EP1082753B1 - Lampe zur emisssion von ultraviolettstrahlung mit hoher leistung - Google Patents

Lampe zur emisssion von ultraviolettstrahlung mit hoher leistung Download PDF

Info

Publication number
EP1082753B1
EP1082753B1 EP98924877A EP98924877A EP1082753B1 EP 1082753 B1 EP1082753 B1 EP 1082753B1 EP 98924877 A EP98924877 A EP 98924877A EP 98924877 A EP98924877 A EP 98924877A EP 1082753 B1 EP1082753 B1 EP 1082753B1
Authority
EP
European Patent Office
Prior art keywords
ultraviolet radiation
housing
liquid
lamp according
gas enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98924877A
Other languages
English (en)
French (fr)
Other versions
EP1082753A1 (de
Inventor
Gary L. Morgan
James M. Potter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Triton Thalassic Technologies Inc
Original Assignee
Triton Thalassic Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Triton Thalassic Technologies Inc filed Critical Triton Thalassic Technologies Inc
Publication of EP1082753A1 publication Critical patent/EP1082753A1/de
Application granted granted Critical
Publication of EP1082753B1 publication Critical patent/EP1082753B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space

Definitions

  • This invention deals generally with the use of ultraviolet radiation to sterilize liquids and more specifically with a high power excimer lamp structure used to expose liquids to intense ultraviolet radiation to kill bacteria. even when the liquids are essentially opaque to ultraviolet radiation.
  • Excimer lamps are essentially gas filled enclosures which are subjected to high voltage AC power by electrodes which are outside of, but in contact with, the enclosure.
  • the lamp enclosures are constructed of a material such as quartz, so that they are transparent to ultraviolet radiation.
  • the lamp acts as the dielectric of a capacitor in which the electrodes are the plates of the capacitor, and, as in all capacitors, the dielectric provides all the impedance and uses all the power.
  • the envelope is usually formed of concentric cylinders sealed together at the ends, with the gas fill between the cylinders.
  • the electrode in contact with the outer surface of the lamp envelope has typically been a mesh which is partially transparent to ultraviolet radiation or a metal film which is so thin that some ultraviolet radiation passes through it.
  • Such electrodes must also be capable of handling high electrical currents. That requires that they have significant volume in order to prevent limiting the electrical current or causing resistance heating.
  • This high current requirement eliminates thin films and increases wire thickness in a mesh so greatly that the mesh blocks significant amounts of the ultraviolet radiation output. It then becomes a diminishing tradeoff in which the thick wire screens required for higher power levels block more of the ultraviolet radiation output which should be available for treatment of the liquid.
  • the same mesh with large wires interferes with the cooling of the lamp surface, and when excimer lamps increase in temperature lamp efficiency and life are adversely affected.
  • the present invention overcomes the dilemma caused by using mesh electrodes when purifying liquids with high power ultraviolet radiation lamps by completely eliminating all the metal electrodes in contact with the lamp envelope.
  • the excimer lamp of the invention is powered by high voltage AC, but has no metallic electrodes within or in contact with the envelope.
  • the lamp is constructed in the form of two concentric quartz cylinders sealed together at their ends with the excimer gas fill between the cylinders. Cooling liquid is pumped through the central region inside the inner quartz cylinder where an electrically conductive pipe that is not in contact with the inner cylinder is used to supply this cooling liquid. Although it is not in contact with the inner quartz cylinder, this central pipe also acts as the high voltage electrode. A cable attaches the central pipe to a high voltage AC power source, but this high voltage electrode is electrically isolated from the source of cooling liquid by a suitably long length of electrically insulated tubing which also supplies the cooling liquid.
  • the entire lamp is enclosed within an outer metal cylindrical sheath which is also not in contact with the quartz envelope, but is connected to the return of the high voltage AC power source and is also grounded.
  • the liquid to be treated flows through the metal sheath and over the outside surface of the external envelope of the excimer lamp.
