EP2167693B1 - Procédé de traitement thermique de pièces de fonderie mettant en oeuvre une trempe a l'air et système pour la mise en oeuvre du procédé - Google Patents

Procédé de traitement thermique de pièces de fonderie mettant en oeuvre une trempe a l'air et système pour la mise en oeuvre du procédé Download PDF

Info

Publication number
EP2167693B1
EP2167693B1 EP08761238.8A EP08761238A EP2167693B1 EP 2167693 B1 EP2167693 B1 EP 2167693B1 EP 08761238 A EP08761238 A EP 08761238A EP 2167693 B1 EP2167693 B1 EP 2167693B1
Authority
EP
European Patent Office
Prior art keywords
parts
air
baskets
batch
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08761238.8A
Other languages
German (de)
English (en)
Other versions
EP2167693A1 (fr
Inventor
Philippe Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montupet SA
Original Assignee
Montupet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montupet SA filed Critical Montupet SA
Priority to PL08761238T priority Critical patent/PL2167693T3/pl
Publication of EP2167693A1 publication Critical patent/EP2167693A1/fr
Application granted granted Critical
Publication of EP2167693B1 publication Critical patent/EP2167693B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0025Supports; Baskets; Containers; Covers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces
    • C21D9/675Arrangements of charging or discharging devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge

