EP1101826A1 - Procédé de trempe après cémentation à basse pression - Google Patents

Procédé de trempe après cémentation à basse pression Download PDF

Info

Publication number
EP1101826A1
EP1101826A1 EP00410142A EP00410142A EP1101826A1 EP 1101826 A1 EP1101826 A1 EP 1101826A1 EP 00410142 A EP00410142 A EP 00410142A EP 00410142 A EP00410142 A EP 00410142A EP 1101826 A1 EP1101826 A1 EP 1101826A1
Authority
EP
European Patent Office
Prior art keywords
quenching
treatment
air
low pressure
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00410142A
Other languages
German (de)
English (en)
Inventor
Laurent Pelissier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Etudes et Constructions Mecaniques SA
Original Assignee
Etudes et Constructions Mecaniques SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etudes et Constructions Mecaniques SA filed Critical Etudes et Constructions Mecaniques SA
Publication of EP1101826A1 publication Critical patent/EP1101826A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to the treatment of parts steel, and more particularly the hardening of parts which have undergone heat treatments, in particular case hardening, that is to say introduction of carbon into the surface of the parts in order to improve hardness.
  • the invention relates more particularly quenching of parts having undergone a case hardening treatment vacuum or under low gas pressure (below pressure atmospheric).
  • a low pressure carburizing treatment consists of to submit the parts to be treated, in a sealed enclosure to the air, alternating enrichment stages in the presence a low pressure carburizing gas and diffusion steps vacuum or neutral atmosphere at low pressure.
  • the respective durations of enrichment and dissemination stages as well as their number depend in particular on the concentration in carbon and depth of cementation desired in the parts, and these treatments are well known in the art.
  • a example of low pressure carburizing process is described in French patent application No. 2,678,287 of the applicant.
  • Any cementation treatment is followed by at least one quenching step carried out either under oil or under gas.
  • a main purpose of quenching is to get cooling rapid hardened parts without altering the surface finish got.
  • Gas quenching is often preferred because it allows obtain dry and clean parts directly. We are looking for usually to get the most cooling speed fast possible. To increase the quenching speed with a given gas, we must increase the mass flow rate of the gas, i.e. increase the speed and / or static pressure of the gas quenching.
  • nitrogen conventionally constitutes an acceptable compromise in terms of cost and performance. Nitrogen is often preferred over gases neutrals such as helium and hydrogen which, although more light, therefore easier to transport under relatively pressure high, too expensive (helium) or too dangerous (hydrogen).
  • a disadvantage of using a gas such as nitrogen or other is, in addition to the cost, the need for transportation and storage of large volumes. Indeed, the speakers of industrial gas quenching often have volumes of several cubic meters, or even several tens of cubic meters.
  • quenching should not affect the hardness of the surface of the hardened part.
  • quenching must be rapid to satisfy the rapid cooling of the room and not degrade its surface.
  • we must most often satisfy to an imperative of appearance of the part obtained which, not only must generally present a surface state without roughness, but also be the color of the steel (gray). In particular, it is generally considered unacceptable that a part has a blackened appearance, suggesting an oxidation.
  • the invention also refers to carbonitriding whose only difference compared to the case hardening comes from enrichment gas used to which is generally added ammonia.
  • enrichment gas used to which is generally added ammonia The perfectly known result is the formation of nitrides (instead of carbides for cementation) on the surface of the room. It will therefore be noted that all that will be exposed subsequently in connection with case hardening also applies to carbonitriding.
  • An object of the present invention is to provide a new quenching process which overcomes the disadvantages of the processes known.
  • the invention aims, in particular, to allow the realization a particularly economical quenching treatment.
  • Another object of the invention is to propose a method which is compatible with conventional treatments of carburizing at low pressure.
  • Another object of the invention is to propose a method which respects the surface appearance of the finished parts.
  • the present invention provides a process for tempering treated steel parts low pressure thermal, which consists in subjecting the parts to a high pressure air flow.
  • the air pressure is between 5 and 50 bars.
  • the quenching time is less than 15 minutes and, preferably, less than 2 minutes.
  • parts are not released to air at atmospheric pressure between the low pressure heat treatment and the air quenching under high pressure.
  • the invention also provides a method of treatment parts comprising a low pressure carburizing treatment, followed by a quenching step.
  • cementation treatment includes alternating steps enrichment at low pressure in the presence of a carburizing and diffusion stages in the presence of a neutral gas at substantially the same pressure as the enrichment steps.
  • the parts are subjected, after the quenching step, to a shot blasting step to, in particular, remove the roughness of unwanted surface.
  • the invention further provides a treatment installation thermal comprising means for the implementation of the above processing method.
  • the installation includes several clean treatment cells to be sealed from the outside, and means for handling to transfer a load from one cell to another, one of these cells constituting a quenching cell specific to be further isolated from the rest of the installation for setting up work of an air quenching.
  • the quenching cell also serves as an unloading cell for the load at the end of treatment.
  • a feature of the present invention is provide quenching under air flow of parts having undergone carburizing or carbonitriding operation at low pressure. According to the invention, this quenching in air is carried out under high pressure (greater than 5 bars).
  • Oxidation of the part changes its hardness and makes its surface grainy.
  • a ventilation of the room for the whole the duration of the heat treatments has the effect of blackening its surface by oxidation, which was considered unacceptable from the point of view of the appearance of the room.
  • the present invention provides, unlike all of these prejudices, to use air for the gas quenching of the room case-hardened.
  • this air is used under high pressure (greater than 5 bars and, preferably between 5 and 50 bars).
  • Another advantage of the present invention is that the air can be used with very high pressures without difficulty.
  • the fact of using a high pressure makes it possible to shorten the duration of the quenching step since the mass flow is improved.
  • the duration of the air quenching step is limited to a few minutes (typically, less than 15 minutes) and is preferably less 2 minutes. The shorter the duration, the more the thickness of the surface oxidation of the part is low. Note that the finding the highest possible pressure is compatible with the search for a minimum duration.