  • the electrical circuit is dependent on the fact that the power applied to the lamp is alternating current, and, therefore, power can be transferred through capacitances.
  • the two different liquid layers, cooling liquid inside the inner cylinder and treated liquid outside the outer cylinder, are the only electrical power feeds to the lamp and, although they theoretically have some conduction, they essentially act as capacitors to couple AC power to the excimer lamp.
  • These liquid filled capacitors have little power loss because the liquids have high dielectric constants. Therefore. the capacitors formed by the liquid, and also the capacitors formed by the walls of the quartz envelope. result in impedances which are very much lower than that of the excimer gas within the lamp. Thus, virtually all the power is delivered to and used by the lamp.
  • the liquid flowing within the central enclosure of the lamp and the treated liquid on the outside of the lamp are near perfect coolants for the quartz lamp envelope. Since there are no electrodes contacting the quartz envelope, the entire surface of the envelope is liquid cooled, and that liquid can be temperature controlled to establish the most desirable temperature for the quartz envelope. This temperature control is a major factor in securing long life operation for high power excimer lamps:
  • the cooling liquid in the center of the lamp when selected to be a clear liquid, it also permits ultraviolet radiation emitted from the inner envelope of the lamp to pass through the cooling clear liquid and the other side of the lamp and to still reach the treated liquid on the far side of the lamp.
  • the cooling clear liquid and the other side of the lamp In such a configuration, and unlike the situation in the traditional lamp with metal electrodes, there are no solid or mesh electrodes to absorb any of the ultraviolet radiation before it irradiates the liquid being treated.
  • the present invention thereby not only furnishes an ultraviolet radiation generating excimer lamp with high efficiency and long life, but there is no reason to believe that there is any inherent limit on its power capability.
  • FIG. 1 is a cross section view along the liquid flow path of excimer lamp 10 of the preferred embodiment of the invention in which lamp 10 is constructed from multiple concentric cylinders.
  • the internal cylinder is simple hollow metal pipe 12 through which liquid Hows into volume 14 which is located around pipe 12.
  • Volume 14 is essentially the volume enclosed by inner quartz cylinder 16 which is also one wall of excimer gas enclosure 18.
  • Cylindrical sleeve 15 is an extension of inner quartz cylinder 16, closes off the end of volume 14, and helps maintain the position of inner quartz cylinder 16.
  • Outer quartz cylinder 20 forms the outer wall of excimer gas enclosure 18.
  • End walls 22 and 24 join inner quartz cylinder 16 and outer quartz cylinder 20 to complete excimer gas enclosure 18 and to form an annular space which is filled with excimer gas.
  • End wall 24 is also extended to close off the end of inner quartz cylinder 16, thus also closing off remote end 26 of inner volume 14.
  • excimer gas filled enclosure 18 is the same as any conventional excimer lamp in that, when electrical energy is applied to the gas, micro-discharges within the gas generate ultraviolet radiation, with the wavelength of the radiation determined by the particular gas within gas enclosure 18.
  • the outermost cylinder is housing 28 and is held spaced away from outer quartz cylinder by supports 30 and 32.
  • Supports 30 and 32 are among the several supports spaced around outer quartz cylinder 20 to center quartz cylinders 16 and 20 within housing 28 while maintaining volume 34 between housing 28 and outer quartz cylinder 20 open for the free flow of liquid through volume 34.
  • Volume 34 is closed off at one end by end plate 36 which can either be an integral part of the cylinder of housing 28 as shown, or can be a removable cap bolted on in a manner similar to end plate 38 at the electrode connection end of lamp 10.
  • End plate 38 is, however, constructed of an electrically insulating material such as plastic to electrically insulate central pipe 12 from housing 28. End plate 38 is held tight against plate 40 of housing 28 by bolts 42 and sealed by conventional "O" ring 44.
  • the high voltage connection is cable 46 attached to central pipe 12 and the return voltage and ground connection is a simple wire attached to housing 28.
  • These connections can be made by any conventional means such as nuts on studs welded to the part to which the connection is made.
