudinal axis are arranged.
  • the dielectric electrode (s) is (are) arranged on the outer wall of the discharge vessel, e.g. as applied metal strip or vapor-deposited thin strip-like metal layer (s).
  • the advantage of this solution is that additional gas-tight Bushings and dielectric layers can be omitted.
  • a conventional lamp can serve as the starting point.
  • the variant is (are) the metal strips in the outer wall of the discharge vessel embedded or embedded or completely in included the wall of the discharge vessel. Through these measures the metal strips are fixed with the discharge lamp. The disadvantage is an increased manufacturing effort and thus higher costs.
  • the dielectric electrodes are included one of the current leads of the galvanic electrodes is connected.
  • the Advantage compared to separate power supply for the electrodes is that only a single supply device is required for both discharges is.
  • a separate supply for the galvanic or dielectric electrodes the possibility of the respective supply device to the special requirements of the type of discharge in question optimize.
  • a metal strip tapered on one side In the case of a single dielectric electrode, it is particularly suitable a metal strip tapered on one side.
  • the metal strip is advantageous connected to the galvanic electrode of which the tapered End pointing away. This will make one along the entire strip and almost in the direction of the corresponding galvanic counter electrode uniform unilaterally dielectric discharge guaranteed.
  • a tubular discharge vessel contains neon with a filling pressure in the range between approximately 1 kPa and 200 kPa, preferably between approximately 5 kPa and 50 kPa.
  • the inner wall of the discharge vessel is provided with a VUV-stimulable phosphor, for example Y 3 Al 5 O 12 : Ce.
  • the galvanic electrodes are realized by two mutually opposite electrodes, in particular cold cathodes, which are arranged within the discharge vessel.
  • At least one metal electrode, in particular at least one metal strip, is attached as the dielectric electrode (s) on the outer wall of the discharge vessel.
  • the fluorescent lamp 1 consists of a circular cylindrical discharge vessel 3 closed on both sides, the inner wall of which is coated with a fluorescent layer 4 made of Y 3 Al 5 O 12 : Ce, and two metallic electrodes 5, 6 ("galvanic electrodes") arranged inside the discharge vessel 3.
  • the length of the discharge vessel 3 made of tempered glass is approximately 315 mm, the inner diameter approximately 3 mm and the thickness of the vessel wall approximately 1 mm.
  • the two cup-shaped electrodes 5, 6 are oriented in the direction of the lamp longitudinal axis and face each other at a distance of about 305 mm.
  • the electrodes 5, 6 are each connected to a power supply 7, 8, which are guided gas-tight from the ends of the discharge vessel 3 to the outside.
  • the ballast 2 consists of a generator 9 and a high-voltage transformer 10.
  • the secondary winding 11 of the high-voltage transformer 10 is connected to the electrodes 5, 6 via the current leads 7, 8.
  • FIG. 2 shows an embodiment of a tubular according to the invention Fluorescent lamp in a schematic representation.
  • the fluorescent lamp 12 in FIG. 2 additionally has the prior art in FIG. 1 two dielectric electrodes 13, 14.
  • the dielectric electrodes 13, 14 each consist of a metal strip and are diametrical to each other and each parallel to the lamp's longitudinal axis on the outer wall of the discharge vessel 3 applied.
  • the width of the metal strip is approx. 2 mm.
  • the metal strips 13, 14 are provided with power leads 15, 16 connected, which in turn each with a power supply 7 or 8 of the galvanic electrodes are contacted.
  • the metal strips 13, 14 extend each of the electrodes 5, 6 connected to them and via a Partial length of the discharge vessel 3.
  • FIG. 3 is another embodiment of an inventive tubular fluorescent lamp shown schematically.
  • Fluorescent lamp 12 in FIG. 2 is for fluorescent lamp 19 in FIG. 3 the dielectric electrodes 17, 18 not with the galvanic electrodes 5,6 connected, but with the secondary coil 20 of an additional ballast 21.
  • the ballast 21 for the dielectric electrodes 17, 18 is with the ballast 2 for the galvanic electrodes 5.6 over the Synchronization line 22 synchronized.
  • FIG 4 shows an embodiment of a tubular according to the invention Fluorescent lamp 23 with only one dielectric electrode 24.
  • the dielectric Electrode 24 consists of a metal strip tapered on one side, which is glued to the outer wall of the discharge vessel 3.
  • the trapeze-like at its corners rounded metal strip 24 is in common with a first galvanic electrode 6 with one pole of the secondary coil 11 of the high-voltage transformer 2 connected.
  • the metal strip 24 is parallel oriented to the longitudinal axis of the lamp 23, the tapered end 24a away from the first galvanic electrode 6 and to the second galvanic Electrode 5, the counter electrode shows.
  • the second galvanic electrode 5 is connected to the other pole of the secondary coil 25. In this way is achieved that a unilaterally dielectric discharge between Metal strip 24 and second galvanic electrode 5 burns in the longitudinal direction distributed almost evenly.
  • FIG. 5 shows the color coordinates of the lamp from FIG. 4, measured during operation in accordance with the method according to the invention (measuring point A), ie with unimpeded and additionally dielectrically impeded discharge.
  • measuring point B shows the color coordinates measured during operation according to the conventional method, ie only with unimpeded discharge.
  • the current leads 15, 16 of the two dielectric electrodes 13, 14 of the fluorescent lamp 12 are cut.
  • the measuring point C finally marks the case of the purely dielectric impeded discharge, the current leads 7, 8 of the two galvanic electrodes 5, 6 of the fluorescent lamp 12 being disconnected.
  • the ballast 9 supplies unipolar, negative, half-sine-like voltage pulses with pulse widths of approximately 1 ⁇ s and pauses of 50 ⁇ s.
  • the SAEJ578 and ECE coordinates are also shown, which define the requirements for the color locus of automotive flashing lights for the US and European markets. It can be clearly seen how, with the help of the invention, the color locus is specifically shifted in the direction of the ECE color area. With the same power input (40 W), approximately the same luminous flux (approx.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Claims (9)

