EP1115662A1 - Procede de traitement de substances organiques en milieu aqueux, notamment d'effluents et dispositif electrochimique pour mettre en oeuvre le procede - Google Patents

Procede de traitement de substances organiques en milieu aqueux, notamment d'effluents et dispositif electrochimique pour mettre en oeuvre le procede

Info

Publication number
EP1115662A1
EP1115662A1 EP99943002A EP99943002A EP1115662A1 EP 1115662 A1 EP1115662 A1 EP 1115662A1 EP 99943002 A EP99943002 A EP 99943002A EP 99943002 A EP99943002 A EP 99943002A EP 1115662 A1 EP1115662 A1 EP 1115662A1
Authority
EP
European Patent Office
Prior art keywords
treatment
process according
organic substances
aqueous composition
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99943002A
Other languages
German (de)
English (en)
Inventor
Jean-François Fauvarque
Patrice Simon
Christian Sarrazin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNAM Conservatoire National des Arts et Metiers
Original Assignee
CNAM Conservatoire National des Arts et Metiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNAM Conservatoire National des Arts et Metiers filed Critical CNAM Conservatoire National des Arts et Metiers
Publication of EP1115662A1 publication Critical patent/EP1115662A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46119Cleaning the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a method of electrochemical treatment of an aqueous composition comprising one or more organic substances, such as those present in the effluents, by means of an electrochemical reactor comprising an anode compartment and a cathode compartment, said compartments being separated by an appropriate separator.
  • the present invention also relates to the electrochemical device with liquid electrolyte, in particular for implementing the treatment method.
  • the electrochemical incineration of p-benzoquinone is for example proposed in an article by J. Feng, LL. Houk, DC Johnson, SN Lowery & JJ Carey (J. Electrochem. Soc. Vol. 142, n ° 11 of November 1995- ⁇ 3626 / 3631).
  • the double envelope reactor used comprises a cell with a single compartment in which are placed a titanium anode covered with a mixed iron / lead oxide maintained at a temperature of 60 ° C.
  • the proposed treatment leads to complete degradation of the phenol (10 "2 M) in three to four hours for a volume of 4 liters (ie a degradation rate of 5 10 " 4 moles / h) : the current densities used are in the range 50-300 mA / cm 2 at the temperature of 50 ° C and at pH 12.2. The degradation of phenol is therefore obtained at a rate of 45 to 55 mAh / g of the product.
  • JL Boudenne, O. Cerclier, J. Galéa, E. Van der Vlist (Applied Catalysis A: General 143 (1996) 185-202 describe the oxidation of an aqueous solution of phenol using a carbon black electrode in suspension.
  • Kl. Kawabata & SI. ⁇ memura proposes to use the effect of sonochemical reactions by focusing ultrasound.
  • their work relates only to the oxidation of iodides and is based on other work which supports the thesis that ultrasound causes high local temperatures and high pressures, in the vicinity of the bubbles formed (cavitations).
  • the object of the present invention is to provide an original method for degrading organic compounds, in particular in aqueous solution, consisting of the combination of two techniques conventionally proposed; however, unlike the techniques already known, at least for the degradation of such compounds, the electrode used is used in the dispersed form and according to an adapted experimental protocol which makes it possible to suppress practically any passivation of the cited electrode under conditions concentration encountered in industry (in general up to 10 " 3/10 " 2 M but possibly going as far as saturation), and thus to be able to envisage a possibly continuous treatment of a composition to be treated, in particular a solution, comprising such compounds.
  • Another object of the present invention is to reduce the COD (chemical oxygen demand) or the amount of total organic carbon in the effluents in proportions such that these treated effluents can be discharged directly into the river or into a biological treatment basin.
  • This treatment concerns in particular the phenols because the phenols are very toxic vis-à-vis the microorganisms destroying the effluents in the biological treatment basins. Osidic derivatives increase COD.
  • the electrochemical treatment process is characterized in that the said aqueous composition is introduced into the anode compartment of the electrochemical reactor, the said anode compartment containing a liquid support in which are present electrochemically active particles of sufficiently high potential. high to allow the oxidation of organic substances and in that simultaneously or successively the medium resulting from the introduction of said aqueous composition is subjected to an oxidation potential and to the action of ultrasound.
  • aqueous composition in particular the effluents, is meant the composition which comprises the organic substances and which is introduced into the electrochemical reactor for the purposes of treatment.
  • liquid carrier a liquid electrolyte judiciously chosen to carry out the treatment without major inconvenience. Mention may in particular be made of aqueous liquids containing a carbonate buffer.
  • resulting medium means the liquid support into which the aqueous composition has been introduced.
  • This aqueous composition is generally an aqueous solution of organic substances. However, the aqueous composition may also contain organic substances in suspension.
  • electrochemically active particles in suspension it is meant that the solid particles are kept in suspension by a well-known stirring means: rotating blades, air flow or other equivalent means. It has in fact been found that the combination of an electrode, in the form of electrochemically active particles in suspension, with the action of ultrasound makes it possible to avoid passivation of said particles, due to the physical and possibly chemical degradation caused by the action of said ultrasound.
  • the ultrasound can be applied at the same time as the oxidation potential, but that this ultrasound can also be applied after the oxidation reaction. It is also possible to simultaneously apply the two means and then continue the application of ultrasound.
  • the separators used are well known and generally have the particularity of being either microporous or cationic conductors in order to avoid transfers of polluting compounds to the cathode compartment.
  • the current collector located in the anode compartment is made of unassailable metal, for example platinum titanium and the cathode located in the cathode compartment generally consists of an expanded steel or nickel.
  • the dispersed electrode consists of a suspension of electrochemically active particles of small particle size, among which there may be mentioned preferably electronic conductive metal oxides.
  • metal oxides mention is preferably made of MnO 2 , PbO 2 , SnO 2 , Fe 3 ⁇ 4 , perovskites, for example LaNiO 3 , spinels, for example Fe 3 ⁇ 4.
  • said electrochemically active particles are present in the medium in a proportion between 1 to 10 g / l.
  • electrochemically active particles of small particle size particles whose average particle size will not exceed 1000 ⁇ m, generally 5 to 100 ⁇ m, it being understood that the size may vary during the electrochemical treatment.
  • organic substances mention may in particular be made of oxidizable substances, for example those having alcoholic or phenolic functions, including the osidic derivatives although other organic substances may also be destroyed in the treatment process according to the invention.
  • the method has the advantage of being able to treat media resulting from the introduction of aqueous compositions, the concentrations of which can range up to approximately 10 ⁇ 2 M, which makes it possible to envisage an optionally continuous treatment of a solution to be treated comprising As indicated above, the concentration of the various solutes can nevertheless go up to the solubility threshold.
  • the treated aqueous medium preferably has a high pH at the start of the reaction, in particular greater than 7, advantageously between pH 8 and pH 14, even more advantageously between 10 and 11 and more precisely when the buffer is a carbonate buffer, a pH slightly lower. at around pH 11.
  • the oxidation potential applied to the medium is preferably between 500 and 2000 mV / DHW.
  • the oxidation potential is close to 800 mV / DHW.
  • the anodic current density is preferably between 5 mA / cm 2 and 200 mA / cm 2 of the apparent surface of the anodic collector.
  • the frequency of ultrasound applied to the medium is preferably between 16 kHz and 500 kHz, especially around 22 kHz.