Definitions

  • the field of the invention is that of heat treatments of castings made of aluminum-based alloy.
  • the invention relates to a method of heat treatment of breech type casting parts in which an air quenching of the parts is carried out, and a system for carrying out the method.
  • the heat treatment of aluminum alloys generally consists of a succession of operations.
  • a high-temperature dissolution operation is carried out, typically between 490 ° C. and 545 ° C. for silicon-containing foundry alloys (between 5 and 9%) and copper (between 0 and 3%). and magnesium (between 0 and 0.7%).
  • This operation is performed at the highest possible temperature to accelerate the dissolution of the hardening elements of the alloy, and dissolve as much as possible, while avoiding to remelt even locally the alloy (phenomenon called burn) .
  • phenomenon called burn a solid solution of hardening elements is obtained in the matrix of the alloy.
  • a quenching operation is then carried out to freeze the solid solution of the hardening elements in the matrix, by cooling rapidly from the solution temperature to room temperature or to the tempering temperature.
  • a revenue operation is carried out in the form of an oven residence at a moderate temperature, typically between 150 and 245 ° C., which causes the hardening elements of the alloy to recombine in the form of fine precipitates distributed within the matrix of the alloy, and thereby increases its resistance.
  • a moderate temperature typically between 150 and 245 ° C.
  • the increase in the temperature of the quenching water is a technique well known to those skilled in the art for reducing the residual stresses of complex parts. This technique, however, has limited effects from the point of view of the reduction of residual stresses, while causing a significant reduction of properties. This reduction is all the more important as the temperature of the water increases and approaches the boiling temperature of the water.
  • quenching additives (brine, for example) is also a well-known technique for the reduction of residual stresses. However, it poses problems of discharges and treatment of quench water, which generates additional costs.
  • An alternative quenching technique is to use ambient air rather than water as a cooling medium.
  • air quenching is relatively easy to apply to single-unit or low-mass loads, it does not give satisfactory results in the case treatment of loads of large and massive parts, for example yokes for internal combustion engines, which because of their compactness and complexity of shapes (in particular the presence of multiple internal cavities) do not offer a favorable surface for extraction calories by the airflow.
  • a vertical and horizontal space between the baskets is generally arranged so as to promote heat exchange during quenching.
  • the charge is successively introduced into the solution furnace, extracted from this furnace to be subjected to quenching (for example immersed in water in the case of quenching with water, or brought under a ventilation system in the case of quenching with air), then out of the quenching medium and introduced into the tempering furnace, finally extracted from the latter to be returned to the ambient air of the workshop at the end of the heat treatment.
  • quenching for example immersed in water in the case of quenching with water, or brought under a ventilation system in the case of quenching with air
  • each load can undergo treatment solution dissolution or income different from that of other loads.
  • the quenching media can also be split, which adds to the flexibility (for example by using two quench tanks with water at different temperatures).
  • the invention aims to overcome these disadvantages of the batch mode heat treatment of castings, including castings of aluminum alloys, and to ensure high and homogeneous properties regardless of the part in the load.
  • the invention relates to a method of heat treatment of a lot of castings, comprising a solution-making operation carried out in a furnace charged with the parts of the batch arranged in several layers of superimposed parts to each other, characterized in that, following the extraction of the parts of the furnace dissolution, the parts are maneuvered to form a single layer of parts consisting of the parts of the batch, it brings the single layer in an air quenching unit having a ventilation system and air quenching is applied to the batch pieces arranged in the single layer.
  • the invention relates to a heat treatment system of a batch of castings comprising a solution furnace such that the batch parts are arranged in several layers of parts superimposed on each other when the furnace is charged, an air quenching unit having a ventilation system for causing a flow of cooling air, characterized in that it comprises means for extracting the parts of the solution furnace and for the disposing in a single layer of pieces, and means for bringing the single layer of pieces in the air quenching unit so as to apply air quench to the batch pieces arranged in a single layer.
  • the invention relates to a process for the heat treatment of a lot of castings, in which air quenching of the parts of the batch is carried out.
  • the invention also relates to a heat treatment system of a batch of castings comprising means capable of performing the implementation of the method according to the first aspect of the invention.
  • the pieces of a batch are generally arranged in stackable baskets, and the baskets are stacked on a base support to form two or more layers of baskets.
  • the figure 1a represents a load carrier 1 conventionally used to support successive layers of baskets, and the parts contained in the baskets.
  • the load support 1 comprises housing 2 feet of baskets and is shaped to be driven in translation, for example by rolling on roller conveyors which are the usual mechanization of loads in batch furnaces.
  • the figure 1b is a cross-sectional view of the load support 1 on which two layers of baskets are stacked: an upper layer P1 of baskets (for example an upper set of two baskets) stacked on a lower layer P2 of baskets (for example a lower set of two baskets), the latter resting on the load support 1.
  • Foundry pieces 3 are arranged in the baskets of layers P1 and P2.
  • the motorization M of the heat treatment plant This is for example a motorized roller raceway.
  • the figure 1c are a perspective view of a basket 4. This has a honeycomb structure and is provided with external walls 5 sheet.
  • the honeycomb structure allows the disposition of a piece 3 by cell.
  • the basket 4 has spaces 6 for the female / male stack of the basket feet.
  • the load consisting of the support 1, stacked baskets P1, P2 and parts arranged in the baskets is conventionally loaded in a conventional batch oven in order to carry out the dissolving, then extracted from this oven and fed to a quenching unit to be quenched, and then quenched from the quench unit, charged to a conventional batch oven to achieve the income.
  • the parts of the batch are distributed over different layers.
  • the pieces Prior to quenching, that is to say typically at the outlet of the solution furnace, the pieces are conventionally arranged in several layers.
  • the invention then proposes, following the extraction of the load from the solution furnace, to manipulate the pieces to form a single layer of pieces made up of the parts of the batch.
  • the single layer is then brought under a ventilation system in the quenching unit, the ventilation system stirring the ambient air to cause a flow of cooling air. In this way, an air quench is applied to the single layer of pieces.
  • the conventional case of parts arranged in stackable baskets is considered.
  • the operation of the parts to form the single layer of parts may consist of unstacking the baskets.
  • a particular multilayer load carrier which has a plurality of support means for a layer of parts in the form of spaced apart sleepers. others.
  • the operation of the parts to form a single layer of parts may consist in successively depositing each layer of parts on a receiving carriage.
  • the figure 1a illustrates the taking of the load constituted by the support 1, the layers P1 and P2 of stacked baskets, and parts arranged in the baskets.
  • the reference 7 represents a transfer carriage having several locations for stacks of baskets.
  • a first location has a motorized roller bearing path 8, while a second location 9, adjacent to the first one, does not have a motorized path but is equipped with basket feet similar to the housings 2 present on the support 1 ( cf. figure 1a ).
  • the carriage 7 preferably has a ventilated structure, so as to let the air.
  • the figure 2b represents the loading of the load on the transfer carriage.
  • the stack of baskets P1, P2 is arranged at the first location of the carriage 7 by installing the support 1 on the path 8.
  • the Figure 2c illustrates the movement, shown schematically by the arrow 12, of the transfer carriage 7 to a solution furnace 10.
  • the oven 10 is a conventional batch oven comprising a laboratory (useful working space of the oven) essentially closed, thermally insulated, equipped with an air mixing system, provided with heating systems and control of the heating from thermocouples measuring the temperature of the oven or air in the oven, the oven laboratory being accessible through a door 11 for loading or unloading the load.
  • the figure 2d illustrates the loading of the solution furnace 10, the charge being introduced into the furnace according to the arrow 13a. Once the load is fully charged, the door 11 is closed, and is carried out in solution.
  • the figure 2e illustrates the outlet of the load of the solution furnace 10 (output shown schematically by the arrow 13b), and the supply of the load (shown schematically by the movement of the transfer carriage 7 according to the arrow 14) to a system adapted to unstack the baskets.
  • the carriage 7 is transferred to pass under a unstacking gantry 15, one embodiment of which will be described in more detail below with reference to the Figures 3 and 4 .
  • a gripping mechanism 16 integral with the gantry 15.
  • the carriage is then advanced according to the arrow 14 until the second location 9 of the carriage 7 is at the right of the gantry 15.
  • the gripping mechanism 16 is then controlled to drop the baskets of the upper layer P1 on the second location 9 of the carriage 7, which in the meantime has been advanced by the distance necessary for the upper layer P1 can be presented vertically feet 2 on the housing housing 7.
  • the set of baskets is then arranged in a single layer, the basket layers P1 and P2 being positioned side by side at the same level on the carriage 7.
  • the gantry 15 is here a structure fixed to the ground S, comprising a gripping mechanism 16 controlled by means of a jack 17 for lifting and depositing a layer of baskets.
  • the gantry comprises a cross member 18 extending horizontally from the ground, and in which a frame 19 (consisting for example of two vertical columns, a beam and a horizontal plate) supporting the gripping mechanism 16 can slide vertically under the action of the cylinder 17.
  • the gripping mechanism 16 comprises a movable plate 20 forming part of the frame 19, and is provided with claws 21 adapted to be actuated by claw actuators 22 to engage with the upper layer of baskets P1.
  • the transfer carriage 7 on which the pieces are now arranged in a single layer is fed to the quenching unit in the air.
  • the parts arranged in a single layer in the baskets P1 and P2 are brought to the right of a ventilation system 23 adapted to cause a flow of cooling air schematized by the arrows 24 and generally perpendicular to the single layer of parts.
  • the parts are subjected during the quenching air flow whose flow rate is preferably greater than 1000 m 3 per hour and per unit, and preferably greater than 1700 m 3 per hour and per room.
  • the air speed is of the order of 23 m / s for a flow rate of 1000 m 3 / h and per cylinder head, and of the order of 45 m / s for a flow rate of 1700 m 3 / h and per cylinder head.
  • Forced air cooling can be achieved until the rooms reach the room temperature, or the temperature of income, if income is subsequently made.
  • the quenching unit may be essentially closed by a wall 26 intended to recover the air after quenching, and act as a sonic barrier by evacuating the air through a sound absorber (the exhaust ducts of the air through the walls and sound dampeners are not represented on the figure 5 ).
  • the air passes through the cells of the baskets in which the parts are arranged, as well as a grid with trolley rails, to enter a chamber 30.
  • the carriage 7 on which the single layer of parts is located is in a chamber consisting of walls 27 for confining the flow of air on the load.
  • Air distributors 28 are arranged above the load to channel the flow of air towards each of the rooms.
  • An example of an air distributor in the form of a grid with honeycomb structure is shown on the figure 6a .
  • Another example is represented on the figure 6b , on which the grid has a closed bottom surface, provided with an air passage slot in each of the cells.
  • the single part layer is spaced from the lower end of the air distributors 28 by a height H.
  • the quenching unit may further comprise a wind box 25 disposed between the ventilation system 23 and the air distributors 28 to provide sectional ratios between the ventilation system 23 and the air distributors 28.
  • the parts can be laid horizontally in the baskets, which is the most satisfactory solution from the point of view of cooling.
  • the parts can also be placed vertically in the baskets which increases the capacity of the heat treatment. Note here that “horizontally” or “vertically” refers to the largest area of the room.
  • the parts will be spaced less than 100 mm and preferably less than 50 mm.
  • the parts In the upright position, the parts can be placed in baskets separated by continuous or partial partitions so as to keep them correctly close to the vertical position, these partitions also making it possible to channel the flow of air.
  • these partitions will be made of steel forming a set of juxtaposed cells, each contiguous with its closest neighbors, in which the parts can be introduced at a rate of one piece per cell.
  • the space between the part and the cell is defined as follows for each dimension of the cell, for example the length and the width.
  • 2 X E is equal to the difference between the envelope of the part built by surrounding the piece of a shape identical to the shape of the cell and the actual size of the cell.
  • the shape of the cell is chosen such that in all dimensions E is approximately the same, to within a few mm, that is to say, by adapting the shape of the basket to the workpiece.
  • E thus defined will preferably be less than 60 mm, and more preferably less than 30 mm, its smallest dimension to be adjusted case by case, according to the actual geometry of the room to be able to maintain the air flow rates presented above. It can thus have a value of E close to zero, that is to say just the space required to load the piece into the cell, if by its intrinsic geometry the part leaves the required air passage.
  • the parts can also be suspended or held by supports in the basket.
  • the cell previously described is not necessarily materialized, but we will keep the same preferences of values of E described above in relation to the space allocated to each room (the equivalent of the cell).
  • the method according to the invention can also be extended to the production, in addition to the air quenching applied to the single layer, in carrying out the solution-setting operation prior to quenching and / or completion of the income transaction after quenching.
  • solution and return are carried out by charging in the corresponding furnaces dissolution solution and income load consisting of baskets stacked on top of each other so as to best use the capacity of conventional batch oven .
  • dissolution and the income are made conventionally by loading the batch of parts distributed in several layers of parts in the oven.
  • the transfer time between the dissolving furnace (time counted at the opening of the door) and the starting of the air cooling must not exceed 6 minutes, and preferably be less than 3 minutes. 30 seconds.
  • the Applicant has surprisingly observed that despite these rather long transfer times, necessary to enable the de-stacking operations on large furnaces, the mechanical properties of the parts remained high, under these conditions, practically without any reduction of properties compared to an immediate quench after oven exit.
  • the baskets will preferably be re-stacked so as to reconstitute the load.
  • the gantry 15 described above can also be used for this purpose.
  • each support means for a layer of parts comprises sleepers spaced apart from each other.
  • the weight of baskets and steel supports is of the order of 0.5 tonnes per 1 tonne of aluminum actually treated.
  • This second embodiment is advantageous in that it allows to heat and cool only the parts, which is a substantial saving in energy consumption.
  • This multilayer load carrier 30 is shown on the Figures 7 and 8 .
  • the references N1, N2 and N3 represent the different levels on which the layers of parts are superimposed.
  • the multilayer support 30 has a plurality of superimposed means for supporting a layer of parts in the form of crosspieces 31 spaced apart from each other.
  • FIG. 9 40S handling support parts in the form of a multi-comb rake.
  • This support has an arm 40 from which extends a plurality of combs 41, each comb being able to support a layer of parts.
  • the combs 41 and the crosspieces 31 are shaped in such a way that the teeth of a comb can be introduced into the inter-cross space of a support means for a layer of parts of the multilayer filler support 30.
  • the support 40S handling can be advanced towards the multilayer load carrier 30, the teeth 42 of each of the combs 41 being introduced between the crosspieces 31 of each of the support means of a layer of parts. Then, the support 40 can be reassembled so that each of the combs slightly raises a layer of parts. Finally, the support 40 can be removed from the support 30 to carry the different layers of parts.
  • the parts can be transported on a load support similar to the multilayer support 30. It will be understood that the layers of parts can be deposited on the support 30 from the handling support 40 coming to introduce the teeth of the combs between the sleepers.
  • the handling support 40S can thus be used for loading and unloading a batch oven in order to carry out a solution dissolving operation or a batch layer coin layer operation operation of the batch of pieces.
  • the handling support 40S is used to unload the furnace so that the different layers of parts are arranged on the different combs of the handling support 40S.
  • the parts are then maneuvered to form a single layer of parts on a transfer trolley consisting of two half-trolleys (assuming two levels of parts are to be maneuvered to form the single layer), and in general the number of trolleys corresponding to the number of layers of parts.
  • each receiving carriage 44a, 44b is shaped to receive a layer of pieces, and presents in particular (cf. figure 13 ) means for supporting a layer of parts in the form of a comb having teeth 48 spaced apart from each other.
  • the handling support 40S is positioned to the right of a first receiving carriage 44b, said support 40S is lowered so that the teeth of the lower comb of the support 40S enter the inter-teeth spaces of the support means of the carriage 44b. Parts 3 of the lower layer are then deposited on the carriage 44b. The teeth of the lower comb of the support 40S are then removed from the inter-tooth spaces of the carriage 44b, and the handling support 40S is raised as shown in FIG. figure 11c .
  • the carriages 44a, 44b are then advanced, for example along a motorized path, and the same sequence of operations is repeated to deposit the layer of parts of the upper comb on the carriage 44a.
  • the pieces 3 of the batch are then distributed over the different receiving trolleys 44a, 44b in a single layer, and the trolleys are then brought to the quenching unit described above in connection with the first possible embodiment of the invention.
  • schematized in dotted lines on the figure 11e schematized in dotted lines on the figure 11e .
  • an income transaction can be carried out following quenching.
  • the handling support 40S is then used to manipulate the pieces after quenching in similar operations to those described above and reconstitute the multilayer load before baking in the batch oven income.
  • FIG 12 a diagram of a possible embodiment of the multi-comb rake type handling support 40S used in this second possible embodiment of the invention.
  • the support 40S may comprise a first carriage 45 rolling on rails to ensure longitudinal movement of the support 40S in the direction indicated by the arrow F 45 . It may also include a second rolling carriage 46 adapted to move laterally on the first carriage C1 in the direction indicated by the arrow F 46 .
  • the support 40S may further have a ⁇ axis allowing the rotation of a main arm B, itself guiding a movable arm B 'integral with the combs.
  • in-line four-cylinder diesel cylinder heads were molded in static gravity into a metal mold, fire-facing downwards, with a steel plate cooled energetically so as to obtain a fine microstructure that can be characterized.
  • SDAS Silicon Dendrite Arm Spacing
  • the metal temperature at casting is 720 ° C at the inlet in the casting cup of the mold, from which feed channels leave to fill the mold through attacks located at the foot of the room.
  • ratio between the weight cast (piece plus feeding system, plus weights) and the weight of the piece is 1.7.
  • the molded piece weighs 14.1 kg.
  • the molding cycle time is of the order of 5 minutes from room to room.
  • the alloy is of AA 356 type, of first fusion, with a chemical composition given below in weight percentages: Yes Fe mn mg Ti Zn al 7.4 0.12 0.02 0.30 0.11 0.02 rest
  • the alloy has its eutectic structure modified by addition of strontium.
  • the piece After casting, the piece is extracted from the mold and cooled in a forced air tunnel so that it is cooled to a temperature of 50 ° C. in a time of about 120 minutes.
  • the cylinder heads have been characterized at room temperature in traction and hardness.
  • the tensile properties are measured according to standard AFNOR EN 10002-1 in the fire side, at the level of the inter-valve bridges by tensile specimens with a diameter of 6.18 mm and a calibrated length of 36.2 mm. Each measurement is the average of 4 test pieces per piece, for 3 pieces.
  • Brinell hardness is measured according to the AFNOR EN ISO 6506 - 1 and ASTM E10-06 standards in the fire side as well. One measurement is made per piece, for five pieces.
  • thermocouples were placed in the yokes at the heart of the tablature towards the fire side of the cylinder head to measure the cooling rate, which was characterized by the time required to bring the cylinder head from 430 ° C to 70 ° C. ° C.
  • Cooling rate from the cylinder head in the range of 430 ° C to 70 ° C
  • Mechanical properties of the cylinder head Traction Hardness H B Limit at break Rm (MPa) Elastic limit R 0.2 (MPa) Lengthening A (%) No.
  • This air quenching has the additional advantage of not generating residual stresses in the parts, which is generally very beneficial to the life of the yokes in service. This also widens the possibilities of income choice, as over-income is often imposed to try to reduce the residual stresses generated by water quenching.
  • the process according to the invention provides wide operating ranges from the point of view of the industrial operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