  1. Procédé pour faire fonctionner des lampes à décharge (12 ; 19 ; 23) comportant une enceinte de décharge (3), une décharge pulsée sans barrière diélectrique étant produite au moyen d'une succession d'impulsions de tension à l'intérieur de l'enceinte de décharge (3), caractérisé par le fait que, à l'intérieur de l'enceinte de décharge (3), on produit en plus une décharge avec barrière diélectrique et on influence ainsi de façon contrôlée la distribution spectrale du rayonnement émis par la lampe à décharge (12 ; 19 ; 23) et on réduit la hauteur des impulsions de tension qui est nécessaire à la décharge pulsée sans barrière diélectrique de telle sorte que la hauteur nécessaire avec la décharge supplémentaire avec barrière diélectrique est plus petite que sans la déchargé supplémentaire avec barrière diélectrique.
  2. Procédé selon la revendication 1, caractérisé par le fait qu'on produit la décharge avec barrière diélectrique au moyen d'une succession d'impulsions de tension, les impulsions de tension individuelles étant séparées à chaque fois les unes des autres par des temps de pause.
  3. Procédé selon la revendication 2, caractérisé par le fait que la largeur d'impulsion est comprise entre 0,1 µs et 50 µs et le rapport impulsion-pause est compris entre 0,001 et 0,1.
  4. Procédé selon la revendication 2. caractérisé par le fait que la succession des impulsions de tension pour la production de la décharge sans barrière est synchronisée avec la succession des impulsions de tension pour la production de la décharge avec barrière diélectrique.
  5. Procédé selon la revendication 4, caractérisé par le fait que la succession d'impulsions de tension pour la production de la décharge avec barrière diélectrique est temporellement du côté amont de la décharge des impulsions de tension pour la production de la décharge sans barrière.
  6. Procédé selon la revendication 2, caractérisé par le fait qu'on utilise la même succession d'impulsions de tension aussi bien pour la production de la décharge avec barrière diélectrique que pour la production de la décharge sans barrière diélectrique.
  7. Procédé selon la revendication 1, caractérisé par le fait que le rapport des puissances électriques introduites dans la décharge sans barrière et dans la décharge avec barrière est compris entre 0,01 et 100.
  8. Procédé selon la revendication 7, caractérisé par le fait que le rapport est compris de préférence entre 0,5 et 10.
  9. Procédé selon la revendication 1, caractérisé par le fait que l'enceinte de décharge (3) est muni d'une couche fluorescente (4) pour aider ainsi à influencer la distribution spectrale du rayonnement émis par la lampe à décharge (12 ; 19 ; 24) ou du lieu de la couleur, dans le diagramme chromatique, de la lampe à décharge (12 ; 19 ; 24).
EP96914842A 1995-05-12 1996-05-03 Procede permettant de faire fonctionner des lampes a decharge Expired - Lifetime EP0824761B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19517515A DE19517515A1 (de) 1995-05-12 1995-05-12 Entladungslampe und Verfahren zum Betreiben derartiger Entladungslampen
DE19517515 1995-05-12
PCT/DE1996/000779 WO1996036066A1 (fr) 1995-05-12 1996-05-03 Lampe a decharge et procede permettant de faire fonctionner des lampes de ce type