  • a higher oxidation potential close to 1100 mV / DHW in order to cause the release of oxygen and to significantly amplify the effect of ultrasound on the surface of the grains of electrochemically active particles to avoid passivation and / or mechanically destroying the very fine passivation layer possibly formed on the oxide powder.
  • the originality of the invention therefore lies in the association of two techniques, that of ultrasound and that of electrochemistry and by defining a specific degradation cycle; this protocol makes it possible to destroy the compounds without significant passivation of the suspension electrode used, in the range of the concentrations tested (up to approximately 10 "2 M).
  • the process according to the invention can be carried out continuously by decantation, filtration, elimination of small particles which could remain in suspension and recycling of a suspension.
  • the invention also relates to an electrochemical device with liquid electrolyte, in particular for implementing the treatment method according to the invention, characterized in that it comprises a cathode compartment, an anode compartment, said compartments being separated by a separator, said cathode compartment which may include a reference electrode and said anode compartment comprising a current collector, an ultrasonic generator, a stirring means and a means for introducing an aqueous composition comprising one or more organic substances, the liquid electrolyte of the anode compartment comprising electrochemically active particles in suspension.
  • FIG. 6 is a schematic longitudinal sectional view of a device for implementing the method according to the invention.
  • a Grignard reactor 1 is used in which is fixed a separating membrane 4 defining an anode compartment 2 and a cathode compartment 3.
  • a current collector 5 in platinum titanium is present around this membrane in the anode compartment, as close as possible to its surface in order to reduce the ohmic drop in the cell and an inert counter electrode 6 made up of a Expanded nickel is present in the cathode compartment also as close to the surface of the membrane for the same reasons.
  • These two electrodes 5 and 6 are connected to a generator 7.
  • the electrochemical reactor contains a buffer solution of sodium carbonate in the two compartments, which serves as a support solution for the experiments of destruction of the organic compounds of the aqueous composition.
  • the electrochemical reactor comprises an opening 8 allowing the aqueous composition to be introduced.
  • An ultrasonic probe 9 is positioned so that the probe tip 10, the diameter of which is approximately 19 mm, plunges into the support liquid of the anode compartment.
  • the ultrasound probe is connected to an ultrasound generator (not shown).
  • the liquid support comprises PbO 2 particles of small particle size (close to 5 to 10 ⁇ m) maintained in suspension by an agitator (not shown) at a rate of 1 g / 250 ml.
  • example 1 shows the associated action of electrochemistry and ultrasound, while maintaining the potential of the lead oxide suspension electrode where oxidation takes place, at +800 mV / DHW,
  • Example 2 shows the effect of the proposed cleaning period on the behavior of the electrode, by periodic incursion of the potential of the working electrode (lead oxide suspension) to a higher value: 1000 to 1200 mV / DHW for a defined time aimed at producing oxygen release and therefore mechanical cleaning of the electrode in suspension due to the application of ultrasound.
  • Example 3 shows the electrochemical degradation of phenol on platinum titanium electrode alone, without oxide in suspension,
  • Example 4 shows the electrochemical degradation alone (without ultrasound) of the chosen model compound: phenol, on an electrode in suspension of powder of a metal oxide brought to the potential of +800 mV / ECS,
  • Example 5 in order to highlight the advantage of the technique according to the invention, the experiment is carried out under the same conditions as in Example 2, with the exception of the absence of metal oxide suspended in this case,
  • a Grignard reactor was used in which the separating membrane of the two reactor compartments was fixed; the platinum titanium current collector was then placed around this membrane in the anode compartment, as close as possible to its surface in order to reduce the ohmic drop in the cell, then the counter electrode in the cathode compartment, also as close as possible of the surface of the membrane for the same reasons, and the necessary quantity of a sodium carbonate buffer solution was then introduced into the two compartments, which will serve as a support solution for the experiments of destruction of the organic compounds in solution .
  • the cell used is supplemented by the installation of an agitator and addition of the quantity of metal oxide required in the anode compartment.
  • the working electrode is brought to a potential of + 800 mV / ECS and an injection of phenol is then carried out, leading to a concentration of the order of 10 ⁇ 3 M in the agitated solution of the anode compartment (approximately 250 ml), in the presence of ultrasound at a frequency of 20 kHz and the corresponding oxidation current is recorded for injections of phenol at increasing concentrations.
  • the results are indicated in the table below and on the curve of FIG. 1 in which the horizontal axis represents the time elapsed since the start of the experiment and the vertical axis the measured oxidation currents.
  • Example 1 The experimental conditions defined in Example 1 were used.
  • the working electrode is therefore brought to the potential of 800 mV / DHW and after each injection / oxidation of the compound and return of the oxidation current to a value close to the value of the base current, a so-called 'in situ' cleaning phase is carried out, bringing the potential of the electrode to a value greater than 1000 mV / DHW in order to cause the release of oxygen and facilitate the mechanical degradation of the products passivators formed on the surface of the suspended working electrode due to the application of ultrasound which cause very significant mechanical effects on the oxygen bubbles which are released.
  • the cell is used as it is, without suspension of metal oxide and without ultrasound.
  • the working electrode is brought to the potential of 800 mV / DHW and the measured oxidation currents are recorded as a function of time during the successive injections; the measured currents are reported in attached figure 3 in which the horizontal axis represents the time elapsed since the start of the experiment and the vertical axis the measured oxidation currents. It can be noted that the measured oxidation current is extremely low from the second injection, a sign of a significant passivation of the titanium-platinum working electrode which then becomes unusable very quickly.
  • Example 3 Under the same conditions as Example 3, and after setting up an agitator and adding the quantity of metal oxide required in the anode compartment, the working electrode is still brought to the potential of +800 mV / DHW ; one then proceeds to an injection of phenol leading to a concentration of the order of 10 ⁇ 3 M in the agitated solution of the anode compartment, and the corresponding oxidation current is recorded; several injections of phenol at increasing concentrations are carried out. The results are collated in the table below. As can be seen in the appended figure 4, if one proceeds to a series of injections having waited after each for the oxidation current to return to a value close to the base current, it is noted that one still gradually leads to a blockage of the activity of the suspension electrode used.
  • Example 2 the same experimental conditions were used as in Example 2, except that no metallic oxide in suspension was introduced.
  • the working electrode is therefore brought to the potential of 800 mV / DHW and after each injection / oxidation of the compound and return of the oxidation current to a value close to the value of the base current, a so-called cleaning phase is carried out.
  • a so-called cleaning phase is carried out.
  • 'in situ' by bringing the potential of the electrode at a value greater than 1000 mV / DHW in order to cause the release of oxygen and facilitate the mechanical degradation of the passivating products formed on the surface of the working electrode in suspension due to the application of ultrasound which causes very important mechanical effects on the oxygen bubbles which are released.
  • FIG. 5 represents the shape of the oxidation current of the compound injected during the first two injections; from the second injection, the oxidation current becomes extremely low, showing the ineffectiveness of the protocol under these conditions and thus the catalyzing role of degradation played by the metal oxide in suspension used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