  • Le domaine de l'invention est celui des traitements thermiques des pièces de fonderie réalisées en alliage à base d'aluminium.
  • L'invention concerne un procédé de traitement thermique de pièces de fonderie de type culasse dans lequel on met en oeuvre une trempe à l'air des pièces, et un système pour la mise en oeuvre du procédé.
  • Le traitement thermique des alliages d'aluminium consiste en général en une succession d'opérations.
  • On réalise tout d'abord une opération de mise en solution à haute température, typiquement entre 490°C et 545°C pour les alliages de fonderie contenant du silicium (entre 5 et 9%), du cuivre (entre 0 et 3%) et du magnésium (entre 0 et 0,7%).
  • Cette opération est réalisée à la température la plus haute possible pour accélérer la mise en solution des éléments durcissants de l'alliage, et en dissoudre la plus grande quantité possible, tout en évitant de refondre même localement l'alliage (phénomène dit de brûlure). On obtient par cette opération une solution solide d'éléments durcissants dans la matrice de l'alliage.
  • On réalise ensuite une opération de trempe destinée à figer la solution solide des éléments durcissants dans la matrice, en opérant un refroidissement rapide depuis la température de mise en solution jusqu'à la température ambiante ou jusqu'à la température de revenu.
  • On réalise enfin une opération de revenu sous la forme d'un séjour en four à une température modérée, typiquement entre 150 et 245°C, qui amène les éléments durcissants de l'alliage à se recombiner sous forme de fins précipités distribués au sein de la matrice de l'alliage, et par ce fait accroît sa résistance.
  • Dans cette séquence d'opérations, l'opération de trempe s'avère délicate.
  • En effet, pour garder le potentiel durcissant le plus important possible, l'homme de l'art tend à effectuer cette trempe dans un milieu de refroidissement efficace, de l'eau en général, ce qui s'avère satisfaisant du point de vue des caractéristiques mécaniques.
  • Toutefois, la trempe à l'eau introduit, surtout pour les pièces de géométrie complexe, des contraintes résiduelles importantes dues au fait qu'en cours de trempe les différents éléments de la pièce ne peuvent se refroidir à la même vitesse. Ce phénomène est encore accentué par l'apparition de vapeur en bulles et en film à la surface de la pièce pendant la trempe à l'eau, ce qui perturbe les échanges thermiques.
  • Ces contraintes résiduelles peuvent atteindre localement la valeur de la limite élastique à froid de l'alliage, et peuvent être très néfastes à la tenue en service de la pièce, surtout en sollicitation en fatigue, si leur signe fait qu'elles s'ajoutent aux sollicitations extérieures appliquées à la pièce.
  • L'augmentation de la température de l'eau de trempe est une technique bien connue de l'homme de l'art pour réduire les contraintes résiduelles de pièces complexes. Cette technique a toutefois des effets limités du point de vue de la réduction des contraintes résiduelles, tout en provoquant un abattement sensible de propriétés. Cet abattement est d'autant plus important que la température de l'eau augmente et s'approche de la température d'ébullition de l'eau.
  • L'utilisation d'additifs de trempe (eau glycolée par exemple) est également une technique bien connue pour la réduction des contraintes résiduelles. Elle pose toutefois des problèmes de rejets et de traitement de l'eau de trempe, ce qui génère des surcoûts.
  • Une technique alternative de trempe consiste à utiliser l'air ambiant plutôt que l'eau comme milieu de refroidissement. Si la trempe à l'air est relativement facile à appliquer à des charges de pièces unitaires ou de faible massivité, elle ne donne toutefois pas de résultats satisfaisants dans le cas de traitement de charges de pièces nombreuses et massives, par exemple des culasses pour moteurs à explosion, qui du fait de leur compacité et de complexité de formes (notamment la présence de multiples cavités internes) n'offrent pas une surface favorable à l'extraction des calories par le flux d'air.
  • Cette insuffisance de la trempe à l'air est encore accentuée dans le cas de traitement thermique de pièces dans le mode habituel dit « batch » de traitement d'un lot de pièces de fonderie en alliage d'aluminium. Dans ce mode « batch », les pièces du lot de pièces à traiter sont mises en paniers. Plusieurs paniers, généralement réalisés en acier, sont empilés en une première couche sur un support de base, puis en une deuxième couche de paniers placée sur la première, voire éventuellement même d'autres couches de paniers. L'ensemble constitué du support de base, des couches successives de paniers et des pièces contenues dans les paniers forme ce qu'on appelle la charge de traitement thermique, ou plus simplement la charge.
  • Un espace vertical et horizontal entre les paniers est en général ménagé de manière à favoriser les échanges thermiques lors de la trempe.
  • La charge est successivement introduite dans le four de mise en solution, extraite de ce four pour être soumise à la trempe (par exemple plongée dans l'eau dans le cas d'une trempe à l'eau, ou amenée sous un système de ventilation dans le cas de la trempe à l'air), puis sortie du milieu de trempe et introduite dans le four de revenu, enfin extraite de ce dernier pour être ramenée dans l'air ambiant de l'atelier à la fin du traitement thermique.
  • Ce mode batch est particulièrement flexible, et s'avère par conséquent intéressant pour l'exploitant. En particulier, chaque charge peut subir un traitement de mise en solution ou de revenu différent de celui des autres charges. Les milieux de trempe peuvent eux aussi être dédoublés, ce qui ajoute encore à la flexibilité (en utilisant par exemple deux bacs de trempe à l'eau à des températures différentes).
  • Ce mode est également intéressant du point de vue énergétique. Les charges étant placées dans des fours dont la porte est refermée après leur enfournement, les fuites thermiques sont minimes et tout le traitement est réalisé dans un espace fermé et bien isolé vis-à-vis de l'extérieur.
  • On connaît à cet égard du document EP 1 531 185 un four de mise en solution et une unité de trempe à l'air. Ce document enseigne que les pièces de fonderie sont disposées en plusieurs couches de pièces superposées les unes aux autres, à la fois dans le four de mise en solution et dans l'unité de trempe.
  • Cependant, dans la conception habituelle des traitements thermiques en mode batch, une partie significative de l'énergie est utilisée pour chauffer les paniers en acier dans les fours, puis à refroidir l'eau de trempe pour la part d'apport calorifique lié à ces paniers, ce qui est sans intérêt pour la fonction principale du traitement thermique des pièces en aluminium.
  • L'invention vise à pallier à ces inconvénients du traitement thermique en mode batch de pièces de fonderie, notamment des pièces de fonderie en alliages d'aluminium, et à permettre de garantir des propriétés élevées et homogènes quelque soit la pièce dans la charge.
  • A cet effet, et selon un premier aspect, l'invention concerne un procédé de traitement thermique d'un lot de pièces de fonderie, comprenant une opération de mise en solution réalisée dans un four chargé avec les pièces du lot disposées en plusieurs couches de pièces superposées les unes aux autres, caractérisé en ce que, suite à l'extraction des pièces du four de mise en solution, on manoeuvre les pièces pour former une unique couche de pièces constituée des pièces du lot, on amène l'unique couche dans une unité de trempe à l'air disposant d'un système de ventilation et on applique une trempe à l'air aux pièces du lot disposées selon la couche unique.
  • Certains aspects préférés, mais non limitatifs, de ce procédé sont les suivants :
    • le système de ventilation délivre un flux d'air de débit supérieur à 1000 m3/h et par pièce, de préférence supérieur à 1700 m3/h et par pièce ;
    • lors de l'opération de mise en solution, les pièces sont disposées dans des paniers superposés les uns aux autres, et la manoeuvre des pièces consiste à désempiler les paniers ;
    • les pièces sont posées horizontalement dans les paniers et espacées de moins de 100mm, de préférence de moins de 50 mm ;
    • les paniers sont séparés par des cloisons et les pièces sont posées verticalement dans les paniers ;
    • les cloisons forment un ensemble d'alvéoles, les pièces sont disposées à raison d'une pièce par alvéole de telle sorte que l'espace entre la pièce et l'alvéole soit inférieur à 60 mm, et de préférence inférieur à 30 mm ;
    • les pièces sont suspendues ou maintenues par des supports dans les paniers ;
    • la manoeuvre des couches de pièces consiste à déposer successivement chaque couche de pièces sur un chariot de réception adapté pour recevoir une couche unique de pièces ;
    • le temps de transfert entre l'ouverture du four à l'issue de la mise en solution, et la mise en route du refroidissement à l'air est inférieur à 6 minutes, de préférence inférieur à 3 minutes 30 secondes ; et
    • suite à la trempe, on manoeuvre les pièces pour les redisposer sur plusieurs couches, et on réalise une opération de revenu des pièces réalisée dans un four chargé avec les pièces du lot disposées sur plusieurs couches.
  • Selon un second aspect, l'invention concerne un système de traitement thermique d'un lot de pièces de fonderie comprenant un four de mise en solution tel que les pièces du lot sont disposées en plusieurs couches de pièces superposées les unes aux autres lorsque le four est chargé, une unité de trempe à l'air disposant d'un système de ventilation pour provoquer un flux d'air de refroidissement, caractérisé en ce qu'il comporte des moyens pour extraire les pièces du four de mise en solution et pour les disposer en une unique couche de pièces, et des moyens pour amener la couche unique de pièces dans l'unité de trempe à l'air de manière à appliquer une trempe à l'air aux pièces du lot disposées en une couche unique.
  • Avantageusement, mais facultativement, le système de traitement thermique d'un lot de pièces de fonderie selon l'invention comprend en outre la caractéristique suivante :
    • le système de ventilation est configuré pour délivrer un flux d'air de débit supérieur à 1000 m3/h et par pièce, de préférence supérieur à 1700 m3/h et par pièce.
  • D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
    • les figures 1a-1c représentent la charge constituée du support de base, de couches successives de paniers, et de pièces de fonderie contenues dans les paniers, selon un premier mode de réalisation possible de l'invention ;
    • les figures 2a-2g représentent la séquence d'opérations d'un premier mode de réalisation possible du procédé selon l'invention ;
    • les figures 3 et 4 représentent des moyens utilisés dans un premier mode de réalisation possible de l'invention pour désempiler les paniers dans lesquels les pièces sont disposées ;