  • the oxidation thickness linked to the presence of air during quenching is limited to a few micrometers. Such a thickness is negligible compared to the carburizing thicknesses generally carried out (from several hundred micrometers to a few millimeters).
  • this blasting step aims to eliminate burrs and surface irregularities related to the molding, forging or machining of parts and that is easier to remove after case hardening due to the more great hardness of the part.
  • this step eliminates also the few micrometers of oxidation linked to quenching under air. We thus find the metallic aspect of the surface of the part as at the end of a conventional quenching under nitrogen.
  • Figures 1A and 1B show the respective developments pressure and temperature during a mode implementing the heat treatment process of the invention, applied to an example of processing a grade steel 20MnCr5.
  • a load consisting of a batch of toothed crowns representing a total weight of 300 to 350 kg is introduced into a cementation treatment installation at low pressure.
  • a content 0.36% carbon up to 700 ⁇ m deep.
  • the charge, introduced at room temperature Tamb (Figure 1B) in the installation, is first brought to a temperature Tcem from 920 to 1000 ° C in 1 to 2 hours (instants t0 to t1).
  • Tcem room temperature
  • the pressure is lowered to a Pcem value of 5 to 20 mbar ( Figure 1A).
  • the load is subjected to five enrichment stages (E) under carbon atmosphere, alternated with as many diffusion stages (D) under nitrogen.
  • the respective durations of the enrichment stages and of diffusion are chosen in a conventional way and are, of preferably decreasing for the enrichment stages (by example, respectively, of approximately 5 min, 2 min, 1 min 40 s, 1 min 35 s and 1 min 30 s) and increasing for the diffusion stages (e.g., approximately 5 min, 10 min, 15 min, respectively, 25 min and 40 min).
  • the total duration of the carburizing step is, for example, around 97 min (instants t1 to t2) and we obtain, in end of carburizing, a carbon content greater than 0.36% up to a depth of 775 ⁇ m.
  • the load is then subjected to a quenching according to the invention (instants t3 to t4) under an air pressure Ptrem of approximately 16 bars for 30 seconds.
  • a quenching according to the invention instants t3 to t4
  • Ptrem air pressure
  • the case hardening steps and quenching are carried out in separate cells. This is why, in FIG. 1A, we have indicated a time of transfer (T, instants t2 to t3) from the cementation cell to the quenching cell.
  • T time of transfer
  • a steel is obtained having a surface hardness of 62-64 Hrc and a hardness of feet 300-320 HV20 tooth.
  • the quenching step has the effect of oxidizing the surface on a thickness of less than 5 ⁇ m. Besides that this depth is too weak to influence the hardness of the part, it is preferably eliminated by a shot blasting step implemented later outside the enclosure. Note that the depths carbon diffusion are usually planned with a margin allowing the shot peening to leave a thickness conforms to that intended. Thus, the invention does not require extend the enrichment and dissemination stages to increase cementation depth to account for the low oxidation.
  • FIG. 2 represents an exemplary embodiment of a treatment installation adapted to the implementation of a treatment air quenching according to the invention.
  • the embodiment of figure 2 is inspired by a modular installation such as described in European patent application No. 0 922 778 of the Applicant to whom we can refer for further information details.
  • a basic module 6 includes a sealed enclosure 10 in the form of a cylinder (not necessarily circular in cross-section) with horizontal axis. The two ends of this cylinder 10, provided flanges, are sealed with removable waterproof covers 12. Treatment cells are connected laterally to the cylinder 10 and lie in the same horizontal plane. Through example, two heat treatment cells 14 (for example, to contain two charges to be cemented) are arranged one in facing each other by being connected to a first transfer case 10-1 constituting the cylinder 10. A loading-unloading cell 15 is arranged opposite a quenching cell 16, these cells being connected to a second transfer case 10-2, itself axially connected to the box 10-1.
  • a handling device is in the form of a carriage 18 moving parallel to the axis of the cylinder 10, from one transfer case to another.
  • This carriage moves, by example, on rails 20 extending all along the cylinder 10.
  • the carriage is provided with a telescopic fork 22 which is capable of to stretch on either side of the carriage 18 to the center from each of cells 14 to 16 to pick up and drop off a load 24 being processed.
  • the carriage 18 in lines full, the carriage 18 is located at cells 15 and 16, and the telescopic fork 22 enters the cell 15 to there take charge 24.
  • cell 15 has been previously setting the enclosure 10 to low pressure to be able to open door 15-1 which constitutes, with the exterior door 15-2, an entrance airlock.
  • the carriage 18 is located at level of cells 14.
  • An installation as illustrated in Figure 2 is modular, i.e. one or more modules additional 8 each consisting of a transfer case 10-3 provided with 20 'rails and one or two 14' cells can be axially connected to one of the boxes 10-1 or 10-2 to complete cylinder 10.
  • the quench cell is also a cementation cell.
  • provision may be made for the cell quenching system constitutes the exit airlock of an installation multicellular.
  • the quenching step is generally the last stage of treatment within the installation.
  • this is compatible with the quenching of a charge at the same time as the case hardening of one or several subsequent charges.
  • the only change to make concerns the quenching cell (16, figure 1) to which then adapt an unloading door to the outside.
  • the present invention is capable of various variants and modifications which will appear to the man of art.
  • the invention has been described in relationship with low pressure carburizing treatment, it more generally applies to any processing in which similar problems arise, in particular in which one today provides for quenching under neutral gas, under nitrogen or similar, following treatment at low pressure. He will be able to for example, carbonitriding, brazing and others partial vacuum applications before quenching.
  • the adaptation of the implementation data of the quenching method of the invention depending on the type of parts, of the load volume, and previous treatments is at the scope of the skilled person from the indications given above.
  • the figures given of the particular example indicated above have only one virtue illustrating the feasibility of the invention, and that others values may be adopted including for the treatment of this type of steel.
  • the composition of the air is generally not critical. Indeed, the compositions of atmospheric air from different parts of the world are few different (at least with regard to the compounds of interest invention) and in most cases do not require, no particular adaptation.
  • the air used is, however, filtered to avoid introducing impurities into the installation.
  • the air will be dried if necessary to reduce the risks of oxidation.