Publications (2)

Publication Number Publication Date
EP0824761A1 EP0824761A1 (fr) 1998-02-25
EP0824761B1 true EP0824761B1 (fr) 2002-04-03

Family

ID=7761791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96914842A Expired - Lifetime EP0824761B1 (fr) 1995-05-12 1996-05-03 Procede permettant de faire fonctionner des lampes a decharge

Country Status (9)

Country Link
US (1) US5965988A (fr)
EP (1) EP0824761B1 (fr)
JP (1) JP3943131B2 (fr)
KR (1) KR100399243B1 (fr)
CN (1) CN1097292C (fr)
CA (1) CA2220571C (fr)
DE (2) DE19517515A1 (fr)
HU (1) HU221362B1 (fr)
WO (1) WO1996036066A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651552A1 (de) * 1996-12-11 1998-06-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Kaltkathode für Entladungslampen, Entladungslampe mit dieser Kaltkathode und Betriebsweise für diese Entladungslampe
DE19734885C1 (de) * 1997-08-12 1999-03-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Erzeugen von Impulsspannungsfolgen für den Betrieb von Entladungslampen und zugehörige Schaltungsanordnung
DE19734883C1 (de) * 1997-08-12 1999-03-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Erzeugen von Impulsspannungsfolgen für den Betrieb von Entladungslampen und zugehörige Schaltungsanordnung
US6130511A (en) * 1998-09-28 2000-10-10 Osram Sylvania Inc. Neon discharge lamp for generating amber light
DE19845228A1 (de) * 1998-10-01 2000-04-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dimmbare Entladungslampe für dielektrisch behinderte Entladungen
EP1082752A1 (fr) * 1999-03-25 2001-03-14 Koninklijke Philips Electronics N.V. Agencement d'eclairage
US6191539B1 (en) * 1999-03-26 2001-02-20 Korry Electronics Co Fluorescent lamp with integral conductive traces for extending low-end luminance and heating the lamp tube
DE19916877A1 (de) * 1999-04-14 2000-10-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit Sockel
JP2001028258A (ja) * 1999-05-12 2001-01-30 Nippon Sheet Glass Co Ltd 平面蛍光ランプ
DE19928438A1 (de) * 1999-06-23 2000-12-28 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Betrieb einer Entladungslampe
DE19933893A1 (de) * 1999-07-22 2001-01-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Beschichten von Lampenkolben
DE10005975A1 (de) * 2000-02-09 2001-08-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Betriebsverfahren für eine Entladungslampe mit mindestens einer dielektrisch behinderten Elektrode
AU777640B2 (en) * 2000-03-28 2004-10-28 Robert Bosch Gmbh Gas discharge lamp with ignition assisting electrodes, especially for automobile headlights
US6541924B1 (en) * 2000-04-14 2003-04-01 Macquarie Research Ltd. Methods and systems for providing emission of incoherent radiation and uses therefor
DE10048409A1 (de) * 2000-09-29 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit kapazitiver Feldmodulation
JP2004200127A (ja) * 2002-12-20 2004-07-15 Harison Toshiba Lighting Corp 照明装置