    • la figure 5 est un schéma d'une unité de trempe utilisée dans le cadre de l'invention pour réaliser la trempe à l'air des pièces de fonderie ;
    • les figures 6a-6b sont des schémas représentant des distributeurs d'air pouvant être utilisés dans l'unité de trempe ;
    • les figures 7 et 8 représentent une vue en perspective et une vue en coupe d'un support de charge multicouches utilisé dans le cadre d'un second mode de réalisation possible de l'invention ;
    • les figures 9 et 10 illustrent un support de manutention sous la forme d'un râteau multi-peignes utilisé dans le cadre du seconde mode de réalisation possible de l'invention ;
    • les figures 11a-11e son des schémas d'une séquence d'opérations illustrant la manoeuvre de la charge dans le cadre du seconde mode de réalisation possible de l'invention ;
    • la figure 12 représente le principe d'un mode de réalisation possible du support de manutention de type râteau multi-peignes ;
    • la figure 13 est un schéma représentant les chariots de réception pouvant être utilisés dans le cadre du seconde mode de réalisation possible de l'invention.
  • L'invention concerne selon premier aspect un procédé de traitement thermique d'un lot de pièces de fonderie, dans lequel on met en oeuvre une trempe à l'air des pièces du lot. L'invention concerne également un système de traitement thermique d'un lot de pièces de fonderie comportant des moyens aptes à assurer la mise en oeuvre du procédé selon le premier aspect de l'invention.
  • Comme on l'a vu précédemment, les pièces d'un lot sont généralement disposées dans des paniers empilables, et les paniers sont empilés sur un support de base pour former deux couches ou plus de paniers.
  • La figure 1a représente un support de charge 1 classiquement utilisée pour supporter des couches successives de paniers, et les pièces contenues dans les paniers.
  • Le support de charge 1 comprend des logements 2 de pieds de paniers et est conformé pour pouvoir être entraîné en translation, par exemple en roulant sur des convoyeurs à rouleaux qui constituent la mécanisation habituelle des charges dans les fours batch.
  • La figure 1b est une vue en coupe transversale du support de charge 1 sur lequel deux couches de paniers sont empilés : une couche supérieure P1 de paniers (par exemple un ensemble supérieur de deux paniers) empilée sur une couche inférieure P2 de paniers (par exemple un ensemble inférieur de deux paniers), cette dernière reposant sur le support de charge 1. Des pièces de fonderie 3 sont disposées dans les paniers des couches P1 et P2.
  • On a également représenté sur cette figure 1b, la motorisation M de l'installation de traitement thermique. Il s'agit par exemple d'un chemin de roulement à galets motorisés.
  • La figure 1c représentent une vue en perspective d'un panier 4. Celui-ci présente une structure alvéolée et est doté de parois externes 5 en tôle. La structure alvéolée permet la disposition d'une pièce 3 par alvéole.
  • Le panier 4 dispose d'espaces 6 servant à l'empilage femelle/mâle des pieds de paniers.
  • Comme on l'a vu précédemment, la charge constituée du support 1, des paniers empilés P1, P2 et des pièces disposées dans les paniers est classiquement chargée dans un four batch conventionnel afin de réaliser la mise en solution, puis extraite de ce four et amenée dans une unité de trempe pour être soumise à la trempe, puis sortie de l'unité de trempe, chargée dans un four batch conventionnel afin de réaliser le revenu. Ainsi, au cours du traitement thermique, et notamment au cours de l'opération de trempe, les pièces du lot sont réparties sur différentes couches.
  • Dans le cadre de l'invention, on propose d'appliquer une trempe à l'air aux pièces du lot disposées en une couche unique.
  • Préalablement à la trempe, c'est-à-dire typiquement à la sortie du four de mise en solution, les pièces sont classiquement agencées sur plusieurs couches.
  • L'invention propose alors, suite à l'extraction de la charge du four de mise en solution, de manoeuvrer les pièces pour former une couche unique de pièces constituées des pièces du lot. On amène ensuite la couche unique sous un système de ventilation dans l'unité de trempe, le système de ventilation brassant l'air ambiant pour provoquer un flux d'air de refroidissement. On applique de la sorte une trempe à l'air à la couche unique de pièces.
  • Selon un premier mode de réalisation de l'invention, on considère le cas classique de pièces disposées dans des paniers empilables. Dans ce mode de réalisation, la manoeuvre des pièces pour former la couche unique de pièces peut consister à désempiler les paniers.
  • Selon un second mode de réalisation de l'invention qui sera décrit plus en détail par la suite, un support de charge multicouches particulier est proposé qui présente une pluralité de moyens de support d'une couche de pièces sous la forme de traverses espacées les unes des autres. Dans ce mode de réalisation, la manoeuvre des pièces pour former une couche unique de pièces peut consister à déposer successivement chaque couche de pièces sur un chariot de réception.
  • Les systèmes de manoeuvre des pièces qui seront décrits par la suite en liaison avec la présentation des premier et second modes de réalisation possible de l'invention ne sont donnés qu'à titre d'exemples non limitatifs. L'homme du métier pourra en particulier concevoir des variantes de réalisation respectant les principes de base exposées en liaison avec la présentation des ces exemples de réalisation.
  • En référence aux figures 2a-2g, on a représenté une séquence d'opérations conforme au premier mode de réalisation possible du procédé selon l'invention.
  • La figure 1a illustre la prise de la charge constituée du support 1, des couches P1 et P2 de paniers empilés, et des pièces disposées dans les paniers. La référence 7 représente un chariot de transfert disposant de plusieurs emplacements pour piles de paniers. Un premier emplacement comporte un chemin 8 de roulement à galets motorisé, tandis qu'un second emplacement 9, adjacent au premier, ne dispose pas de chemin motorisé mais est équipé de logements de pieds de paniers similaires aux logements 2 présents sur le support 1 (cf. figure 1a).
  • Le chariot 7 présente de préférence une structure aérée, de manière à laisser passer l'air.
  • La figure 2b représente le chargement de la charge sur le chariot de transfert. La pile de paniers P1, P2 est disposée au premier emplacement du chariot 7 en installant le support 1 sur le chemin 8.
  • La figure 2c illustre le mouvement, schématisé par la flèche 12, du chariot de transfert 7 vers un four de mise en solution 10.
  • Le four 10 est un four batch conventionnel comprenant un laboratoire (espace de travail utile du four) essentiellement fermé, isolé thermiquement, doté d'un système de brassage de l'air, muni de systèmes de chauffe et de régulation de la chauffe à partir de thermocouples mesurant la température du four ou de l'air dans le four, le laboratoire du four étant accessible par une porte 11 pour le chargement ou déchargement de la charge.
  • La figure 2d illustre le chargement du four de mise en solution 10, la charge étant introduite dans le four selon la flèche 13a. Une fois la charge intégralement chargée, la porte 11 est refermée, et on effectue la mise en solution.
  • La figure 2e illustre la sortie de la charge du four de mise en solution 10 (sortie schématisée par la flèche 13b), et l'amenée de la charge (schématisée par le mouvement du chariot transfert 7 selon la flèche 14) vers un système adapté pour désempiler les paniers.
  • Comme représenté sur la figure 2f, le chariot 7 est transféré pour passer sous un portique de désempilage 15 dont un mode de réalisation sera décrit plus en détail par la suite en référence aux figures 3 et 4. Lorsque le premier emplacement 8 du chariot est au droit du portique 15, les paniers de la couche supérieure P1 peuvent être soulevés à l'aide d'un mécanisme de préhension 16 solidaire du portique 15.
  • Comme illustré sur la figure 2g, le chariot est ensuite avancé selon la flèche 14 jusqu'à ce que le second emplacement 9 du chariot 7 se trouve au droit du portique 15. Le mécanisme de préhension 16 est alors commandé pour venir déposer les paniers de la couche supérieure P1 sur le second emplacement 9 du chariot 7, qui entre-temps a été avancé de la distance nécessaire pour que la couche supérieure P1 puisse être présentée à la verticale des logements de pieds 2 sur le chariot 7.
  • L'ensemble des paniers est alors disposé en une couche unique, les couches de paniers P1 et P2 se retrouvant positionnés côte à côte au même niveau sur le chariot 7.
  • On a représenté sur les figures 3 et 4 un mode de réalisation possible du portique 15. Le portique 15 est ici une structure fixée au sol S, comprenant un mécanisme de préhension 16 commandé par l'intermédiaire d'un vérin 17 pour soulever et déposer une couche de paniers.
  • Le portique comporte une traverse 18 s'étendant à l'horizontal du sol, et dans laquelle un cadre 19 (constitué par exemple de deux colonnes verticales, d'une poutre et d'un plateau horizontaux) supportant le mécanisme de préhension 16 peut coulisser verticalement sous l'action du vérin 17. Le mécanisme de préhension 16 comporte un plateau mobile 20 faisant partie du cadre 19, et est doté de griffes 21 aptes à être actionnées par des actionneurs de griffes 22 pour venir en prise avec la couche supérieure de paniers P1.
  • Une fois le désempilement des paniers réalisés à l'aide du portique 15, le chariot de transfert 7 sur lequel les pièces sont désormais disposées en une couche unique est amené vers l'unité de trempe à l'air.
  • En référence à la figure 5, les pièces disposées en une couche unique dans les paniers P1 et P2 sont amenées au droit d'un système de ventilation 23 adapté pour provoquer un flux d'air de refroidissement schématisé par les flèches 24 et globalement perpendiculaire à la couche unique de pièces.
  • Afin que les propriétés mécaniques restent à un niveau élevé, les pièces sont soumises pendant la trempe à un flux d'air dont le débit est de préférence supérieur à 1000m3 par heure et par pièce, et de préférence encore supérieur à 1700 m3 par heure et par pièce. A titre d'exemples, la vitesse de l'air est de l'ordre de 23 m/s pour un débit de 1000 m3/h et par culasse, et de l'ordre de 45 m/s pour un débit de 1700 m3/h et par culasse.
  • Le refroidissement sous air forcé peut être réalisé jusqu'à atteindre dans les pièces la température ambiante, ou la température de revenu, si un revenu est pratiqué par la suite.
  • L'unité de trempe peut être essentiellement fermée par une paroi 26 prévue pour récupérer l'air après trempe, et assurer un rôle de barrière sonique en évacuant l'air au travers d'un amortisseur sonore (les conduits d'échappement de l'air au travers des parois et les amortisseurs sonores ne sont pas représentés sur la figure 5).
  • L'air traverse les alvéoles des paniers dans lesquelles sont disposées les pièces, ainsi qu'une grille dotée de rails de roulement de chariot, pour pénétrer dans une chambre 30.