Abstract

L'invention concerne un procédé de trempe de pièces d'acier ayant subi un traitement thermique à faible pression (Pcem) et une installation de traitement thermique, qui consiste à soumettre les pièces à un flux d'air à pression élevée (Ptrem). <IMAGE>

Description

La présente invention concerne le traitement de pièces en acier, et plus particulièrement la trempe de pièces ayant subi des traitements thermiques, notamment de cémentation, c'est-à-dire d'introduction de carbone dans la surface des pièces pour en améliorer la dureté. L'invention concerne plus particulièrement la trempe de pièces ayant subi un traitement de cémentation sous vide ou sous faible pression gazeuse (inférieure à la pression atmosphérique).
Un traitement de cémentation à faible pression consiste à soumettre les pièces à traiter, dans une enceinte étanche à l'air, à une alternance d'étapes d'enrichissement en présence d'un gaz de cémentation à faible pression et d'étapes de diffusion sous vide ou sous atmosphère neutre à faible pression. Les durées respectives des étapes d'enrichissement et de diffusion ainsi que leur nombre dépendent notamment de la concentration en carbone et de la profondeur de cémentation souhaitées dans les pièces, et ces traitements sont bien connus de la technique. Un exemple de procédé de cémentation à basse pression est décrit dans la demande de brevet français n° 2 678 287 de la demanderesse.
Tout traitement de cémentation est suivi d'au moins une étape de trempe s'effectuant soit sous huile, soit sous gaz. Un but principal de la trempe est d'obtenir un refroidissement rapide des pièces cémentées sans altérer l'état de surface obtenu. La trempe sous gaz est souvent préférée car elle permet d'obtenir directement des pièces sèches et propres. On recherche généralement à obtenir une vitesse de refroidissement la plus rapide possible. Pour augmenter la vitesse de la trempe avec un gaz donné, on doit augmenter le débit massique du gaz, c'est-à-dire augmenter la vitesse et/ou la pression statique du gaz de trempe.
Parmi les gaz de trempe généralement utilisés, l'azote constitue classiquement un compromis acceptable en terme de coût et de rendement. L'azote est en effet souvent préféré à des gaz neutres tels que l'hélium et l'hydrogène qui, bien que plus légers, donc plus faciles à véhiculer sous une pression relativement élevée, sont trop coûteux (hélium) ou trop dangereux (hydrogène).
Il serait cependant souhaitable de réduire le coût de l'étape de trempe qui, en raison de l'atmosphère gazeuse que l'on cherche à maintenir et du débit massique requis, n'est pas négligeable dans le coût global du traitement des pièces.
De plus, un inconvénient du recours à un gaz tel que l'azote ou autre est, outre le coût, la nécessité d'acheminement et de stockage de volumes importants. En effet, les enceintes de trempe à gaz industrielles ont souvent des volumes de plusieurs mètres cubes, voire de plusieurs dizaines de mètres cubes.
Le traitement de trempe doit respecter plusieurs contraintes, notamment, en liaison avec la cémentation qui précède. Tout d'abord, la trempe ne doit pas altérer la dureté de la surface de la pièce cémentée. De plus, la trempe doit être rapide pour satisfaire au refroidissement rapide de la pièce et ne pas dégrader sa surface. En outre, on doit le plus souvent satisfaire à un impératif d'aspect de la pièce obtenue qui, non seulement doit généralement présenter un état de surface dépourvu d'aspérité, mais également être de la couleur de l'acier (grise). En particulier, il est généralement considéré comme rédhibitoire qu'une pièce ait un aspect noirci, laissant supposer une oxydation.
L'invention se réfère également à la carbonitruration dont la seule différence par rapport à la cémentation vient du gaz d'enrichissement utilisé auquel on ajoute généralement de l'ammoniaque. Le résultat parfaitement connu est la formation de nitrures (au lieu de carbures pour la cémentation) en surface de la pièce. On notera donc que tout ce qui sera exposé par la suite en relation avec la cémentation s'applique également à la carbonitruration.
Un objet de la présente invention est de proposer un nouveau procédé de trempe qui pallie les inconvénients des procédés connus.
L'invention vise, en particulier, à permettre la réalisation d'un traitement de trempe particulièrement économique.
Un autre objet de l'invention est de proposer un procédé qui soit compatible avec les traitements classiques de cémentation à basse pression.
Un autre objet de l'invention est de proposer un procédé qui respecte l'aspect de surface des pièces terminées.
Pour atteindre ces objets, la présente invention prévoit un procédé de trempe de pièces d'acier ayant subi un traitement thermique à faible pression, qui consiste à soumettre les pièces à un flux d'air à pression élevée.
Selon un mode de mise en oeuvre de la présente invention, la pression d'air est comprise entre 5 et 50 bars.
Selon un mode de mise en oeuvre de la présente invention, la durée de trempe est inférieure à 15 minutes et, de préférence, inférieure à 2 minutes.
Selon un mode de mise en oeuvre de la présente invention, les pièces ne sont pas remises à l'air à pression atmosphérique entre le traitement thermique à faible pression et la trempe à l'air sous pression élevée.
L'invention prévoit également un procédé de traitement de pièces comprenant un traitement de cémentation à faible pression, suivi d'une étape de trempe.
Selon un mode de mise en oeuvre de la présente invention, le traitement de cémentation comprend une alternance d'étapes d'enrichissement à faible pression en présence d'un gaz de cémentation et d'étapes de diffusion en présence d'un gaz neutre sensiblement à la même pression que les étapes d'enrichissement.
Selon un mode de mise en oeuvre de la présente invention, les pièces sont soumises, après l'étape de trempe, à une étape de grenaillage pour, notamment, éliminer les aspérités de surface indésirables.
L'invention prévoit en outre une installation de traitement thermique comprenant des moyens pour la mise en oeuvre du procédé de traitement ci-dessus.
Selon un mode de réalisation de la présente invention, l'installation comprend plusieurs cellules de traitement propres à être isolées de l'extérieur de façon étanche, et des moyens de manutention pour transférer une charge d'une cellule à une autre, une de ces cellules constituant une cellule de trempe propre à être en outre isolée du reste de l'installation pour la mise en oeuvre d'une trempe sous air.
Selon un mode de réalisation de la présente invention, la cellule de trempe sert également de cellule de déchargement de la charge en fin de traitement.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de mise en oeuvre et de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
  • les figures 1A et 1B illustrent, par des caractéristiques de pression et de température en fonction du temps, un exemple de mise en oeuvre du procédé de traitement thermique selon l'invention ; et
  • la figure 2 représente, de façon très schématique, un mode de réalisation d'une installation de traitement adaptée à la mise en oeuvre du procédé selon l'invention.
  • Pour des raisons de clarté, les diagrammes des figures 1A et 1B ne sont pas à l'échelle. De plus, seuls les éléments nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite. En particulier, en figure 2, on s'est contenté de représenter la structure multicellulaire d'une installation sans se préoccuper des détails constitutifs des cellules qui, sauf précision contraire, sont classiques. De plus, on fera référence à des publications de demandes de brevets auxquelles on pourra se reporter et dont les contenus respectifs sont intégralement incorporés par référence dans la présente description.