  • Central pipe 12 serves to supply cooling water to volume 14. This cooling water flows out of pipe 12 near remote end 26 of volume 14, flows back along inner quartz cylinder 16 and sleeve 15, and leaves lamp 10 through outlet pipe 50.
  • the liquid being treated enters the lamp through housing input pipe 52, flows along and around the outside of outer quartz cylinder 20 as it is irradiated by the ultraviolet radiation generated by the excimer discharge within excimer gas enclosure 18, and exits the lamp through housing outlet pipe 54.
  • the lamp appears electrically as a series of five dielectrics between the electrical inputs formed by pipe 12 and housing 28.
  • the first dielectric is the cooling water within volume 14
  • the second dielectric is inner quartz cylinder 16
  • the third dielectric is the excimer gas within volume 18
  • the fourth dielectric is outer quartz cylinder 20
  • the fifth is the treated liquid within volume 34.
  • Housing 28 which is grounded for safety and is the return for the electrical power, acts as the other "plate" of the capacitor.
  • the liquids also serve another vital purpose.
  • the liquids flowing across inner quartz cylinder 16 and outer quartz cylinder 20 cool the quartz walls of excimer gas enclosure 18 so that the excimer gas transfers its heat to the quartz walls and is also prevented from becoming overheated. Cooling the excimer lamp in this manner is vital to securing high reliability and long life for lamp 10.
  • FIG. 2 is a simplified schematic diagram of the electrical and fluid flow arrangement of the invention which depicts the means by which two liquid flow paths can be used in lamp 10 along with high voltage alternating current power supply 60.
  • lamp 10 is fed cooling liquid through central pipe 12, but central pipe 12 is also connected to high voltage power supply 60 by cable 46.
  • high voltage power supply 60 by cable 46.
  • Conventional wisdom suggests that the source of the cooling liquid would have to be at the same high voltage as central pipe 12 or the power supply would be shorted out, but that is not actually the case.
  • cooling liquid feed path and return path to central pipe 12 are long enough and the impedance of the cooling liquid high enough, such liquid flow paths will merely act as high impedances in parallel with the lamp, and the load they cause on the power supply will be inconsequential.
  • typical tap water has a resistivity in the range of 20 to 200 micromho, and therefore has a resistance of 150 kilohm to 1.5 megohm per 30,48 cm (foot) when flowing in a 1,14 cm (.45 inch) diameter plastic hose. It is then only necessary to determine what leakage current would be tolerable for power supply 60 and to make feed hose 62 for pipe 12 and return hose 64 long enough to limit the leakage current to that value.
  • housing 28 of lamp 10 is actually electrically grounded, so there is no concern at all about any voltage being applied to it.
  • treated liquid input pipe 66 and treated liquid outlet pipe 68 can be connected to any required equipment and handle liquid of any resistivity.
  • the liquid being treated has such a low conductivity that it would cause no difficulty even if it were used as the cooling liquid within the central portion of the lamp.
  • the preferred embodiment of the invention has been operated with the following structure, conditions, and results.
  • the preferred embodiment of the described uitraviolet radiation generating lamp has operated in an industrial environment purifying opaque machine cutting fluids, and has operated for more than 1000 hours at full power output without failure.
  • the configuration of lamp 10 need not be cylindrical, although that is simpler to construct.
  • the lamp could be constructed of parallel planar sheets, in which case FIG. 1 would be a cross section view across a portion of such a configuration.
  • materials other than metal may be used for central pipe 12 and housing 28. as long as the materials are electrically conductive, and walls 16 and 20 of gas volume 14 may be constructed of materials other than quartz as long as the materials are transparent to ultraviolet radiation of the wavelength generated by the lamp.
  • most liquids have a dielectric constant greater than 10 and the invention is relatively independent of liquid conductivity, virtually all liquids are usable in this invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Water Treatments (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Paints Or Removers (AREA)