  • Au cours de la trempe, le chariot 7 sur lequel est disposée la couche unique de pièces se trouve dans une enceinte constituée de parois 27 permettant de confiner le flux d'air sur la charge.
  • Des distributeurs d'air 28 sont disposés au dessus de la charge pour canaliser le flux d'air en direction de chacune des pièces. Un exemple de distributeur d'air sous la forme d'une grille à structure alvéolaire est représenté sur la figure 6a. Un autre exemple est représenté sur la figure 6b, sur laquelle la grille présente une surface inférieure fermée, dotée d'une fente de passage d'air dans chacune des alvéoles.
  • La couche unique de pièce est espacée de l'extrémité inférieure des distributeurs d'air 28 d'une hauteur H.
  • L'unité de trempe peut par ailleurs comprendre une boîte à vent 25 disposée entre le système de ventilation 23 et les distributeurs d'air 28 pour assurer les rapports de section entre le système de ventilation 23 et les distributeurs d'air 28.
  • Dans le cadre de ce premier mode de réalisation, les pièces peuvent être posées horizontalement dans les paniers, ce qui est la solution la plus satisfaisante du point de vue du refroidissement. Les pièces peuvent également être posées verticalement dans les paniers ce qui permet d'accroître la capacité du traitement thermique. On notera ici que « horizontalement » ou « verticalement » s'entend par rapport à la plus grande surface de la pièce.
  • De préférence, en position horizontale, les pièces seront espacées de moins de 100 mm et encore de préférence de moins de 50 mm.
  • En position verticale, les pièces peuvent être posées dans des paniers séparées par des cloisons continues ou partielles de façon à les maintenir correctement proches de la position verticale, ces cloisons permettant aussi de canaliser le flux d'air.
  • De préférence, en position verticale, ces cloisons seront en acier formant un ensemble d'alvéoles juxtaposées, chacune jointive avec ses voisines les plus proches, dans lesquelles les pièces peuvent être introduites à raison d'une pièce par alvéole.
  • L'espace entre la pièce et l'alvéole, appelé E, est défini de la manière suivante pour chaque dimension de l'alvéole, par exemple la longueur et la largeur. Pour dimension caractérisée, 2 X E est égal à la différence entre l'enveloppe de la pièce construite en entourant la pièce d'une forme identique à la forme de l'alvéole et la taille réelle de l'alvéole.
  • De préférence, on choisit la forme de l'alvéole de telle sorte que dans toutes les dimensions E soit à peu près identique, à quelques mm près, c'est-à dire en adaptant la forme du panier à la pièce à traiter.
  • E ainsi défini sera de préférence inférieur à 60 mm, et de préférence encore inférieur à 30 mm, sa plus petite dimension étant à ajuster au cas par cas, selon la géométrie réelle de la pièce pour pouvoir maintenir les débits d'air présentés précédemment. On peut ainsi avoir une valeur de E proche de zéro, c'est-à-dire simplement l'espace nécessaire pour charger la pièce dans l'alvéole, si de par sa géométrie intrinsèque la pièce laisse le passage d'air requis.
  • Les pièces peuvent aussi être suspendues ou maintenues par des supports dans le panier. Dans ce cas, l'alvéole préalablement décrite n'est pas forcément matérialisée, mais on gardera les mêmes préférences de valeurs de E décrites ci-dessus par rapport à l'espace alloué à chaque pièce (l'équivalent de l'alvéole).
  • Le procédé selon l'invention peut également s'étendre à la réalisation, en sus de la trempe à l'air appliquée à la couche unique, à la réalisation de l'opération de mise en solution préalable à la trempe et/ou à la réalisation de l'opération de revenu postérieure à la trempe.
  • Dans de tels cas de figure, mise en solution et revenu sont effectués en enfournant dans les fours correspondants de mise en solution et de revenu des charges constituées de paniers empilés les uns sur les autres de manière à utiliser au mieux la capacité du four batch conventionnel. En d'autres termes, la mise en solution et le revenu sont réalisés conventionnellement en chargeant le lot de pièces réparti en plusieurs couches de pièces dans le four.
  • Suite à la mise en solution, on réalise donc le désempilage des paniers tels que décrits précédemment, et on amène la couche unique de pièces dans l'unité de trempe.
  • Le temps de transfert entre le four de mise en solution (temps décompté à l'ouverture de la porte) et la mise en route du refroidissement à l'air ne doit pas dépasser 6 minutes, et de préférence se situer au dessous de 3 minutes 30 secondes. La Demanderesse a observé de façon surprenante que malgré ces temps de transfert assez longs, nécessaires pour permettre les opérations de désempilage de charge sur des gros fours, les propriétés mécaniques des pièces restaient élevées, dans ces conditions, pratiquement sans abattement de propriétés par rapport à une trempe immédiate après sortie de four.
  • Dans le cas où une opération de revenu (de durcissement structural) est pratiquée après la trempe, les paniers seront de préférence ré-empilés de façon à reconstituer la charge. Le portique 15 décrit précédemment peut aussi être utilisé à cet effet.
  • Selon un deuxième mode de réalisation possible de l'invention, présenté en référence aux figures 7 à 12, il est proposé d'utiliser un support de charge multicouches particulier qui présente une pluralité de moyens, superposés les uns aux autres, de support d'une couche de pièces. Chacun des moyens de support d'une couche de pièces comporte des traverses espacées les unes des autres.
  • En règle générale pour des charges de culasses, le poids des paniers et des supports en acier est de l'ordre de 0,5 tonnes pour 1 tonne d'aluminium effectivement traitée. Ce second mode de réalisation s'avère avantageux en ce qu'il permet de ne chauffer et de ne refroidir que les pièces, ce qui constitue une économie substantielle de consommation énergétique.
  • Ce support de charge multicouches 30 est représenté sur les figures 7 et 8. Sur ces figures, les références N1, N2 et N3 représentent les différents niveaux sur lesquels les couches de pièces sont superposées. Le support multicouches 30 présente une pluralité de moyens, superposés les uns aux autres, de support d'une couche de pièces sous la forme de traverses 31 espacées les unes des autres.
  • Sur la figure 7, seul le niveau N1 est représenté par souci de clarté, tandis que sur la figure 8, trois niveaux sont représentés, une couche de pièces 3 étant positionnée sur chaque niveau N1-N3.
  • On a représenté sur les figures 9 et 10, un support de manutention 40S des pièces sous la forme d'un râteau multi-peignes. Ce support présente un bras 40 depuis lequel s'étend une pluralité de peignes 41, chaque peigne étant apte à soutenir une couche de pièces. Les peignes 41 et les traverses 31 sont conformées de telle manière que les dents d'un peigne peuvent être introduites dans l'espace inter-traverses d'un moyens de support d'une couche de pièces du support de charge multicouches 30.
  • Ainsi, comme cela est schématisé par les flèches 47 sur les figures 8 et 9, le support 40S de manutention peut être avancé en direction du support de charge multicouches 30, les dents 42 de chacun des peignes 41 étant introduites entre les traverses 31 de chacun des moyens de support d'une couche de pièces. Puis, le support 40 peut être remonté de manière à que chacun des peignes soulève légèrement une couche de pièces. Enfin, le support 40 peut être éloigné du support 30 pour emporter les différentes couches de pièces.
  • Une fois les couches de pièces présentes sur le support de manutention 40, les pièces peuvent être transportées sur un support de charge similaire au support multicouches 30. On comprendra que les couches de pièces peuvent être déposées sur le support 30 depuis le support de manutention 40 en venant introduire les dents des peignes entre les traverses.
  • En particulier, il est possible de déposer les pièces sur un support multicouches 30 apte à être introduit dans un four batch, ou sur un support multicouches 30 présent dans un four batch. Le support de manutention 40S peut ainsi être utilisé en vue de charger et décharger un four batch pour y réaliser une opération de mise en solution ou une opération de revenu de couches de pièces en mode batch du lot de pièces.
  • En particulier après mise en solution, le support de manutention 40S est utilisé pour décharger le four de telle manière que les différentes couches de pièces sont disposées sur les différents peignes du support de manutention 40S.
  • Dans ce deuxième mode de réalisation, on manoeuvre ensuite les pièces pour former une couche unique de pièces sur un chariot de transfert constitué de deux demi-chariots (dans l'hypothèse où deux niveaux de pièces sont à manoeuvrer pour former la couche unique), et de façon générale du nombre de chariots correspondants au nombre de couches de pièces.
  • Cette manoeuvre est représentée sur les schémas des figures 11a-11e.
  • En référence à la figure 11a, le support de manutention 40S est avancé selon la flèche 43 en direction de demi-chariots 44a, 44b (également dénommés chariots de réception par la suite). Chaque chariot de réception 44a, 44b est conformé pour recevoir une couche de pièces, et présente en particulier (cf. figure 13) des moyens de support d'une couche de pièces sous la forme d'un peigne présentant des dents 48 espacées les unes des autres.
  • Une fois que le support de manutention 40S est positionné au droit d'un premier chariot de réception 44b, ledit support 40S est abaissé de manière à ce que les dents du peigne inférieur du support 40S pénètrent dans les espaces inter-dents des moyens de support du chariot 44b. Les pièces 3 de la couche inférieure sont alors déposées sur le chariot 44b. On retire ensuite les dents du peigne inférieur du support 40S des espaces inter-dents du chariot 44b, et on remonte le support de manutention 40S comme cela est représenté sur la figure 11c.
  • Les chariots 44a, 44b sont alors avancés, par exemple le long d'un chemin motorisé, et on répète la même séquence d'opérations pour venir déposer la couche de pièces du peigne supérieur sur le chariot 44a.
  • Comme représenté sur la figure 11d, les pièces 3 du lot sont alors réparties sur les différents chariots de réception 44a, 44b en une couche unique, et les chariots sont alors amenés vers l'unité de trempe décrite précédemment en liaison avec le premier mode de réalisation possible de l'invention, schématisée en traits pointillés sur la figure 11e.
  • On notera ici qu'une opération de revenu peut être réalisée suite à la trempe. Le support de manutention 40S est alors utilisé pour manoeuvrer les pièces après trempe selon des opérations similaires à celles qui viennent décrites et reconstituer la charge multicouches avant de l'enfourner dans le four batch de revenu.
  • On a représenté sur la figure 12, un schéma d'un mode de réalisation possible du support de manutention 40S de type râteau multi-peignes utilisé dans ce second mode de réalisation possible de l'invention.