    Une caractéristique de la présente invention est de prévoir une trempe sous flux d'air de pièces ayant subi une opération de cémentation ou de carbonitruration à basse pression. Selon l'invention, cette trempe sous air s'effectue sous haute pression (supérieure à 5 bars).
    Un avantage de l'utilisation de l'air est qu'il s'agit d'une source de gaz gratuite, disponible partout sans conditionnement particulier, et inépuisable. Ainsi, on réduit considérablement le coût des étapes de trempe par rapport aux procédés classiques.
    Toutefois, le recours à l'air était classiquement exclu pour plusieurs raisons dans les procédés de trempe au gaz dans des installations de cémentation à basse pression ou analogue.
    Tout d'abord, la présence d'oxygène juste après la cémentation entraíne une oxydation que l'on croyait préjudiciable à plus d'un titre sur la pièce finale issue de trempe. Une oxydation de la pièce modifie sa dureté et rend sa surface granuleuse.
    De plus, dans un four sous vide où les étapes de cémentation et de trempe sous gaz sont réalisées successivement dans la même enceinte, l'introduction d'air n'est pas possible du fait de l'oxydation des parties chaudes du four.
    En outre, une remise à l'air de la pièce pendant toute la durée des traitements thermiques a pour effet de noircir sa surface par oxydation, ce qui était considéré comme rédhibitoire du point de vue de l'aspect de la pièce.
    La présente invention prévoit, à l'inverse de tous ces préjugés, d'utiliser l'air pour la trempe gazeuse de la pièce cémentée. Selon l'invention, cet air est utilisé sous haute pression (supérieure à 5 bars et, de préférence comprise entre 5 et 50 bars). Un autre avantage de la présente invention est que l'air peut être utilisé avec des pressions très élevées sans difficulté. Or, le fait d'utiliser une pression élevée permet de raccourcir la durée de l'étape de trempe dans la mesure où le débit massique s'en trouve amélioré. Selon l'invention, la durée de l'étape de trempe sous air est limitée à quelques minutes (typiquement, moins de 15 minutes) et est, de préférence, inférieure à 2 minutes. Plus la durée est courte, plus l'épaisseur de l'oxydation en surface de la pièce est faible. On notera que la recherche de la pression la plus élevée possible est compatible avec la recherche d'une durée minimale. Avec des durées aussi faibles, l'épaisseur d'oxydation liée à la présence d'air pendant la trempe est limitée à quelques micromètres. Une telle épaisseur est négligeable par rapport aux épaisseurs de cémentation généralement réalisées (de plusieurs centaines de micromètres à quelques millimètres).
    En acceptant une oxydation sur une très faible épaisseur (moins de 5 micromètres), on autorise l'emploi d'air dans le traitement de trempe sans altérer les propriétés de la pièce finale. En effet, une perte de dureté sur une si faible épaisseur est généralement parfaitement négligeable dans la mesure où la couche de dureté souhaitée se trouve immédiatement en dessous et n'est pas altérée.
    De plus, les pièces sont le plus souvent soumises à une étape dite de grenaillage qui consiste à provoquer une érosion mécanique de leur surface. Classiquement, cette étape de grenaillage a pour objet d'éliminer les bavures et irrégularités de surface liées au moulage, forgeage ou usinage des pièces et qu'il est plus facile d'éliminer après cémentation en raison de la plus grande dureté de la pièce. Selon l'invention, cette étape élimine également les quelques micromètres d'oxydation liés à la trempe sous air. On retrouve ainsi l'aspect métallique de la surface de la pièce comme à l'issue d'une trempe classique sous azote.
    Les figures 1A et 1B représentent les évolutions respectives de la pression et de la température au cours d'un mode de mise en oeuvre du procédé de traitement thermique de l'invention, appliqué à un exemple de traitement d'un acier de nuance 20MnCr5.
    Selon cet exemple, une charge constituée d'un lot de couronnes dentées représentant un poids total de 300 à 350 kg est introduite dans une installation de traitement par cémentation à basse pression. On souhaite obtenir, pour ces pièces, une teneur en carbone de 0,36 % jusqu'à 700 µm de profondeur.
    La charge, introduite à température ambiante Tamb (figure 1B) dans l'installation, est d'abord portée à une température Tcem de 920 à 1000° C en 1 à 2 heures (instants t0 à t1). En même temps, ou séparément si un sas est utilisé comme on le verra par la suite en relation avec la figure 2, la pression est abaissée jusqu'à une valeur Pcem de 5 à 20 mbar (figure 1A). Puis, on soumet la charge à cinq étapes d'enrichissement (E) sous atmosphère carbonée, alternées avec autant d'étapes de diffusion (D) sous azote. Les durées respectives des étapes d'enrichissement et de diffusion sont choisies de façon classique et sont, de préférence, décroissantes pour les étapes d'enrichissement (par exemple, respectivement, d'environ 5 mn, 2 mn, 1 mn 40 s, 1 mn 35 s et 1 mn 30 s) et croissantes pour les étapes de diffusion (par exemple, respectivement, d'environ 5 mn, 10 mn, 15 mn, 25 mn et 40 mn). La durée totale de l'étape de cémentation est, par exemple, d'environ 97 mn (instants t1 à t2) et on obtient, en fin de cémentation, une teneur en carbone supérieure à 0,36 % jusqu'à une profondeur de 775 µm.
    On soumet alors la charge à une trempe selon l'invention (instants t3 à t4) sous une pression d'air Ptrem d'environ 16 bars pendant 30 secondes. De préférence, les étapes de cémentation et de trempe sont mises en oeuvre dans des cellules distinctes. C'est pourquoi, en figure 1A, on a indiqué un temps de transfert (T, instants t2 à t3) de la cellule de cémentation à la cellule de trempe. En fin de traitement, on obtient un acier ayant une dureté de surface de 62-64 Hrc et une dureté de pieds de dent de 300-320 HV20.
    L'étape de trempe a pour effet d'oxyder la surface sur une épaisseur de moins de 5 µm. Outre que cette profondeur est trop faible pour influer sur la dureté de la pièce, elle est de préférence, éliminée par une étape de grenaillage mise en oeuvre ultérieurement hors de l'enceinte. On notera que les profondeurs de diffusion du carbone sont généralement prévues avec une marge permettant que le grenaillage laisse subsister une épaisseur conforme à celle visée. Ainsi, l'invention ne requiert pas de rallonger les étapes d'enrichissement et de diffusion pour augmenter la profondeur de cémentation pour tenir compte de la faible oxydation.
    Pour simplifier, on a considéré ci-dessus que les pièces étaient ramenées à température ambiante par l'étape de trempe. En pratique, les pièces sont généralement sorties de l'installation alors qu'elles sont encore à une température plus élevée. Toutefois, cela ne change rien aux principes de l'invention.
    A titre de comparaison, la trempe d'une telle charge pour ramener la température à environ 100° C dure environ 2 minutes sous une pression d'air de 20 bars, et environ 2,5 minutes sous une pression d'air de 10 bars.
    La figure 2 représente un exemple de réalisation d'une installation de traitement adaptée à la mise en oeuvre d'un traitement de trempe à l'air selon l'invention. Le mode de réalisation de la figure 2 s'inspire d'une installation modulaire telle que décrite dans la demande de brevet européen n° 0 922 778 de la demanderesse à laquelle on pourra se référer pour de plus amples détails.