Claims (20)

  1. Lampe zum Erzeugen von Ultraviolettstrahlung, die umfasst:
    ein Gehäuse (28), das ein umschlossenes Volumen (34) bildet, wobei das Gehäuse wenigstens eine elektrisch leitende Wand enthält,
    ein elektrisch leitendes Element (12), das in dem umschlossenen Volumen (34) angeordnet ist, und
    eine Strahlungsgaskapsel (18), die mit einem Gas gefüllt ist, das eine Energieentladung erzeugen kann, wobei die Gaskapsel (18) durch wenigstens eine Wand (16, 20, 22, 24), die für in der Gaskapsel (18) erzeugte Strahlung durchlässig ist, und durch wenigstens eine Wand (16, 20, 22, 24) gebildet wird, die aus einem dielektrischen Material aufgebaut ist,
    dadurch gekennzeichnet, dass:
    das elektrisch leitende Element (12) sich in dem Volumen (34) des Gehäuses (28) befindet, eine Wand des Gehäuses (28) und eine Wand des Volumens (34) über elektrische Isolatoreinrichtungen durchdringt und von den Wänden der Gaskapsel (18) beabstandet ist und dass
    die Strahlungsgaskapsel (18), die sich in dem Gehäuse (28) befindet und mit einem Gas gefüllt ist, das eine Energieentladung erzeugen kann, gegenüber dem elektrisch leitenden Element (12) und den elektrisch leitenden Wänden des Gehäuses (28) durch eine erste Flüssigkeit, die zwischen das Element (12) und die Gaskapsel (18) eingeleitet ist, wobei die erste Flüssigkeit wenigstens teilweise als ein Dielektrikum zwischen dem Element (12) und der Gaskapsel (18) wirkt, sowie durch eine zweite Flüssigkeit elektrisch isoliert ist, die zwischen das Gehäuse (28) und die Gaskapsel (18) eingeleitet ist, wobei die zweite Flüssigkeit wenigstens teilweise als ein zweites Dielektrikum zwischen dem Gehäuse (28) und der Gaskapsel (18) wirkt.
  2. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 1, dadurch gekennzeichnet, dass elektrische Verbindungen (46, 48) an dem Gehäuse (28) sowie an dem elektrisch leitenden Element (12) angebracht sind, wobei Wechselstrom an die Lampe (10) angelegt wird.
  3. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gehäuse (28) elektrisch geerdet ist.
  4. Lampe zum Erzeugen von Ultraviolettstrahlung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass das elektrisch leitende Element (12) elektrisch mit einer Quelle (60) von Hochspannungs-Wechselstromenergie verbunden ist.
  5. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 1, dadurch gekennzeichnet, dass alle Wände (16, 20, 22, 24) der Gaskapsel (18) für die in der Gaskapsel (18) erzeugte Strahlung durchlässig sind.
  6. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 1, dadurch gekennzeichnet, dass die erste und die zweite Wand (16, 20) der Gaskapsel (18) aus Quarz hergestellt sind.
  7. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 1, dadurch gekennzeichnet, dass die erste Flüssigkeit eine Kühlflüssigkeit ist, die durch das Volumen (34) des Gehäuses (28) zwischen dem elektrisch leitenden Element (12) und der Gaskapsel (18) strömt.
  8. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Flüssigkeit eine durch eine elektrische Entladung von dem Gas zu behandelnde Flüssigkeit ist, die durch das Gehäuse (28) zwischen der für Strahlung durchlässigen Wand (16, 20, 22, 24) der Gaskapsel (18) und dem Gehäuse (28) strömt.
  9. Lampe zum Erzeugen von Ultraviolettstrahlung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass das elektrisch leitende Element ein hohles Rohr (12) ist.
  10. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 9, dadurch gekennzeichnet, dass das Rohr (12) in Verbindung mit einer Quelle der ersten oder der zweiten Flüssigkeit steht.
  11. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 10, dadurch gekennzeichnet, dass die erste oder die zweite Flüssigkeit über das Rohr (12) in das Gehäuse (28) eintritt.
  12. Lampe zum Erzeugen von Ultraviolettstrahlung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Gehäuse (28) des Weiteren einen Einlass für das Rohr (12) umfasst und das Gehäuse (28) des Weiteren einen Auslass umfasst, der so eingerichtet ist, dass er Austritt der ersten oder der zweiten Flüssigkeit zulässt, die über das Rohr (12) in das Gehäuse eintritt.
  13. Lampe zum Erzeugen von Ultraviolettstrahlung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Gaskapsel (18) mit einem Gas gefüllt ist, das Strahlung erzeugen kann, wenn Wechselstrom an die Gaskapsel (18) angelegt wird.
  14. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 13, dadurch gekennzeichnet, dass das Gas ein Excimer-Gas ist, das in einer Gaskapsel (18) enthalten ist.
  15. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 14, dadurch gekennzeichnet, dass das Gas ein Excimer-Gas ist, das aus der Gruppe ausgewählt wird, die aus Xenon und Brom besteht.
  16. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 7, dadurch gekennzeichnet, dass die Kühlflüssigkeit für die in der Gaskapsel (18) erzeugte Strahlung durchlässig ist.
  17. Lampe zum Erzeugen von Ultraviolettstrahlung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die erste und die zweite Flüssigkeit die gleiche Flüssigkeit sind.
  18. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (28), die Gaskapsel (18) und das elektrisch leitende Element (12) jeweils zylindrischen Aufbau haben.
  19. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 12, dadurch gekennzeichnet, dass der Kühlflüssigkeitseinlass und der Kühlflüssigkeitsauslass (50) mit einer Quelle von Kühlflüssigkeit über Abschnitte elektrisch leitender Schläuche (62, 64) verbunden sind, die lang genug sind, um den Leckstrom durch die Schläuche (62, 64) und durch die Flüssigkeit darin auf einen vorgegebenen Wert zu begrenzen.
  20. Lampe zum Erzeugen von Ultraviolettstrahlung nach Anspruch 7, dadurch gekennzeichnet, dass die Kühlflüssigkeit Leitungswasser ist.
EP98924877A 1998-05-26 1998-05-26 Lampe zur emisssion von ultraviolettstrahlung mit hoher leistung Expired - Lifetime EP1082753B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1998/010611 WO1999062104A1 (en) 1998-05-26 1998-05-26 Lamp for generating high power ultraviolet radiation