La présente invention concerne un procédé de traitement électrochimique d'une composition aqueuse comprenant une ou plusieurs substances organiques, au moyen d'un réacteur électrochimique comportant un compartiment anodique et un compartiment cathodique, lesdits compartiments étant séparés par un séparateur approprié, caractérisé en ce qu'on introduit ladite composition aqueuse dans le compartiment anodique du réacteur électrochimique, ledit compartiment anodique contenant un support liquide dans lequel sont présentes en suspension des particules actives électrochimiquement et en ce que simultanément ou successivement on soumet le milieu résultant de l'introduction de ladite composition aqueuse, à un potentiel d'oxydation et à l'action d'ultrasons. Elle concerne également un dispositif électrochimique, notamment pour mettre en oeuvre ledit procédé.

Description

PROCEDE DE TRAITEMENT DE SUBSTANCES ORGANIQUES EN MILIEU AQUEUX, NOTAMMENT DΕFFLUENTS ET DISPOSITIF ELECTROCHIMIQUE POUR METTRE EN ŒUVRE LE PROCEDE
La présente invention concerne un procédé de traitement électrochimique d'une composition aqueuse comprenant une ou plusieurs substances organiques, telles que celles présentes dans les effluents, au moyen d'un réacteur électrochimique comportant un compartiment anodique et un compartiment cathodique, lesdits compartiments étant séparés par un séparateur approprié. La présente invention concerne également le dispositif électrochimique à électrolyte liquide, notamment pour mettre en œuvre le procédé de traitement.
Il est déjà connu que l'on peut réaliser la dégradation des composés organiques en solution en utilisant différentes techniques telles que la génération d'ozone dans la solution à traiter (P. Kôtz & S. Stucki - J. Electroanal, Chem. 228, 407 - 1987), l'utilisation de bactéries qui détruisent spécifiquement certains composés (S. W. Hooper, CA. Pettigrew & G.S., SAILER Environ. Toxicol. Chem. vol. 9 - p 655-1990), l'utilisation de l'électrochimie qui permet d'éliminer quelques composés organiques facilement oxydables (J. O'M. Bockris - « Environmental Chemistry », Plénum Press, NY - 1977) ou l'utilisation d'ultrasons qui ont été utilisés pour casser certaines molécules comportant des cycles aromatiques ( G.J. Price, P. Matthias & E.J. Lenz - Trans. IchemE., vol. 72 part B, Feb. 1994).
L'incinération électrochimique de la p-benzoquinone est par exemple proposée dans un article de J. Feng, LL. Houk, D.C. Johnson, S.N. Lowery & J.J. Carey (J. Electrochem. Soc. Vol. 142, n°11 de novembre 1995- ρ3626/ 3631 ). Le réacteur double enveloppe utilisé comporte une cellule à un seul compartiment dans lequel sont placées une anode de titane recouverte d'un oxyde mixte fer/plomb maintenue à une température de 60°C par une circulation adaptée, et la cathode d'acier inox 316. Ce montage permet aux auteurs de dégrader électrochimiquement la p- benzoquinone en milieu acétate (pH 5), mais ceux-ci ont noté la formation de composés brunâtres à noirs, provenant de la formation supposée de La cinétique de dégradation observée dans ces conditions est lente puisqu'un traitement de 40 heures est proposé avant que la DCO (demande chimique en oxygène) ne décroisse à une valeur sensiblement nulle ; par ailleurs, une détérioration des électrodes est notée, môme à des courants faibles (10 mA/cm2).
Dans un autre article l'oxydation anodique du phénol en présence de NaCI est proposée lors du traitement des eaux saumâtres (Ch. Comninellis & A. Nerini dans Journal of Applied Electrochemistry 25 (1995) pp23/28); le traitement proposé est effectué dans un réacteur de 4 litres en circuit fermé dans lequel une circulation de la solution est effectuée pendant le traitement sur des anodes de compositions variées : Pt, SnO2/Ti, lrO2/Ti, RuO2/Ti, PbO2/Ti. Le rôle catalytique du NaCI a été montré dans le cas de l'utilisation de l'oxyde d'iridium. Cependant, dans le meilleur des cas, le traitement proposé conduit à une dégradation complète du phénol (10"2M) en trois à quatre heures pour un volume de 4 litres (soit une vitesse de dégradation de 5 10"4 moles/h) : les densités de courant utilisées sont dans la gamme 50-300 mA/cm2 à la température de 50°C et à pH 12,2. La dégradation du phénol est donc obtenue à raison de 45 à 55 mAh/g du produit.
Dans un autre article, J.L. Boudenne, O. Cerclier, J. Galéa, E. Van der Vlist (Applied Catalysis A : General 143 (1996) 185-202 décrivent l'oxydation d'une solution aqueuse de phénol au moyen d'une électrode de noir de carbone en suspension.
Dans un autre article, Kl. Kawabata & SI. Ùmemura (Ultrasonics Symposium (1992)) propose d'utiliser l'effet de réactions sonochimiques par focalisation d'ultrasons. Cependant leurs travaux ne portent que sur l'oxydation d'iodures et s'appuient sur d'autres travaux qui soutiennent la thèse que les ultrasons provoquent des hautes températures et hautes pressions locales, au voisinage des bulles formées (cavitations).
Dans un autre article, l'utilisation d'ultrasons de très forte puissance pour la destruction de composés aromatiques en solution aqueuse a été proposée par G.J. Price, P. Matthias & E.J. Lenz (Trans IChemE, Vol 72,
Part B, February 1994 - pp27/31 ). Les composés visés étaient les PCB
(polychlorinated biphenyls) ainsi que d'autres composés organiques chlorés, mais aussi des composés fortement cancérigènes tels que certains hydrocarbures polyaromatiques. La stabilité de ces composés les rend difficiles à détruire, ce qui a conduit les auteurs à envisager l'utilisation des ultrasons à très forte puissance. Cette technique a été proposée dès les _ années 50, pour détruire des composés de type benzène, phénol, halogόno-benzènes,... à des concentrations faibles. Cependant, ce procédé n'aboutit qu'à des dégradations lentes des composés (au minimum une heure de traitement pour une puissance ultrasonique de 30 W/cm2). Les puissances proposées pour la mise en oeuvre du procédé sont très élevées : 10 kW/litre. Cependant, les composés de dégradation éventuellement formés n'ont pour l'instant pas été analysés.