    Un module de base 6 comprend une enceinte étanche 10 sous forme de cylindre (de section non nécessairement circulaire) à axe horizontal. Les deux extrémités de ce cylindre 10, munies de collerettes, sont bouchées par des couvercles étanches amovibles 12. Des cellules de traitement sont reliées latéralement au cylindre 10 et se trouvent dans un même plan horizontal. Par exemple, deux cellules de traitement thermique 14 (par exemple, pour contenir deux charges à cémenter) sont disposées l'une en face de l'autre en étant reliées à un premier caisson de transfert 10-1 constitutif du cylindre 10. Une cellule de chargement-déchargement 15 est disposée en face d'une cellule de trempe 16, ces cellules étant reliées à un deuxième caisson de transfert 10-2, lui-même relié axialement au caisson 10-1.
    Un dispositif de manutention est sous la forme d'un chariot 18 se déplaçant parallèlement à l'axe du cylindre 10, d'un caisson de transfert à un autre. Ce chariot se déplace, par exemple, sur des rails 20 s'étendant tout le long du cylindre 10. Le chariot est muni d'une fourche télescopique 22 qui est susceptible de s'étirer de part et d'autre du chariot 18 jusqu'au centre de chacune des cellules 14 à 16 pour y prendre et y déposer une charge 24 en cours de traitement. A la figure 2, en traits pleins, le chariot 18 se trouve au niveau des cellules 15 et 16, et la fourche télescopique 22 pénètre dans la cellule 15 pour y prendre une charge 24. Bien entendu, la cellule 15 a été préalablement mise à la basse pression de l'enceinte 10 pour pouvoir ouvrir la porte 15-1 qui constitue, avec la porte extérieure 15-2, un sas d'entrée. En pointillés, le chariot 18 se trouve au niveau des cellules 14. Une installation telle qu'illustrée à la figure 2 est modulaire, c'est-à-dire qu'un ou plusieurs modules supplémentaires 8 constitués chacun d'un caisson de transfert 10-3 pourvu de rails 20' et d'une ou deux cellules 14' peuvent être raccordés axialement à l'un des caissons 10-1 ou 10-2 pour compléter le cylindre 10.
    La seule modification qu'il est nécessaire d'apporter à une installation telle que décrite dans la demande de brevet européen EP-A-0 922 778 susmentionnée, pour la mise en oeuvre de l'invention, est de prévoir des moyens pour organiser une circulation d'air sous pression dans la cellule de trempe 16 et, selon un mode de réalisation préféré, des moyens pour remettre cette cellule sous vide avant l'introduction d'une nouvelle charge et/ou avant que la charge puisse retourner dans le caisson de transfert 10-2. La cellule 16 peut être isolée du reste de l'installation par une porte étanche 16-1.
    A titre de variante, la cellule de trempe est également une cellule de cémentation. Toutefois, on préférera généralement prévoir des cellules distinctes et réduire ainsi le temps de traitement. En effet, on peut alors prévoir qu'une charge ou plusieurs charges soient en cours de cémentation dans une cellule adaptée alors qu'une autre charge précédente est en cours de trempe.
    Selon une autre variante, on pourra prévoir que la cellule de trempe constitue le sas de sortie d'une installation multicellulaire. En effet, l'étape de trempe est généralement la dernière étape de traitement au sein de l'installation. Dans le cas d'une installation telle que celle de la demande de brevet européen EP-A-0 922 778 déjà citée, cela est compatible avec la trempe d'une charge en même temps que la cémentation d'une ou plusieurs charges suivantes. La seule modification à apporter concerne la cellule de trempe (16, figure 1) à laquelle il faut alors adapter une porte de déchargement vers l'extérieur.
    Un avantage qu'il y a à utiliser la cellule de trempe comme sas de sortie est que les caissons de transfert qui constituent des volumes importants (plusieurs dizaines de mètres cubes) peuvent ainsi rester sous vide ou sous atmosphère contrôlée à basse pression. De plus, on gagne du temps en ne faisant pas repasser la charge une fois refroidie dans les caissons de transfert.
    En outre, comme la structure classique de la cellule de chargement-déchargement 15 n'a pas besoin d'être modifiée, on peut quand même utiliser cette dernière comme sas de sortie, par exemple, si l'étape de trempe n'est pas la dernière du traitement appliqué à l'intérieur de l'installation. Un avantage qu'il y a à dissocier les sas d'entrée et de sortie est de faciliter l'organisation de la manutention des charges à l'extérieur de l'installation et l'association de cette installation avec le reste de la chaíne de fabrication des pièces.
    Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, bien que l'invention ait été décrite en relation avec un traitement de cémentation à faible pression, elle s'applique plus généralement à tout traitement dans lequel se posent des problèmes similaires, en particulier dans lequel on prévoit aujourd'hui une trempe sous gaz neutre, sous azote ou analogue, à la suite d'un traitement à basse pression. Il pourra s'agir, par exemple, de carbonitruration, de brasage et autres applications sous vide partiel avant trempe.
    De plus, l'adaptation des données de mise en oeuvre du procédé de trempe de l'invention en fonction du type de pièces, du volume de la charge, et des traitements précédents est à la portée de l'homme du métier à partir des indications données ci-dessus. En particulier, on notera que les indications chiffrées de l'exemple particulier indiqué précédemment n'ont qu'une vertu d'illustration de la faisabilité de l'invention, et que d'autres valeurs pourront être adoptées y compris pour le traitement de ce type d'acier. On notera également que la composition de l'air n'est généralement pas critique. En effet, les compositions de l'air atmosphérique des différentes régions du monde sont peu différentes (au moins pour ce qui concerne les composés intéressant l'invention) et ne nécessitent dans la plupart des cas, aucune adaptation particulière. A l'extrême, on pourra adapter le temps de trempe et/ou la pression d'air et/ou la vitesse de circulation à la teneur en oxygène de l'air. Bien sûr, l'air utilisé est cependant filtré pour éviter d'introduire des impuretés dans l'installation. De plus, l'air sera au besoin séché pour réduire les risques d'oxydation.
    En outre, la réalisation pratique d'une installation de traitement de l'invention et son adaptation à l'application concernée est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus. En particulier, le choix du mode de chargement-déchargement des pièces dépend de l'application et, généralement, d'un compromis entre l'encombrement global de l'installation et la durée de traitement rapportée à la pièce. Enfin, on notera que l'invention peut également être mise en oeuvre dans une installation de traitement du type de celle décrite dans le brevet européen n° 0 388 333 de la demanderesse où plusieurs cellules de traitement verticales sont réparties au-dessus d'une enceinte étanche de transfert de la charge et de part et d'autre de la cellule de trempe. L'adaptation d'une telle installation à l'invention requiert simplement, comme pour l'installation décrite en relation avec la figure 2, d'associer à la cellule de trempe des moyens pour organiser la circulation d'air sous pression et, de préférence, également pour mettre cette cellule sous vide.