WO2004091060A1 (fr) * 2003-04-10 2004-10-21 Okaya Electric Industries Co., Ltd. Tube a decharge et dispositif absorbant les surtensions
KR100951912B1 (ko) * 2003-08-07 2010-04-09 삼성전자주식회사 백라이트 어셈블리와 이를 갖는 액정 표시 장치
JP2005347569A (ja) * 2004-06-03 2005-12-15 Ushio Inc フラッシュランプ照射装置
KR101150196B1 (ko) * 2005-03-14 2012-06-12 엘지디스플레이 주식회사 액정표시장치용 형광램프
JP4904905B2 (ja) * 2005-06-08 2012-03-28 ソニー株式会社 冷陰極蛍光灯、冷陰極蛍光灯駆動装置、冷陰極蛍光灯装置、液晶表示装置、冷陰極蛍光灯の制御方法、液晶表示装置の制御方法
TW200721907A (en) * 2005-11-18 2007-06-01 Delta Optoelectronics Inc An improved startup method for the mercury-free flat-fluorescent lamp
KR100684259B1 (ko) * 2006-03-28 2007-02-16 나은수 피건조물의 내부 성층화가 방지되는 연속식 스크루건조기
WO2007129506A1 (fr) * 2006-05-09 2007-11-15 Panasonic Corporation Appareil et procédé pour une lampe à décharge à barrière diélectrique d'éclairage
US7759854B2 (en) * 2007-05-30 2010-07-20 Global Oled Technology Llc Lamp with adjustable color
DE102007057581A1 (de) * 2007-11-28 2009-06-04 Fachhochschule Aachen Hochfrequenzlampe und Verfahren zu deren Betrieb
DE102008018589A1 (de) * 2008-04-08 2009-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Zünden eines Lichtbogens
TWI362053B (en) * 2008-04-30 2012-04-11 Applied Green Light Taiwan Inc Flat discharge lamp and the production method thereof
US8456082B2 (en) 2008-12-01 2013-06-04 Ifire Ip Corporation Surface-emission light source with uniform illumination
DE102013110985A1 (de) * 2013-10-02 2015-04-16 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co.Kg Leuchtstofflampe

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260932A (en) * 1978-10-12 1981-04-07 Vance Johnson Method and circuit for facilitating the starting and steady state flickerless operation of a discharge lamp
US4427920A (en) * 1981-10-01 1984-01-24 Gte Laboratories Incorporated Electromagnetic discharge apparatus
JPH079795B2 (ja) * 1986-12-01 1995-02-01 東芝ライテック株式会社 放電ランプ
GB8821673D0 (en) * 1988-09-02 1988-10-19 Emi Plc Thorn Discharge tube arrangement
DE8904539U1 (fr) * 1989-04-11 1990-04-05 Hoppe, Lothar, 4056 Schwalmtal, De
DE8904853U1 (fr) * 1989-04-18 1989-06-22 Imris, Pavel, Dr., 3162 Uetze, De
JPH04280062A (ja) * 1991-03-08 1992-10-06 Toshiba Lighting & Technol Corp 低圧放電灯および低圧放電灯装置
JPH0529085A (ja) * 1991-07-22 1993-02-05 Toshiba Lighting & Technol Corp 希ガス放電灯装置
DE69206921T2 (de) * 1991-08-14 1996-07-04 Matsushita Electric Works Ltd Elektrodenlose Entladungslampe
US5319282A (en) * 1991-12-30 1994-06-07 Winsor Mark D Planar fluorescent and electroluminescent lamp having one or more chambers
DE4311197A1 (de) * 1993-04-05 1994-10-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Betreiben einer inkohärent strahlenden Lichtquelle
JPH06310099A (ja) * 1993-04-23 1994-11-04 Matsushita Electric Works Ltd 可変色放電灯装置
US5523655A (en) * 1994-08-31 1996-06-04 Osram Sylvania Inc. Neon fluorescent lamp and method of operating