La recherche de techniques originales et bon marché pour la dégradation des composés organiques en solution s'est développée ces dernières années dans la mesure ou elles sont susceptibles d'apporter une solution aux contraintes de plus en plus sévères liées aux préoccupations écologiques actuelles ; ces techniques visent aussi à réaliser des économies de matières premières tout en réduisant les volumes de déchets liés aux activités industrielles actuellement polluantes.
L'objet de la présente invention est de proposer une méthode originale de dégradation de composés organiques notamment en solution aqueuse, consistant en l'association de deux techniques classiquement proposées ; cependant, contrairement aux techniques déjà connues, au moins pour la dégradation de tels composés, l'électrode mise en oeuvre est utilisée sous la forme dispersée et selon un protocole expérimental adapté qui permet de supprimer pratiquement toute passivation de l'électrode citée dans des conditions de concentration rencontrées dans l'industrie (en général jusqu'à 10"3/10"2 M mais pouvant aller jusqu'à la saturation), et ainsi de pouvoir envisager un traitement éventuellement en continu d'une composition à traiter, notamment une solution, comportant de tels composés. Un autre objet de la présente invention est de réduire la DCO (demande chimique en oxygène) ou la quantité de carbone organique total dans les effluents dans des proportions telles que ces effluents traités puissent être rejetόs directement dans la rivière ou dans un bassin de traitement biologique. Ce traitement concerne notamment les phénols car les phénols sont très toxiques vis-à-vis des microorganismes détruisant les effluents dans les bassins de traitement biologique. Les dérivés osidiques augmentent quant à eux la DCO.
Selon l'invention, le procédé de traitement électrochimique est caractérisé en ce qu'on introduit ladite composition aqueuse dans le compartiment anodique du réacteur électrochimique, ledit compartiment anodique contenant un support liquide dans lequel sont présentes en suspension des particules actives électrochimiquement et de potentiel suffisamment élevé pour permettre l'oxydation des substances organiques et en ce que simultanément ou successivement on soumet le milieu résultant de l'introduction de ladite composition aqueuse à un potentiel d'oxydation et à l'action d'ultrasons.
Par l'expression « composition aqueuse », notamment les effluents, on entend la composition qui comprend les substances organiques et qui est introduite dans le réacteur électrochimique aux fins de traitement.
Par l'expression « support liquide », on entend un électrolyte liquide choisi judicieusement pour effectuer le traitement sans inconvénient majeur. On peut citer notamment les liquides aqueux contenant un tampon carbonate. Par l'expression « milieu résultant », on entend le support liquide dans lequel a été introduit la composition aqueuse.
Cette composition aqueuse est en général une solution aqueuse de substances organiques. Néanmoins, la composition aqueuse peut également contenir des substances organiques en suspension. Par « particules électrochimiquement actives en suspension », on entend que les particules solides sont maintenues en suspension par un moyen d'agitation bien connu : pales tournantes, flux d'air ou d'autres moyens équivalents. On a trouvé en effet que la combinaison d'une électrode, sous la forme de particules électrochimiquement actives en suspension, avec l'action d'ultrasons permettait d'éviter la passivation desdites particules, du fait de la dégradation physique et éventuellement chimique provoquée par l'action desdits ultrasons.
Par l'expression « simultanément ou successivement », on entend que les ultrasons peuvent être appliqués en même temps que le potentiel d'oxydation, mais que ces ultrasons peuvent également être appliqués après la réaction d'oxydation. Il est également possible d'appliquer simultanément les deux moyens et de poursuivre ensuite l'application des ultrasons.
Les séparateurs utilisés sont bien connus et présentent en général la particularité d'être soit microporeux ou conducteurs cationiques afin d'éviter les transferts de composés polluants vers le compartiment cathodique. Le collecteur de courant situé dans le compartiment anodique est en métal inattaquable, par exemple en titane platiné et la cathode située dans le compartiment cathodique est généralement constituée d'un déployé d'acier ou de nickel.
L'électrode dispersée est constituée d'une suspension de particules électrochimiquement actives de faible granulométrie dont on peut citer de préférence les oxydes métalliques conducteurs électroniques.
Parmi les oxydes métalliques, on cite de préférence MnO2, PbO2, SnO2, Fe3θ4, les perovskites, par exemple LaNiO3, les spinelles, par exemple Fe3θ4. De préférence lesdites particules électrochimiquement actives sont présentes dans le milieu dans une proportion comprise entre 1 à 10 g/l.
Par particules électrochimiquement actives de faible granulométrie, on entend des particules dont la granulométrie moyenne n'excédera pas 1000 μm généralement 5 à 100 μm étant entendu que la taille peut varier au cours du traitement électrochimique. Parmi les substances organiques, on cite notamment les substances oxydables, par exemple celles présentant des fonctions alcooliques ou phénoliques, y compris les dérivés osidiques bien que d'autres substances organiques puissent également être détruites dans le procédé de traitement selon l'invention.
Le procédé présente l'avantage de pouvoir traiter des milieux résultant de l'introduction des compositions aqueuses dont les concentrations peuvent aller jusqu'à 10"2M environ ce qui permet d'envisager un traitement éventuellement en continu d'une solution à traiter comportant de tels composés. Comme indiqué précédemment, la concentration des différents solutés peut néanmoins aller jusqu'au seuil de solubilité.
Le milieu aqueux traité présente de préférence en début de réaction un pH élevé, notamment supérieur à 7, avantageusement entre pH 8 et pH 14, encore plus avantageusement entre 10 et 11 et plus précisément lorsque le tampon est un tampon carbonate, un pH légèrement inférieur à environ pH 11.