    Claims (10)

    1. Procédé de trempe de pièces d'acier ayant subi un traitement thermique à faible pression (Pcem), caractérisé en ce qu'il consiste à soumettre les pièces à un flux d'air à pression élevée (Ptrem) .
    2. Procédé de trempe selon la revendication 1, caractérisé en ce que la pression d'air (Ptrem) est comprise entre 5 et 50 bars.
    3. Procédé de trempe selon la revendication 1 ou 2, caractérisé en ce que la durée (t4-t3) de trempe est inférieure à 15 minutes et, de préférence, inférieure à 2 minutes.
    4. Procédé de trempe selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les pièces ne sont pas remises à l'air à pression atmosphérique (Patm) entre le traitement thermique à faible pression et la trempe à l'air sous pression élevée (Ptrem).
    5. Procédé de traitement de pièces comprenant un traitement de cémentation à faible pression, suivi d'une étape de trempe, caractérisé en ce que l'étape de trempe est conforme à l'une quelconque des revendications 1 à 4.
    6. Procédé de traitement selon la revendication 5, caractérisé en ce que le traitement de cémentation comprend une alternance d'étapes d'enrichissement (E) à faible pression (Pcem) en présence d'un gaz de cémentation et d'étapes de diffusion (D) en présence d'un gaz neutre sensiblement à la même pression que les étapes d'enrichissement.
    7. Procédé de traitement selon la revendication 5 ou 6, caractérisé en ce que les pièces sont soumises, après l'étape de trempe, à une étape de grenaillage pour, notamment, éliminer les aspérités de surface indésirables.
    8. Installation de traitement thermique, caractérisée en ce qu'elle comprend des moyens pour la mise en oeuvre du procédé de traitement selon l'une quelconque des revendications 5 à 7.
    9. Installation de traitement thermique selon la revendication 8, caractérisée en ce qu'elle comprend plusieurs cellules de traitement (14, 15, 16)) propres à être isolées de l'extérieur de façon étanche, et des moyens (18, 20, 22) de manutention pour transférer une charge (24) d'une cellule à une autre, une de ces cellules constituant une cellule de trempe (16) propre à être en outre isolée du reste de l'installation pour la mise en oeuvre d'une trempe sous air conforme à l'une quelconque des revendications 1 à 4.
    10. Installation de traitement selon la revendication 9, caractérisée en ce que la cellule de trempe (16) sert également de cellule de déchargement de la charge (24) en fin de traitement.
    EP00410142A 1999-11-17 2000-11-16 Procédé de trempe après cémentation à basse pression Withdrawn EP1101826A1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9914449A FR2801059B1 (fr) 1999-11-17 1999-11-17 Procede de trempe apres cementation a basse pression
    FR9914449 1999-11-17
    US09/715,525 US6451137B1 (en) 1999-11-17 2000-11-17 Method of quenching after a low-pressure carburization