  • Le support 40S peut comporter un premier chariot 45 roulant sur des rails pour assurer un mouvement longitudinal du support 40S dans la direction indiquée par la flèche F45. Il peut également comporter un deuxième chariot roulant 46 apte à se déplacer latéralement sur le premier chariot C1 dans la direction indiquée par la flèche F46. Le support 40S peut en outre présenter un axe Δ permettant la rotation d'un bras principal B, lui-même guidant un bras mobile B' solidaire des peignes.
  • Exemples
  • On décrit ci-après différents exemples de mise en oeuvre de l'invention. Dans tous ces exemples, des culasses diesel quatre cylindres en ligne ont été moulées en gravité statique en moule métallique, face feu vers le bas, avec une semelle en acier refroidie de façon énergique de façon à obtenir une microstructure fine que l'on peut caractériser par la mesure du SDAS (« Secondary Dendrite Arm Spacing »), avec des valeurs de l'ordre de 30 microns dans la zone où sont prélevées les éprouvettes de traction servant à caractériser le matériau.
  • La température métal à la coulée est de 720°C à l'arrivée dans le godet de coulée du moule, d'où partent les chenaux d'alimentation pour remplir le moule au travers des attaques situées au pied de la pièce.
  • La mise au mil, ratio entre le poids coulé (pièce plus système d'alimentation, plus masselottes) et le poids de la pièce est de 1,7. La pièce moulée pèse 14,1 kg.
  • Tout le noyautage est réalisé en procédé de type « boite froide », pour la réalisation des formes intérieures : conduits d'admission, d'échappement, de circulation d'eau, d'huile et pour la réalisation du noyau contenant les masselottes, réserve de métal située au dessus de la pièce elle-même et permettant l'alimentation en métal liquide pendant la solidification et la contraction de la pièce.
  • Le temps de cycle de moulage est de l'ordre de 5 minutes de pièce à pièce.
  • L'alliage est de type AA 356, de première fusion, avec une composition chimique donnée ci-après en pourcentage pondéraux :
    Si Fe Mn Mg Ti Zn Al
    7,4 0,12 0,02 0,30 0,11 0,02 reste
  • L'alliage a sa structure eutectique modifiée par ajout de strontium.
  • Après coulée, la pièce est extraite du moule et refroidie dans un tunnel à air forcé de telle sorte qu'elle soit refroidie jusqu'à la température de 50 °C en un temps de l'ordre de 120 minutes.
  • Les culasses sont ensuite soumises aux opérations habituelles de parachèvement (élimination des systèmes de remplissage, débourrage, sciage des masselottes, ébavurage) puis aux différents traitements thermiques suivants.
    • Essai n°1 : Traitement thermique hors du champ de l'invention comprenant :
      • Une mise en solution 6 h à 540°C dans un four conventionnel.
      • Une trempe dans de l'eau chaude à 70°C.
      • Un revenu de 6h à 200°C dans un four conventionnel.
    • Essais N° 2 à 5 : Traitement thermique conforme à l'invention comprenant :
      • Une mise en solution 6 h à 540°C dans un four conventionnel.
      • Un positionnement des pièces verticalement dans des paniers à fond grillagé et à alvéoles (reposant sur le fond) dont la hauteur dépasse de 150 mm la surface supérieure de la culasse.
      • Un transfert des pièces du four de mise en solution vers l'unité de refroidissement à l'air pour la trempe, avec un support de manutention conforme à celui décrit en relation ave l'exposé du seconde mode de réalisation possible de l'invention en 1 minute 30 secondes.
      • Une trempe à l'air conforme à l'invention, avec les paramètres critiques de refroidissement suivants :
        • ∘ la surface supérieure des alvéoles est située à 50 mm de la surface inférieure du distributeur d'air de la boite à vent. La distance H entre les pièces et la partie inférieure de la distribution d'air située sous la boite à vent est donc de 200 mm.
        • ∘ Essai N°2
          • ▪ Débit d'air 1100 m3/h et pièce
          • ▪ Espace pièce alvéole : 15 mm en largeur et en longueur.
        • ∘ Essai N°3
          • ▪ Débit d'air 3200 m3/h et pièce
          • ▪ Espace pièce alvéole : 40 mm en largeur et en longueur.
        • ∘ Essai N°4
          • ▪ Débit d'air 3200 m3/h et pièce
          • ▪ Espace pièce alvéole : 15 mm en largeur et en longueur.
        • ∘ Essai N°5
          • ▪ Débit d'air 1700 m3/h et pièce
          • ▪ Espace pièce alvéole : 15 mm en largeur et en longueur.
    • Essai N° 6 : Traitement thermique conforme à l'invention comprenant :
      • Une mise en solution 6 h à 540°C dans un four conventionnel.
      • Un positionnement des pièces verticalement dans des paniers à fond grillagé et à alvéoles (reposant sur le fond) dont la hauteur dépasse de 150 mm la surface supérieure de la culasse.
      • Un transfert des pièces du four de mise en solution vers l'unité de refroidissement à l'air pour la trempe, avec un support de manutention conforme à celui décrit en relation avec l'exposé du seconde mode de réalisation possible de l'invention, en 3 minutes.
      • Une trempe à l'air conforme à l'invention, avec les paramètres critiques de refroidissement suivants :
        • ∘ La surface supérieure des alvéoles est située à 50 mm de la surface inférieure du distributeur d'air de la boite à vent. La distance H entre les pièces et la partie inférieure de la distribution d'air située sous la boite à vent est donc de 200 mm.
        • ∘ Débit d'air 3200 m3/h et pièce
        • ∘ Espace pièce alvéole : 15 mm en largeur et en longueur.
    • Essais N° 7 : Traitement thermique conforme à l'invention comprenant :
      • Une mise en solution 6 h à 540°C dans un four conventionnel.
      • Un positionnement des pièces horizontalement dans des paniers à fond grillagé.
      • Un transfert des pièces du four de mise en solution vers l'unité de refroidissement à l'air pour la trempe, avec un support de manutention permettant de remplir les fonctions décrites dans la variante de réalisation de l'invention en 1 minute 30 secondes.
      • Une trempe à l'air conforme à l'invention, avec les paramètres critiques de refroidissement suivants :
        • ∘ Les culasses sont placées face feu vers le haut
        • ∘ La distance H entre le haut des culasses et la base du distributeur d'air situé sous la boite à vent est de 150 mm.
        • ∘ Débit d'air 3200 m3/h et pièce
        • ∘ Espace inter-pièces: 40 mm environ (équivalent à E=20mm)
  • Dans tous les essais n°2 à 7 conformes à l'invention, les pièces sont refroidies par l'opération de trempe jusqu'à la température ambiante, puis soumises au même revenu que pour l'essai n°1, soit: 6 heures à 200°C dans un four conventionnel batch.
  • Il s'agit pour cet alliage et pour tous les exemples cités, d'un traitement thermique de type T7, c'est-a-dire avec un sur-revenu au delà du pic de durcissement maximal de l'alliage.
  • Caractérisation des culasses
  • Les culasses ont fait l'objet de caractérisation à l'ambiante en traction et en dureté.
  • Les propriétés de traction sont mesurées selon la norme AFNOR EN 10002-1 dans la face feu, au niveau des pontets inter-soupapes par des éprouvettes de traction de diamètre 6,18 mm et de longueur calibrée 36,2 mm. Chaque mesure est la moyenne de 4 éprouvettes par pièce, pour 3 pièces.
  • La dureté Brinell est mesurée selon les normes AFNOR EN ISO 6506 - 1 et ASTM E10-06 dans la face feu également. Une mesure est réalisée par pièce, pour cinq pièces.
  • De plus des thermocouples ont été placés dans les culasses, à coeur de la tablature vers la face feu de la culasse pour mesurer la vitesse de refroidissement, que l'on a caractérisée par le temps nécessaire pour amener la culasse de 430°C à 70°C.
  • Les résultats sont reproduits dans le tableau suivant.
    Essais Vitesse de refroidissement: de la culasse dans la plage de 430°C à 70°C Propriétés mécaniques de la culasse
    Traction Dureté HB
    Limite à la rupture Rm (MPa) Limite élastique R0.2 (MPa) Allongement A (%)
    n°1 Référence (trempe eau) > 200°C/min 287 245 5,4 106
    n°2 Culasse verticale 1100 m3 /h E 15mm H 200mm 21°C/min 243 201 5,8 90
    n°3 Culasse verticale 3200 m3/h E 40mm H 200mm 47°C/min - - - -
    n°4 Culasse verticale 3200 m3/h E 15mm H 200mm 56°C/min 263 211 6,5 91
    n°5 Culasse verticale 1700 m3 /h E 15mm H 200mm 34°C/min 265 210 5,8 88
    n°6 Culasse verticale 3200 m3/h E 15mm H 200mm Transfert long entre mise en solution et trempe 56°C/min 259 209 5,7 90
    n°7 Culasse horizontale 3200 m3/h E 20mm H 150mm 61°C/min 265 212 5,7 88
  • L'ensemble de ces résultats montre qu'il est possible d'approcher les caractéristiques mécaniques des culasses trempées à l'eau (essai n° 1) avec des traitements thermiques selon l'invention mettant en oeuvre une trempe à l'air (essais N° 2 à 7) appliquée à une couche unique de pièces constituée des pièces du lot.
  • Cette trempe à l'air a de plus l'avantage de ne pas générer de contraintes résiduelles dans les pièces, ce qui est de façon général très bénéfique à la durée de vie des culasses en service. Ceci élargit aussi les possibilités de choix de revenu, le sur-revenu étant souvent imposé pour essayer de réduire les contraintes résiduelles générées à la trempe à l'eau.
  • De plus le procédé selon l'invention procure des plages de fonctionnement larges du point de vue de l'opération industrielle.
  • On constate par exemple que pour des valeurs de E de l'ordre de 15mm, dès que l'on dépasse un débit d'air de 1700 m3/h et par pièce, les caractéristiques mécaniques de la pièce atteignent une asymptote, cela bien que la vitesse de refroidissement continue de croître (essais n° 4 et 5).
  • Il apparaît également qu'il est souhaitable de ne pas descendre au dessous de 1700 m3/h et par pièce (voir essai n°2) si on veut rester proche du niveau de résistance maximal accessible par ces méthodes de trempe à l'air, ce qui justifie les plages de débit préférentielles selon l'invention.
  • On voit aussi l'intérêt de maintenir E à un niveau aussi petit que possible (cf. essais n° 3 et 4).
  • Il est par ailleurs possible de tremper les pièces horizontalement ou verticalement.
  • Le fait que 1mn 30 de transfert (c'est-à-dire le temps s'écoulant entre l'ouverture de la porte du four de mise en solution et le début du refroidissement forcé à l'air) donne pratiquement le même résultat que 3 minutes de transfert laisse la possibilité de réaliser dans de bonnes conditions mécaniques de vitesses et d'accélérations notamment, les opérations de manoeuvre de la charge pour former la couche unique de pièces (essais n° 4 et 6). Ce résultat fort surprenant par rapport aux pratiques usuelles de la trempe qui imposent pour les alliages de moulage des temps de transferts très courts, de l'ordre de 15 secondes maximum en général, a fait l'objet de multiples confirmations par la Demanderesse. A cette occasion, il a été mis en évidence qu'au delà de 6 minutes 30 secondes de temps de transfert, les abattements de propriétés mécaniques deviennent significatifs.