Lors de la réaction d'oxydation ce pH peut varier et peut descendre jusqu'à un pH voisin de 5. Dans le cas d'un contrôle potentiostatique, le potentiel d'oxydation appliqué au milieu est compris de préférence entre 500 et 2000 mV/ECS. Avantageusement, le potentiel d'oxydation est voisin de 800 mV/ECS. Lors de l'application du potentiel d'oxydation, on observe un courant d'oxydation qui révèle un pic d'oxydation dont l'intensité décroît de façon ressemblant à une exponentielle.
Dans le cas d'une opération en mode galvanostatique, la densité de courant anodique est comprise de préférence entre 5 mA/cm2 et 200 mA/cm2 de surface apparente de collecteur anodique.
La fréquence des ultrasons appliquée au milieu est de préférence comprise entre 16 kHz et 500 kHz, notamment environ 22 kHz. Selon une variante préférée suite au cycle sono-électrochimique décrit ci-dessus, on applique après un temps de traitement approprié un potentiel d'oxydation supérieur voisin de 1100 mV/ECS afin de provoquer le dégagement de l'oxygène et amplifier de façon importante l'effet des ultrasons sur la surface des grains de particules électrochimiquement actives pour éviter la passivation et/ou de détruire mécaniquement la couche de passivation très fine éventuellement formée sur la poudre de l'oxyde.
L'originalité de l'invention tient donc dans l'association de deux techniques, celle des ultrasons et celle de l'électrochimie et en définissant un cycle de dégradation spécifique ; ce protocole permet de détruire les composés sans passivation notable de l'électrode en suspension utilisée, dans la gamme des concentrations testées (jusqu'à environ 10"2 M).
Le procédé selon l'invention peut être mis en œuvre en continu par décantation, filtration, élimination des petites particules qui pourraient rester en suspension et recyclage d'une suspension. L'invention concerne également un dispositif électrochimique à électrolyte liquide, notamment pour mettre en œuvre le procédé de traitement selon l'invention, caractérisé en ce qu'il comprend un compartiment cathodique, un compartiment anodique, lesdits compartiments étant séparés par un séparateur, ledit compartiment cathodique pouvant comporter une électrode de référence et ledit compartiment anodique comportant un collecteur de courant, un générateur à ultrasons, un moyen d'agitation et un moyen d'introduction d'une composition aqueuse comprenant une ou plusieurs substances organiques, l'électrolyte liquide du compartiment anodique comprenant des particules électrochimiquement actives en suspension.
La figure 6 annexée décrit un tel dispositif. Cette figure est une vue en coupe longitudinale schématique d'un dispositif permettant de mettre en œuvre le procédé selon l'invention.
On utilise un réacteur de Grignard 1 dans lequel est fixée une membrane séparatrice 4 définissant un compartiment anodique 2 et un compartiment cathodique 3. Un collecteur de courant 5 en titane platiné est présente autour de cette membrane dans le compartiment anodique, le plus proche possible de sa surface afin de réduire la chute ohmique dans la cellule et une contre-électrode 6 inerte constituée d'un déployé de nickel est présente dans le compartiment cathodique également au plus près de la surface de la membrane pour les mêmes raisons. Ces deux électrodes 5 et 6 sont reliées à un générateur 7. Le réacteur électrochimique contient une solution tampon de carbonate de sodium dans les deux compartiments, laquelle sert de solution support pour les expériences de destruction des composés organiques de la composition aqueuse.
Le réacteur électrochimique comprend une ouverture 8 permettant d'introduire la composition aqueuse. Une sonde à ultrasons 9 est positionnée de façon à ce que l'embout de sonde 10 dont le diamètre est d'environ 19 mm plonge dans le liquide support du compartiment anodique. La sonde à ultrasons est reliée à un générateur d'ultrasons (non figuré).
Le support liquide comprend des particules de PbO2 de faible granulométrie (voisine de 5 à 10 μm) maintenues en suspension par un agitateur (non figuré) à raison de 1 g/ 250 ml. Les exemples suivants illustrent l'invention sans la limiter en aucune façon.
Afin de faire ressortir l'efficacité du procédé de traitement selon l'invention, plusieurs exemples sont fournis à titre comparatif (exemples 3, 4 et 5) avec le présent procédé, lequel est décrit dans les exemples 1 et 2. • L'exemple 1 montre l'action associée de l'électrochimie et des ultrasons, en maintenant le potentiel de l'électrode en suspension d'oxyde de plomb où a lieu l'oxydation, à +800 mV/ECS,
• L'exemple 2 montre l'effet de la période de nettoyage proposée sur le comportement de l'électrode, par incursion périodique du potentiel de l'électrode de travail (suspension d'oxyde de plomb) à une valeur plus élevée : 1000 à 1200 mV/ECS pendant un temps défini visant à produire un dégagement d'oxygène et donc un nettoyage mécanique de l'électrode en suspension du fait de l'application des ultrasons. • L'exemple 3 montre la dégradation électrochimique du phénol sur électrode de titane platiné seul, sans oxyde en suspension,
L'exemple 4 montre la dégradation électrochimique seule (sans ultrasons) du composé modèle choisi : le phénol, sur électrode en suspension de poudre d'un oxyde métallique portée au potentiel de +800 mV/ECS,
• A l'exemple 5, afin de faire ressortir l'avantage de la technique selon l'invention, l'expérience est faite dans les même conditions que dans l'exemple 2, à l'exception de l'absence d'oxyde métallique en suspension dans le cas présent,
Dans tous les exemples ci-dessous, on - a utilisé un réacteur de Grignard dans lequel on a fixé la membrane séparatrice des deux compartiments du réacteur ; on a placé ensuite le collecteur de courant en titane platiné autour de cette membrane dans le compartiment anodique, le plus proche possible de sa surface afin de réduire la chute ohmique dans la cellule, puis la contre électrode dans le compartiment cathodique, également au plus près de la surface de la membrane pour les mêmes raisons, et on a alors introduit la quantité nécessaire d'une solution tampon de carbonate de sodium dans les deux compartiments, laquelle qui va servir de solution support pour les expériences de destruction des composés organiques en solution.
Exemple 1