    Publications (1)

    Publication Number Publication Date
    EP1101826A1 true EP1101826A1 (fr) 2001-05-23

    Family

    ID=26235159

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00410142A Withdrawn EP1101826A1 (fr) 1999-11-17 2000-11-16 Procédé de trempe après cémentation à basse pression

    Country Status (3)

    Country Link
    US (1) US6451137B1 (fr)
    EP (1) EP1101826A1 (fr)
    FR (1) FR2801059B1 (fr)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2826374A1 (fr) * 2001-06-21 2002-12-27 Serthel Procede et dispositif de trempe des aciers a l'air sous pression
    WO2016075377A1 (fr) * 2014-11-14 2016-05-19 Peugeot Citroen Automobiles Sa Procédé et installation de carbonitruration de pièce(s) en acier sous basse pression et haute température
    FR3081884A1 (fr) * 2018-06-05 2019-12-06 Safran Helicopter Engines Procede de cementation basse pression d'une piece comprenant de l'acier

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP4698921B2 (ja) * 2002-01-22 2011-06-08 出光興産株式会社 焼入れ方法
    US20050193743A1 (en) * 2004-03-05 2005-09-08 John Foss High-pressure cryogenic gas for treatment processes
    FR2874079B1 (fr) * 2004-08-06 2008-07-18 Francis Pelissier Machine de traitement thermochimique de cementation
    US20070068601A1 (en) * 2005-09-26 2007-03-29 Jones William R Process for treating steel alloys
    FR2917752B1 (fr) * 2007-06-22 2019-06-28 Montupet Sa Procede de traitement thermique de pieces de fonderie mettant en oeuvre une trempe a l'air et systeme pour la mise en oeuvre du procede
    FR2917751B1 (fr) * 2007-06-22 2011-04-01 Montupet Sa Procede de traitement thermique de culasses en alliage a base d'aluminuim, et culasses presentant des proprietes de resistance a la fatigue ameliorees
    US9822422B2 (en) 2009-09-24 2017-11-21 Ati Properties Llc Processes for reducing flatness deviations in alloy articles
    US8425691B2 (en) 2010-07-21 2013-04-23 Kenneth H. Moyer Stainless steel carburization process
    JP6297471B2 (ja) * 2014-11-10 2018-03-20 中外炉工業株式会社 熱処理設備
    FR3032205B1 (fr) * 2015-02-04 2017-02-17 Peugeot Citroen Automobiles Sa Installation de carbonitruration en serie de piece(s) en acier sous basse pression et haute temperature

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3736501C1 (de) * 1987-10-28 1988-06-09 Degussa Verfahren zur Waermebehandlung metallischer Werkstuecke
    FR2678287A1 (fr) * 1991-06-26 1992-12-31 Etudes Const Mecaniques Procede et four de cementation a basse pression.
    DE4208485C1 (fr) * 1992-03-17 1993-02-11 Joachim Dr.-Ing. 7250 Leonberg De Wuenning
    FR2771754A1 (fr) * 1997-12-02 1999-06-04 Etudes Const Mecaniques Installation de traitement thermique sous vide modulaire

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3736501C1 (de) * 1987-10-28 1988-06-09 Degussa Verfahren zur Waermebehandlung metallischer Werkstuecke
    FR2678287A1 (fr) * 1991-06-26 1992-12-31 Etudes Const Mecaniques Procede et four de cementation a basse pression.
    DE4208485C1 (fr) * 1992-03-17 1993-02-11 Joachim Dr.-Ing. 7250 Leonberg De Wuenning
    FR2771754A1 (fr) * 1997-12-02 1999-06-04 Etudes Const Mecaniques Installation de traitement thermique sous vide modulaire