Publications (2)

Publication Number Publication Date
EP1082753A1 EP1082753A1 (de) 2001-03-14
EP1082753B1 true EP1082753B1 (de) 2005-02-09

Family

ID=22267132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98924877A Expired - Lifetime EP1082753B1 (de) 1998-05-26 1998-05-26 Lampe zur emisssion von ultraviolettstrahlung mit hoher leistung

Country Status (9)

Country Link
EP (1) EP1082753B1 (de)
JP (1) JP4159745B2 (de)
AT (1) ATE289117T1 (de)
AU (1) AU767717B2 (de)
CA (1) CA2333106C (de)
DE (1) DE69829004T2 (de)
DK (1) DK1082753T3 (de)
ES (1) ES2238761T3 (de)
WO (1) WO1999062104A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633109B2 (en) 2001-01-08 2003-10-14 Ushio America, Inc. Dielectric barrier discharge-driven (V)UV light source for fluid treatment
JP2004146077A (ja) * 2002-10-21 2004-05-20 Futaba Technology Corp 紫外線照射装置
WO2005104184A1 (ja) * 2004-04-22 2005-11-03 Futaba Technology Corporation 紫外線照射装置
NL1036561C2 (nl) * 2009-02-11 2010-08-12 Stichting Wetsus Ct Excellence Sustainable Water Technology Werkwijze en inrichting voor het behandelen en / of karakteriseren van een fluidum.
SE536086C2 (sv) * 2010-10-20 2013-04-30 Wallenius Water Ab Metod och anordning för rening av opaka vätskor med ljus
JP6432442B2 (ja) * 2015-05-20 2018-12-05 ウシオ電機株式会社 流体処理用装置
CN108389764A (zh) * 2018-04-21 2018-08-10 罗璐 一种真空紫外光管、夹壁套管及其应用系统
CN108577609A (zh) * 2018-05-24 2018-09-28 曹会鹃 一种基于紫外线消毒、杀菌技术的智能浴室柜
CN112169179A (zh) * 2020-10-10 2021-01-05 罗璐 一种盲端工作的准分子灯及美容仪

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721875A (en) * 1986-02-10 1988-01-26 Autotrol Corporation Radiation-emitting devices
JPH0352688A (ja) * 1989-07-19 1991-03-06 Matsushita Electric Works Ltd 紫外線殺菌装置
DE59105798D1 (de) * 1991-04-15 1995-07-27 Heraeus Noblelight Gmbh Bestrahlungseinrichtung.
JPH07169443A (ja) * 1993-12-17 1995-07-04 Ushio Inc 誘電体バリヤ放電ランプ装置
US5471063A (en) * 1994-01-13 1995-11-28 Trojan Technologies, Inc. Fluid disinfection system
JPH07288112A (ja) * 1994-04-15 1995-10-31 Ushio Inc 誘電体バリヤ放電ランプ装置
US5554344A (en) * 1994-05-11 1996-09-10 Duarte; Fernando C. Gas ionization device
JPH08248199A (ja) * 1995-03-13 1996-09-27 Shinko Pantec Co Ltd 紫外線照射装置
US6087774A (en) * 1996-10-31 2000-07-11 Kabushiki Kaisha Toshiba Non-electrode discharge lamp apparatus and liquid treatment apparatus using such lamp apparatus
JP3282798B2 (ja) * 1998-05-11 2002-05-20 クォークシステムズ株式会社 エキシマランプおよびエキシマ発光装置