Selon cet exemple, la cellule utilisée est complétée par la mise en place d'un agitateur et ajout de la quantité d'oxyde métallique nécessaire dans le compartiment anodique. L'électrode de travail est portée en potentiel de + 800 mV/ECS et on procède alors à une injection de phénol conduisant à une concentration de l'ordre de 10"3 M dans la solution agitée du compartiment anodique (environ 250 ml), en présence d'ultrasons à la fréquence de 20 kHz et on enregistre le courant d'oxydation correspondant pour des injections de phénol à des concentrations croissantes. Les résultats sont indiqués dans le tableau ci-dessous et sur la courbe de la figure 1 dans laquelle l'axe horizontal représente le temps écoulé depuis le début de l'expérience et l'axe vertical les courants d'oxydation mesurés. TABLEAU 1
n° phénol C éq. m Ah mAh rendement te. éch. (mfi) (M) (théoriques) (mesurés) ( %) (mn)
1 1,01 0,11 10° 8,09 0,93 11,5 20
2 5,07 0,54 10° 40,45 5,84 14,4 25
3 5,07 0,54 10-3 40,45 6,32 15,6 30
4 8,11 0,86 10° 64,72 7,98 12,3 40
5 10,13 1,08 10"3 80,89 9,02 11,2 45
6 10,13 1,08 10° 80,89 8 9,9 50
Exemple 2
On a utilisé les conditions expérimentales définies à l'exemple 1. L'électrode de travail est donc portée au potentiel de 800 mV/ECS et après chaque injection / oxydation du composé et retour du courant d'oxydation à une valeur proche de la valeur du courant de base, on procède à une phase dite de nettoyage 'in situ' en portant le potentiel de l'électrode à une valeur supérieure à 1000 mV/ECS afin de provoquer le dégagement de l'oxygène et faciliter la dégradation mécanique des produits passivants formés en surface de l'électrode de travail en suspension du fait de l'application des ultrasons qui provoquent des effets mécaniques très importants sur les bulles d'oxygène qui se dégagent.
Les résultats sont réunis dans le tableau ci-après. L'allure des courbes représentant le courant d'oxydation du composé à détruire est reproduite dans la figure 2 annexée dans laquelle on remarque très peu d'évolution de sa forme au cours des injections successives du composé à détruire ; en effet, aucune déformation importante de l'allure des courbes du courant d'oxydation, ni apparition d'un second pic d'oxydation n'a été relevé, au moins jusqu'aux concentrations équivalentes atteintes, c'est à dire environ 10"2 M cumulé. TABLEAU 2
n° phénol C éq. m A h m Ah rendement t„, éch. (mg) (M) (théoriques) (mesurés) ( % ) (mn)
1 7 0,75 10° 55,88 8,57 15,33 30
2 10 1 ,06 10° 79,83 10,46 13, 1 30
3 12 1,28 10° 95,8 13, 15 13,73 30
4 15 1,6 10° 1 19,74 15,05 12,57 20
5 18,75 2,0 10° 149,68 18,47 12,34 20
6 18,75 2,0 10° 149,68 18,47 12,43 20
7 5,02 0,53 10° 40,07 6,78 16,9 20
8 10,24 1 ,09 10° 81,75 12,81 15,67 20
Exemple 3
Dans cet exemple, la cellule est utilisée telle quelle, sans suspension d'oxyde métallique et sans ultrasons. L'électrode de travail est portée au potentiel de 800 mV/ECS et les courants d'oxydation mesurés sont enregistrés en fonction du temps au cours des injections successives ; les courants relevés sont reportés dans la figure 3 annexée dans laquelle l'axe horizontal représente le temps écoulé depuis le début de l'expérience et l'axe vertical les courants d'oxydation mesurés. On peut remarquer que le courant d'oxydation mesuré est extrêmement faible dès la deuxième injection, signe d'une passivation importante de l'électrode de travail en titane-platiné qui devient alors inutilisable très rapidement.
Exemple 4
Dans les mêmes conditions que l'exemple 3, et après mise en place d'un agitateur et ajout de la quantité d'oxyde métallique nécessaire dans le compartiment anodique, l'électrode de travail est encore portée au potentiel de +800 mV/ECS ; on procède alors à une injection de phénol conduisant à une concentration de l'ordre de 10~3 M dans la solution agitée du compartiment anodique, et on enregistre le courant d'oxydation correspondant ; plusieurs injections de phénol à des concentrations croissantes sont effectuées. Les résultats sont réunis dans le tableau ci-dessous. Comme on peut le remarquer dans la figure 4 annexée, si l'on procède à une série d'injections en ayant attendu après chacune que le courant d'oxydation soit revenu à une valeur proche du courant de base, on remarque que l'on aboutit quand même progressivement à un blocage de l'activité de l'électrode en suspension utilisée. Il est aussi intéressant de remarquer l'évolution de l'allure de la courbe représentant le courant d'oxydation ; au fur et à mesure des injections, elle présente un second pic d'oxydation plus étalé et à des temps de rétention bien supérieurs à celui du pic d'oxydation qui a lieu au moment de l'injection du produit ; cette évolution de la forme de la courbe du courant d'oxydation est représentative d'une passivation de l'électrode en suspension mais on voit que le blocage de l'électrode est bien plus lent que sans cet oxyde métallique en suspension. TABLEAU 3
Exemple 5
Dans cet exemple, on a utilisé les mêmes conditions expérimentales que l'exemple 2, excepté que l'on n'a pas introduit d'oxyde métallique en suspension. L'électrode de travail est donc portée au potentiel de 800 mV/ECS et après chaque injection / oxydation du composé et retour du courant d'oxydation à une valeur proche de la valeur du courant de base, on procède à une phase dite de nettoyage 'in situ' en portant le potentiel de l'électrode à une valeur supérieure à 1000 mV/ECS afin de provoquer le dégagement de l'oxygène et faciliter la dégradation mécanique des produits passivants formés en surface de l'électrode de travail en suspension du fait de l'application des ultrasons qui provoquent des effets mécaniques très importants sur les bulles d'oxygène qui se dégagent.
Les résultats sont réunis dans le tableau ci-dessous.
La figure 5 représente l'allure du courant d'oxydation du composé injecté au cours des deux premières injections ; dès la deuxième injection, le courant d'oxydation devient extrêmement faible montrant l'inefficacité du protocole dans ces conditions et ainsi le rôle catalyseur de dégradation joué par l'oxyde métallique en suspension utilisé.
TABLEAU 4
Aux figures 2 et 5 sur l'axe des abscisses, le symbole « SS » représente une rupture de continuité dans l'échelle.