    Non-Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Title
    ALTENA H: "NIEDERDRUCK-AUFKOHLUNG MIT HOCHDRUCK-GASABSCHRECKUNG VERFAHRENSTECHNIK UND ERGEBNISSE", HAERTEREI TECHNISCHE MITTEILUNGEN,DE,CARL HANSER VERLAG. MUNCHEN, vol. 53, no. 2, 1 March 1998 (1998-03-01), pages 93 - 101, XP000755093, ISSN: 0341-101X *
    HOFFMANN R ET AL: "MOEGLICHKEITEN UND GRENZEN DER GASABKUEHLUNG", HAERTEREI TECHNISCHE MITTEILUNGEN,DE,CARL HANSER VERLAG. MUNCHEN, vol. 47, no. 2, 1 March 1992 (1992-03-01), pages 112 - 122, XP000267300, ISSN: 0341-101X *
    TINSCHER R ET AL: "FIXTURHAERTUNG VON WAELZLAGERRINGEN UNTER VERWENDUNG VON GASFOERMIGEN ABSCHRECKMEDIEN", HAERTEREI TECHNISCHE MITTEILUNGEN,DE,CARL HANSER VERLAG. MUNCHEN, vol. 53, no. 2, 1 March 1998 (1998-03-01), pages 108 - 115, XP000755095, ISSN: 0341-101X *

    Cited By (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2826374A1 (fr) * 2001-06-21 2002-12-27 Serthel Procede et dispositif de trempe des aciers a l'air sous pression
    WO2003000939A1 (fr) * 2001-06-21 2003-01-03 Serthel Procede et dispositif de trempe des aciers a l'air pression
    WO2016075377A1 (fr) * 2014-11-14 2016-05-19 Peugeot Citroen Automobiles Sa Procédé et installation de carbonitruration de pièce(s) en acier sous basse pression et haute température
    FR3028530A1 (fr) * 2014-11-14 2016-05-20 Peugeot Citroen Automobiles Sa Procede et installation de carbonitruration de piece(s) en acier sous basse pression et haute temperature
    US11512381B2 (en) 2014-11-14 2022-11-29 Ecm Technologies Sas Method and facility for carbonitriding one or more steel parts under low pressure and at a high temperature
    FR3081884A1 (fr) * 2018-06-05 2019-12-06 Safran Helicopter Engines Procede de cementation basse pression d'une piece comprenant de l'acier
    WO2019234352A1 (fr) * 2018-06-05 2019-12-12 Safran Helicopter Engines Procédé de cémentation basse pression d'une pièce comprenant de l'acier
    US11293087B2 (en) 2018-06-05 2022-04-05 Safran Helicopter Engines Method for low-pressure carburizing of a workpiece comprising steel

    Also Published As

    Publication number Publication date
    US6451137B1 (en) 2002-09-17
    FR2801059A1 (fr) 2001-05-18
    FR2801059B1 (fr) 2002-01-25

    Similar Documents

    Publication Publication Date Title
    EP1101826A1 (fr) Procédé de trempe après cémentation à basse pression
    EP1885904B1 (fr) Procede et four de carbonitruration a basse pression
    KR100301677B1 (ko) 티타늄또는티타늄합금부재와그표면처리방법
    EP2167693B1 (fr) Procédé de traitement thermique de pièces de fonderie mettant en oeuvre une trempe a l&#39;air et système pour la mise en oeuvre du procédé
    EP3218530B1 (fr) Procédé et installation de carbonitruration de pièce(s) en acier sous basse pression et haute température
    EP2098607B1 (fr) Procédé de revêtement d&#39;une bande métallique et installation de mise en oeuvre du procédé
    FR2624882A1 (fr) Procede de revetement de pieces en alliages de titane par de l&#39;aluminium diffuse
    EP1105247B1 (fr) Procede d&#39;assemblage par soudage diffusion d&#39;un acier inoxydable martensitique et d&#39;un alliage de cuivre, et element bimetallique obtenu
    CA2970247C (fr) Procede et four de carbonitruration a basse pression
    EP1167549A1 (fr) Cellule de trempe au gaz
    FR2576916A1 (fr) Procede de formation en phase gazeuse constamment renouvelee, sous pression reduite, de revetements protecteurs sur des pieces en alliages refractaires, et dispositif pour sa mise en oeuvre
    EP2732066B1 (fr) Procédé de refroidissement de pièces métalliques ayant subi un traitement de nitruration / nitrocarburation en bain de sel fondu, l&#39;installation pour la mise en oeuvre du procédé et les pièces métalliques traitées
    EP3287857B1 (fr) Procédé d&#39;obtention d&#39;un article à base de zircone ayant un aspect métallique
    FR3058423A1 (fr) Procede de traitement thermique d&#39;une piece en acier fortement allie
    EP0067098B1 (fr) Méthode de nitruration ionique d&#39;une pièce en acier déformée plastiquement au préalable
    EP0737755B1 (fr) Procédé de traitement thermique et installation pour la mise en oeuvre de ce procédé
    EP1404882B1 (fr) Procede de trempe des aciers a l&#39;air pression
    FR2863629A1 (fr) Procede et dispositif de traitement physicochimique a chaud de pieces mecaniques
    FR2867607A1 (fr) Procede de fabrication d&#39;un substrat pour la microelectronique, l&#39;opto-electronique et l&#39;optique avec limitaton des lignes de glissement et substrat correspondant
    JPH11264063A (ja) チタン装飾部材の硬化処理方法
    CH269520A (fr) Procédé pour le revêtement d&#39;objets en métal par des couches d&#39;un métal différent.
    WO2020099794A1 (fr) Procédé de décapage d&#39;une pièce de turbomachine
    FR2792339A1 (fr) Procede et dispositif de carburation sous vide en continu
    CH329743A (fr) Procédé d&#39;élaboration d&#39;objets métalliques non poreux
    FR2845695A1 (fr) Procede et installation de traitement thermique de pieces metalliques

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20011119

    AKX Designation fees paid

    Free format text: DE ES FR GB IT

    17Q First examination report despatched

    Effective date: 20040212

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

    18W Application withdrawn

    Effective date: 20050113