Claims (12)

  1. Procédé de traitement thermique d'un lot de pièces de fonderie, comprenant une opération de mise en solution réalisée dans un four chargé avec les pièces du lot disposées en plusieurs couches de pièces superposées les unes aux autres, caractérisé en ce que, suite à l'extraction des pièces du four de mise en solution, on manoeuvre les pièces pour former une unique couche de pièces constituée des pièces du lot, on amène l'unique couche dans une unité de trempe à l'air disposant d'un système de ventilation et on applique une trempe à l'air aux pièces du lot disposées selon la couche unique.
  2. Procédé selon la revendication 1, dans lequel le système de ventilation délivre un flux d'air de débit supérieur à 1000 m3/h et par pièce, de préférence supérieur à 1700 m3/h et par pièce.
  3. Procédé selon l'une des revendications 1 à 2, dans lequel lors de l'opération de mise en solution, les pièces sont disposées dans des paniers superposés les uns aux autres, et la manoeuvre des pièces consiste à désempiler les paniers.
  4. Procédé selon la revendication 3, dans lequel les pièces sont posées horizontalement dans les paniers et espacées de moins de 100mm, de préférence de moins de 50 mm.
  5. Procédé selon la revendication 3, dans lequel les paniers sont séparés par des cloisons et dans lequel les pièces sont posées verticalement dans les paniers.
  6. Procédé selon la revendication 4, dans lequel les cloisons forment un ensemble d'alvéoles, les pièces étant disposées à raison d'une pièce par alvéole de telle sorte que l'espace entre la pièce et l'alvéole soit inférieur à 60 mm, et de préférence inférieur à 30 mm.
  7. Procédé selon la revendication 3, dans lequel les pièces sont suspendues ou maintenues par des supports dans les paniers.
  8. Procédé selon la revendication 1, dans lequel la manoeuvre des couches de pièces consiste à déposer successivement chaque couche de pièces sur un chariot de réception adapté pour recevoir une unique couche de pièces.
  9. Procédé selon l'une des revendications 1 à 8, dans lequel le temps de transfert entre l'ouverture du four à l'issue de la mise en solution, et la mise en route du refroidissement à l'air est inférieur à 6 minutes, de préférence inférieur à 3 minutes 30 secondes.
  10. Procédé selon l'une des revendications 1 à 8, dans lequel suite à la trempe, on manoeuvre les pièces pour les redisposer sur plusieurs couches, et on réalise une opération de revenu des pièces réalisée dans un four chargé avec les pièces du lot disposées sur plusieurs couches.
  11. Système de traitement thermique d'un lot de pièces de fonderie comprenant
    un four de mise en solution tel que les pièces du lot sont disposées en plusieurs couches de pièces superposées les unes aux autres lorsque le four est chargé,
    une unité de trempe à l'air disposant d'un système de ventilation pour provoquer un flux d'air de refroidissement,
    caractérisé en ce qu'il comporte des moyens pour extraire les pièces du four de mise en solution et pour les disposer en une unique couche de pièces, et des moyens pour amener la couche unique de pièces dans l'unité de trempe à l'air de manière à appliquer une trempe à l'air aux pièces du lot disposées en une couche unique.
  12. Système selon la revendication 11, dans lequel le système de ventilation est configuré pour délivrer un flux d'air de débit supérieur à 1000 m3/h et par pièce, de préférence supérieur à 1700 m3/h et par pièce.
EP08761238.8A 2007-06-22 2008-06-19 Procédé de traitement thermique de pièces de fonderie mettant en oeuvre une trempe a l'air et système pour la mise en oeuvre du procédé Active EP2167693B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08761238T PL2167693T3 (pl) 2007-06-22 2008-06-19 Sposób obróbki termicznej odlewów wdrażający hartowanie w powietrzu i system do wdrożenia sposobu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0755974A FR2917752B1 (fr) 2007-06-22 2007-06-22 Procede de traitement thermique de pieces de fonderie mettant en oeuvre une trempe a l'air et systeme pour la mise en oeuvre du procede
PCT/EP2008/057813 WO2009000751A1 (fr) 2007-06-22 2008-06-19 Procede de traitement thermique de pieces de fonderie mettant en oeuvre une trempe a l'air et systeme pour la mise en oeuvre du procede