Claims

REVENDICATIONS
1. Procédé de traitement électrochimique d'une composition aqueuse comprenant une ou plusieurs substances organiques, au moyen d'un réacteur électrochimique comportant un compartiment anodique et un compartiment cathodique, lesdits compartiments étant séparés par un séparateur approprié, caractérisé en ce qu'on introduit ladite composition aqueuse dans le compartiment anodique du réacteur électrochimique, ledit compartiment anodique contenant un support liquide dans lequel sont présentes en suspension des particules actives électrochimiquement et en ce que simultanément ou successivement on soumet le milieu résultant de l'introduction de ladite composition aqueuse, à un potentiel d'oxydation et à l'action d'ultrasons.
2. Procédé de traitement selon la revendication 1 , caractérisé en ce que les substances organiques notamment oxydables présentent des fonctions alcooliques.
3. Procédé de traitement selon la revendication 2, caractérisé en ce que les substances organiques sont choisies parmi les dérivés alcooliques, les dérivés phénoliques, les dérivés osidiques.
4. Procédé de traitement selon l'une des revendications 1 à 3, caractérisé en ce que la ou les substances organiques sont présentes dans le milieu jusqu'à 10*2 M environ.
5. Procédé de traitement selon la revendication 1 , caractérisé en ce que les particules électrochimiquement actives sont choisies parmi les oxydes métalliques.
6. Procédé de traitement selon la revendication 5, caractérisé en ce que les oxydes métalliques conducteurs électroniques sont choisis parmi MnO2, PbO2, SnO2, Fe3O4, les perovskites, les spinelles.
7. Procédé de traitement selon la revendication 1, caractérisé en ce que lesdites particules électrochimiquement actives sont présentes dans le milieu dans une proportion comprise entre 1 à 10 g.
8. Procédé de traitement selon l'une des revendications précédentes, caractérisé en ce que le pH du milieu est supérieur à environ 7 en début de réaction.
9. Procédé de traitement selon la revendication 8, caractérisé en ce que le pH du milieu est compris entre 8 et 14 en début de réaction.
10. Procédé de traitement selon l'une des revendications précédentes, caractérisé en ce que le potentiel d'oxydation est compris entre 500 mv/ECS et 2000 mv/ECS dans le cas d'un contrôle potentiostatique et la densité de courant anodique est comprise entre 5 mA/cm2 et 200 mA/cm2 de surface apparente du collecteur anodique.
11. Procédé de traitement selon l'une des revendications précédentes, caractérisé en ce que la fréquence des ultrasons est comprise entre 16 kHz et 500 kHz.
12. Procédé de traitement selon l'une des revendications précédentes, caractérisé en ce que, suite à l'application du potentiel d'oxydation, on soumet le milieu à un second potentiel d'oxydation tel qu'il permet un dégagement d'oxygène, tout en continuant à appliquer les ultrasons.
13. Procédé de traitement selon l'une des revendications 1 à 12, utile notamment pour le traitement des effluents polluants.
14. Dispositif électrochimique à électrolyte liquide, notamment pour mettre en œuvre le procédé de traitement selon l'une des revendications 1 à 13, caractérisé en ce qu'il comprend un compartiment cathodique (3), un compartiment anodique (2), lesdits compartiments étant séparés par un séparateur (4), ledit compartiment anodique comportant un collecteur de courant (5), un générateur à ultrasons (10), un moyen d'agitation et un moyen d'introduction (8) d'une composition aqueuse comprenant une ou plusieurs substances organiques, l'electrolyte liquide du compartiment anodique comprenant des particules électrochimiquement actives en suspension.
EP99943002A 1998-09-21 1999-09-20 Procede de traitement de substances organiques en milieu aqueux, notamment d'effluents et dispositif electrochimique pour mettre en oeuvre le procede Withdrawn EP1115662A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9811738 1998-09-21
FR9811738A FR2783515B1 (fr) 1998-09-21 1998-09-21 Procede de traitement de substances organiques en milieu aqueux, notamment d'effluents et dispositif electrochimique pour mettre en oeuvre le procede
PCT/FR1999/002225 WO2000017109A1 (fr) 1998-09-21 1999-09-20 Procede de traitement de substances organiques en milieu aqueux, notamment d'effluents et dispositif electrochimique pour mettre en oeuvre le procede