Also Published As

Publication number Publication date
DK1082753T3 (da) 2005-06-13
DE69829004T2 (de) 2006-01-12
JP2002517072A (ja) 2002-06-11
CA2333106C (en) 2007-03-13
EP1082753A1 (de) 2001-03-14
WO1999062104A1 (en) 1999-12-02
WO1999062104A8 (en) 2001-08-16
AU767717B2 (en) 2003-11-20
AU2806101A (en) 2001-03-05
ES2238761T3 (es) 2005-09-01
ATE289117T1 (de) 2005-02-15
JP4159745B2 (ja) 2008-10-01
CA2333106A1 (en) 1999-12-02
DE69829004D1 (de) 2005-03-17

Similar Documents

Publication Publication Date Title
US5834784A (en) Lamp for generating high power ultraviolet radiation
US6201355B1 (en) Lamp for generating high power ultraviolet radiation
JP5486303B2 (ja) 放射線源及び冷却手段を含む流体処理システム
US20070248487A1 (en) Systems and processes for disinfecting liquids
EP1082753B1 (de) Lampe zur emisssion von ultraviolettstrahlung mit hoher leistung
CN101065822B (zh) 具有集成冷却电路的电灯和镇流器的组合
CN102272041B (zh) 光学反应器和用于光学反应器的驱动电路
CA2576411C (en) Lamp for generating high power ultraviolet radiation
KR100637693B1 (ko) 오존발생장치
US20180116256A1 (en) Chamber for pulsed electric field generation
US10125032B2 (en) Device for the photochemical treatment or cleaning of a liquid medium
MXPA00011591A (en) Lamp for generating high power ultraviolet radiation
JP2002517072A5 (de)
US11673816B2 (en) Systems and methods for treating harmful biological contaminants in HVAC systems
WO2004036619A1 (ja) 紫外線照射装置
JP3215760U (ja) 流体処理装置
RU2092431C1 (ru) Высокочастотная озонаторная установка
WO2019016721A1 (en) PURIFICATION OF FLUID
WO2005104184A1 (ja) 紫外線照射装置
RU2085056C1 (ru) Электрический нагреватель
WO2017213605A2 (en) An ozone generator
JP2000072412A (ja) オゾナイザ
JP2002164187A (ja) 無電極放電ランプ点灯装置および流体処理装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030818

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69829004

Country of ref document: DE

Date of ref document: 20050317

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050526

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2238761

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

26N No opposition filed

Effective date: 20051110

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050709

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRITON THALASSIC TECHNOLOGIES, INC.

Free format text: TRITON THALASSIC TECHNOLOGIES, INC.#241 ETHAN ALLEN HIGHWAY#RIDGEFIELD, CT 06877 (US) -TRANSFER TO- TRITON THALASSIC TECHNOLOGIES, INC.#241 ETHAN ALLEN HIGHWAY#RIDGEFIELD, CT 06877 (US)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120530

Year of fee payment: 15

Ref country code: DE

Payment date: 20120529

Year of fee payment: 15

Ref country code: DK

Payment date: 20120525

Year of fee payment: 15

Ref country code: IE

Payment date: 20120525

Year of fee payment: 15

Ref country code: CH

Payment date: 20120525

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120529

Year of fee payment: 15

Ref country code: FR

Payment date: 20120607

Year of fee payment: 15

Ref country code: BE

Payment date: 20120529

Year of fee payment: 15

Ref country code: FI

Payment date: 20120529

Year of fee payment: 15

Ref country code: GB

Payment date: 20120525

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120525

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120528

Year of fee payment: 15

BERE Be: lapsed

Owner name: *TRITON THALASSIC TECHNOLOGIES INC.

Effective date: 20130531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130527

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20130531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131201

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130526

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130526

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69829004

Country of ref document: DE

Effective date: 20131203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130526

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130527