Publications (2)

Publication Number Publication Date
EP2167693A1 EP2167693A1 (fr) 2010-03-31
EP2167693B1 true EP2167693B1 (fr) 2019-10-09

Family

ID=39148635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08761238.8A Active EP2167693B1 (fr) 2007-06-22 2008-06-19 Procédé de traitement thermique de pièces de fonderie mettant en oeuvre une trempe a l'air et système pour la mise en oeuvre du procédé

Country Status (7)

Country Link
US (1) US8580052B2 (fr)
EP (1) EP2167693B1 (fr)
ES (1) ES2763177T3 (fr)
FR (1) FR2917752B1 (fr)
HU (1) HUE047330T2 (fr)
PL (1) PL2167693T3 (fr)
WO (1) WO2009000751A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242313B2 (en) * 2012-07-30 2016-01-26 General Electric Company Welding furnace and viewport assembly
CA2998891C (fr) * 2015-09-23 2020-07-07 Consolidated Engineering Company, Inc. Systeme pour le support de pieces coulees pendant le traitement thermique
WO2017180193A1 (fr) * 2016-04-11 2017-10-19 Consolidated Engineering Company, Inc. Désempileuse interne destinée à un four de traitement thermique
IT201700041112A1 (it) * 2017-04-13 2018-10-13 Lm Ind S R L Impianto di raffreddamento di oggetti
CN107893158A (zh) * 2017-12-14 2018-04-10 苏州中门子工业炉科技有限公司 一种进出料口带密封气帘的固溶炉
CN108285969B (zh) * 2018-01-30 2019-04-30 重庆市天宇电线电缆制造有限公司 一种铜线循环加热退火炉
CN108620565A (zh) * 2018-07-06 2018-10-09 湖州吉弘机械有限公司 一种用于叉车配套铸件的冷却装置
CN108907173A (zh) * 2018-07-11 2018-11-30 尚成荣 一种铜加工尾气多通道抽风节能控制方法
CN109014140B (zh) * 2018-08-02 2020-05-15 繁昌县长城铸造厂(普通合伙) 一种铸件用的快速冷却装置
CN110026542B (zh) * 2019-05-24 2020-09-11 山东金马汽车装备科技有限公司 一种铝合金轮毂铸造用冷却装置
DE102019115613A1 (de) * 2019-06-07 2020-12-10 Audi Ag Herstellungsverfahren sowie Vorrichtung zur Herstellung eines oberflächenbehandelten Bauteils, insbesondere eines Karosseriebauteils für ein Kraftfahrzeug
CN112874594B (zh) * 2021-01-29 2022-11-11 重庆祥顺机械配件制造有限公司 一种活塞转运装置
CN116673464B (zh) * 2023-08-02 2023-09-22 长春电子科技学院 一种传动箱内部铸造件冷却装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934103A1 (de) * 1989-10-12 1991-04-25 Ipsen Ind Int Gmbh Ofen zur partiellen waermebehandlung von werkzeugen
JPH06174377A (ja) * 1992-12-04 1994-06-24 Komatsu Ltd 多目的雰囲気熱処理装置
DE29603022U1 (de) * 1996-02-21 1996-04-18 Ipsen Ind Int Gmbh Vorrichtung zum Abschrecken metallischer Werkstücke
DE19858582C2 (de) * 1998-12-18 2001-05-17 Karl Heess Gmbh & Co Maschb Anlage zum thermischen Behandeln von metallischen Werkstücken
FR2801059B1 (fr) * 1999-11-17 2002-01-25 Etudes Const Mecaniques Procede de trempe apres cementation a basse pression
ES2215513T3 (es) * 2000-04-14 2004-10-16 Ipsen International Gmbh Procedimiento y dispositivo para el tratamiento termico de piezas de trabajo metalicas.
DE10117987A1 (de) * 2001-04-10 2002-10-31 Ald Vacuum Techn Ag Chargiergestell für die Wärme- und/oder Kühlbehandlung von zu härtenden Metallteilen
ATE335860T1 (de) * 2003-04-17 2006-09-15 Cometal Engineering S P A Produktionsanlage für metallprofile
DE10352622A1 (de) * 2003-11-12 2005-06-16 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zum Abschrecken von Werkstücken

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2167693A1 (fr) 2010-03-31
FR2917752A1 (fr) 2008-12-26
FR2917752B1 (fr) 2019-06-28
US8580052B2 (en) 2013-11-12
HUE047330T2 (hu) 2020-04-28
ES2763177T3 (es) 2020-05-27
WO2009000751A1 (fr) 2008-12-31
PL2167693T3 (pl) 2020-06-15
US20100236669A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
EP2167693B1 (fr) Procédé de traitement thermique de pièces de fonderie mettant en oeuvre une trempe a l'air et système pour la mise en oeuvre du procédé
FR2878258A1 (fr) Procede de traitement thermique d'une piece en alliage d'aluminium
EP0236639B1 (fr) Installation flexible automatisée de traitement thermochimique rapide
RU2548551C2 (ru) Способ и устройство для упрочнения стальных деталей, а также упрочненные в соответствии с этим способом стальные детали
EP3914746A2 (fr) Procédé de fabrication d'une pièce en alliage d'aluminium
EP3609641A1 (fr) Procede de fabrication d'une piece en alliage d'aluminium
FR3086954A1 (fr) Procédé de fabrication d'une pièce en alliage d'aluminium
CA2714475A1 (fr) Installation de galvanisation par trempage a chaud pour bande d'acier
EP1101826A1 (fr) Procédé de trempe après cémentation à basse pression
EP2732066B1 (fr) Procédé de refroidissement de pièces métalliques ayant subi un traitement de nitruration / nitrocarburation en bain de sel fondu, l'installation pour la mise en oeuvre du procédé et les pièces métalliques traitées
FR2906172A1 (fr) Procede de retouche locale par brasage induction
WO2020070453A1 (fr) Procede de fabrication d'une piece en alliage d'aluminium
FR3113851A1 (fr) Procede de fabrication d’une piece metallique par fusion selective en lit de poudre
EP0785402A1 (fr) Installation pour le traitement thermique d'une charge de pièces métalliques
EP3475012B1 (fr) Four de refroidissement par solidification dirigée et procédé de refroidissement utilisant un tel four
EP0429328A1 (fr) Enceinte de stockage pour produits métallurgiques
CA2878048C (fr) Procede et outillage pour le depot d'un revetement metallique en phase vapeur sur des pieces en super alliages
FR2980215B1 (fr) Procede de traitement thermique d'une piece en alliage d'aluminium coulee sous pression
FR2545985A1 (fr) Dispositif pour l'introduction et le retrait de semi-conducteurs dans un four
WO2024042291A1 (fr) Procede de fabrication d'une piece en alliage d'aluminium
FR2785901A1 (fr) Etuve pour detecter des inclusions de sulfures de nickel dans les vitrages
FR2525936A1 (fr) Procede de traitement de demi-moules de fonderie, dispositif pour sa mise en oeuvre et demi-moules traites conformement audit procede
FR2826374A1 (fr) Procede et dispositif de trempe des aciers a l'air sous pression
FR2845695A1 (fr) Procede et installation de traitement thermique de pieces metalliques
FR3112297A1 (fr) Procédé et équipement de refroidissement sur un Laminoir réversible à chaud

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100701

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008061373

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1188881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 33054

Country of ref document: SK

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E047330

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2763177

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008061373

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1188881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200619

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200619

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230512

Year of fee payment: 16

Ref country code: DE

Payment date: 20230613

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230524

Year of fee payment: 16

Ref country code: BG

Payment date: 20230530

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230602

Year of fee payment: 16

Ref country code: SK

Payment date: 20230518

Year of fee payment: 16

Ref country code: PL

Payment date: 20230518

Year of fee payment: 16

Ref country code: HU

Payment date: 20230525

Year of fee payment: 16

Ref country code: AT

Payment date: 20230522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 16

Ref country code: ES

Payment date: 20230706

Year of fee payment: 16