Publications (1)

Publication Number Publication Date
EP1115662A1 true EP1115662A1 (fr) 2001-07-18

Family

ID=9530641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99943002A Withdrawn EP1115662A1 (fr) 1998-09-21 1999-09-20 Procede de traitement de substances organiques en milieu aqueux, notamment d'effluents et dispositif electrochimique pour mettre en oeuvre le procede

Country Status (7)

Country Link
EP (1) EP1115662A1 (fr)
BG (1) BG105364A (fr)
FR (1) FR2783515B1 (fr)
MA (1) MA24977A1 (fr)
SK (1) SK4052001A3 (fr)
TN (1) TNSN99175A1 (fr)
WO (1) WO2000017109A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022252A1 (fr) * 2000-09-13 2002-03-21 Commonwealth Scientific And Industrial Research Organisation Procede de traitement de melange solide-liquide
FR2832703B1 (fr) * 2001-11-29 2005-01-14 Electricite De France Dispositif sono-electrochimique et procede sono-electrochimique de degradation de molecules organiques

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919062A (en) * 1974-04-29 1975-11-11 Grace W R & Co Electrochemical system graduated porous bed sections
DE4003193A1 (de) * 1990-02-03 1991-08-08 Rickert Hans Verfahren und vorrichtung zur verbesserung der qualitaet von trink- und brauchwaessern
NL9200989A (nl) * 1992-06-04 1994-01-03 Eco Purification Syst Werkwijze en inrichting voor het zuiveren van stromen.
US5569809A (en) * 1995-07-03 1996-10-29 General Electric Company Method for destruction of chlorinated hydrocarbons
DE19534736A1 (de) * 1995-09-19 1997-03-20 Harry Prof Dr Med Rosin Vorrichtung zur Abtötung von Legionellen und anderen Mikroorganismen in Kalt- und Warmwasser-Systemen
JPH09108676A (ja) * 1995-10-17 1997-04-28 Rimoderingu Touenteiwan:Kk 水の浄化方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0017109A1 *

Also Published As

Publication number Publication date
BG105364A (en) 2002-04-30
FR2783515A1 (fr) 2000-03-24
FR2783515B1 (fr) 2000-12-15
TNSN99175A1 (fr) 2001-12-31
MA24977A1 (fr) 2000-04-01
WO2000017109A1 (fr) 2000-03-30
SK4052001A3 (en) 2001-10-08

Similar Documents

Publication Publication Date Title
EP3765186B1 (fr) Dispositif de régéneration du charbon actif
EP1253115B1 (fr) Procédé de minéralisation des polluants organiques de l'eau par l'ozonation catalytique
FR2472037A1 (fr) Electrode poreuse percolante fibreuse modifiee en carbone ou graphite, son application a la realisation de reactions electrochimiques, et reacteurs electrochimiques equipes d'une telle electrode
CA2105281C (fr) Electrosynthese indirecte par cerium
Chen et al. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode
WO2013064764A1 (fr) Installation et procede de mineralisation d'une boisson aqueuse
Bosio et al. Electrochemical oxidation of paraben compounds and the effects of byproducts on neuronal activity
EP1917217B1 (fr) Procede de depollution de milieux aqueux contenant des polluants organiques
FR2832703A1 (fr) Dispositif sono-electrochimique et procede sono-electrochimique de degradation de molecules organiques
EP0141780A1 (fr) Procédé pour la décontamination électrochimique de l'eau
WO2000017109A1 (fr) Procede de traitement de substances organiques en milieu aqueux, notamment d'effluents et dispositif electrochimique pour mettre en oeuvre le procede
FR2784979A1 (fr) Procede electrochimique de desinfection des eaux par electroperoxydation et dispositif pour la mise en oeuvre d'un tel procede
Sopaj Study of the influence of electrode material in the application of electrochemical advanced oxidation processes to removal of pharmaceutic pollutants from water
EP0341138B1 (fr) Procédé et dispositif pour traitement des eaux usées par électrolyse à anode soluble
CA2384409A1 (fr) Dispositif et procede de traitement de lisier
WO2013098533A1 (fr) Procede de traitement d'effluents de soudes usees issus de traitement de coupes petrolieres.
FR2715924A1 (fr) Procédé de traitement des effluents photographiques.
WO2011131889A1 (fr) Procede de traitement d'un effluent industriel de type soudes usees phenoliques et dispositif associe
FR2470093A1 (fr) Procede et dispositif pour la desinfection de l'eau par voie electrochimique
EP3452637B1 (fr) Alliage à base de magnésium et son utilisation dans la fabrication d'électrodes et la synthèse electrochimique de la struvite
Medina et al. Electrochemical oxidation of diethyl phthalate using boron doped diamond, modified with gold particles
WO2020053528A1 (fr) Procédé de régénération in situ d'une bio-anode d'un dispositif de synthèse bio-électrochimique
CA3022926C (fr) Alliage a base de magnesium et son utilisation dans la fabrication d'electrodes et la synthese electrochimique de la struvite
CN114713259B (zh) 钴碳氮中空多面体催化剂的制备及其在降解新兴污染物中的应用
WO2005097686A1 (fr) Procede et equipement electrochimique d'elimination des ions nitrates et ammonium contenus dans des effluents liquides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 20010409

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011116

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020716