Also Published As

Publication number Publication date
CN1097292C (zh) 2002-12-25
EP0824761A1 (fr) 1998-02-25
JPH11505061A (ja) 1999-05-11
WO1996036066A1 (fr) 1996-11-14
CN1187264A (zh) 1998-07-08
HUP9800703A3 (en) 2000-09-28
HU221362B1 (en) 2002-09-28
US5965988A (en) 1999-10-12
CA2220571A1 (fr) 1996-11-14
DE19517515A1 (de) 1996-11-14
KR19990014728A (ko) 1999-02-25
JP3943131B2 (ja) 2007-07-11
KR100399243B1 (ko) 2003-11-14
CA2220571C (fr) 2005-08-02
DE59609019D1 (de) 2002-05-08
HUP9800703A2 (hu) 1998-07-28

Similar Documents

Publication Publication Date Title
EP0824761B1 (fr) Procede permettant de faire fonctionner des lampes a decharge
EP0922297B1 (fr) Lampe fluorescente
EP0912991B1 (fr) Tube fluorescent plat destine a l'eclairage de fond et dispositif d'affichage a cristaux liquides dote de ce tube fluorescent plat
EP0839436B1 (fr) Procede permettant de faire fonctionner un systeme d'eclairage et systeme d'eclairage associe
EP0883897A1 (fr) Cathode froide pour lampes a decharge, lampe a decharge pourvue de la cathode froide en question et mode de fonctionnement de ladite lampe a decharge
EP1137050A1 (fr) Structure de couplage capacitif pour lampe à décharge à basse pression
JP3277788B2 (ja) 放電ランプ点灯装置
WO2000019485A1 (fr) Lampes a decharge avec variation d'intensite destinees a des decharges a inhibition dielectrique
EP1063682B1 (fr) Procédé pour alimenter une lampe à décharge
EP0912992B1 (fr) Spot plat
EP1417699B1 (fr) Lampe a decharge a amorcage facilite
EP1118099B1 (fr) Lampe a decharge a intensite reglable pour decharges dielectriquement inhibees
EP1276137B1 (fr) Lampe a décharge à barrière diélectrique avec une aide à l'allumage
EP1430511A2 (fr) Lampe a decharge a barriere dielectrique, et procede et montage pour allumer et faire fonctionner cette lampe
EP0990262B1 (fr) Lampe a decharge a electrodes protegees par un dielectrique
EP1449236B1 (fr) Lampe a decharge a barriere dielectrique a restitution de couleurs amelioree
WO1998043280A1 (fr) Spot plat a decharge separee par une couche dielectrique et dispositif destine au passage des electrodes dans l'espace de decharge
DE112005003174B4 (de) Entladungslampenvorrichtung mit geerdetem Spiegel
WO2000038482A1 (fr) Dispositif d'eclairage plat et procede pour le faire fonctionner
DE10016736A1 (de) Gasentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19980519

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS FOR OPERATING A DISCHARGE LAMP

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59609019

Country of ref document: DE

Date of ref document: 20020508

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020618

ET Fr: translation filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090720

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100603

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100528

Year of fee payment: 15

Ref country code: IT

Payment date: 20100526

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100603

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100510

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20110531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110503