EP1080243B1 - Procede de carbonitruration a basse pression de pieces en alliage metallique - Google Patents

Procede de carbonitruration a basse pression de pieces en alliage metallique Download PDF

Info

Publication number
EP1080243B1
EP1080243B1 EP99915850A EP99915850A EP1080243B1 EP 1080243 B1 EP1080243 B1 EP 1080243B1 EP 99915850 A EP99915850 A EP 99915850A EP 99915850 A EP99915850 A EP 99915850A EP 1080243 B1 EP1080243 B1 EP 1080243B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
action
metal alloy
ammonia
nitriding gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99915850A
Other languages
German (de)
English (en)
Other versions
EP1080243A1 (fr
Inventor
Jacques Frey
Philippe Dubois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Publication of EP1080243A1 publication Critical patent/EP1080243A1/fr
Application granted granted Critical
Publication of EP1080243B1 publication Critical patent/EP1080243B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Definitions

  • the subject of the present invention is a carbonitriding process of alloy parts metallic.
  • Carbonitriding is a thermochemical treatment of simultaneous diffusion of carbon and nitrogen from the surface of a ferrous alloy in the solid state. It is generally carried out in a sealed oven, in which a controlled atmosphere is maintained, consisting of a support gas to which is added if necessary, to achieve the desired carbon potential, a carbon enrichment gas, and in addition, a nitrogen gas.
  • the support gas is an endothermic generator gas comprising an alkane which is oxidized to carbon monoxide CO, since oxidation is carried out in the absence of air with respect to the stoichiometric reaction which would transform all the carbon into CO 2 .
  • the gases used can be nitrogen-methanol mixtures or endothermic mixtures based on hydrocarbon and ammonia, as described in “The Engineering Techniques, M1226-8 to 14, July 1994, [1].
  • the conventional method implements atmospheres that all contain oxygen the presence or formation of CO.
  • Oxygen released by the decomposition of CO leads to oxidation surface of the steel which, on the one hand, brakes absorption of carbon and, on the other hand, leads to harmful structures in terms of characteristics mechanical of the treated part, contact fatigue by example.
  • the carbonitrided parts that way are most often used in the state, without any mechanical touch-up of the surface.
  • the subject of the present invention is a carbonitriding process which avoids the harmful presence of oxygen during treatment thermochemical diffusion of carbon and nitrogen in the metal alloy part.
  • the method of carbonitriding of metal alloy parts consists in subjecting said documents to the action of a fuel mixture consisting of ethylene and hydrogen, and the action of a nitriding gas consisting of ammonia, under a pressure of less than 100 hPa and at a temperature from about 750 to about 1050 ° C.
  • the supply of carbon is made by the direct dissociation of a hydrocarbon, in this case ethylene, in the enclosure of a vacuum furnace, and the supply of nitrogen comes from the dissociation.
  • a hydrocarbon in this case ethylene
  • nitrogen comes from the dissociation.
  • ammonia gas depending on the thermally activated reaction: 2NH 3 ⁇ N 2 + 3H 2 .
  • this carbonitriding temperatures treatment more higher than those usually used for this type of reaction, which were usually in a range from 400 to 600 ° C.
  • the dissociation reaction of ammonia is thermodynamically total, but its kinetics is weak. As a result, it still exists at level of the ammonia part to be dissociated, generating active nascent nitrogen. It is for this reason that ammonia can be used for nitrogen supply.
  • the pressure used can be particularly in the range of 10 to 100 hPa.
  • One of the other advantages of the invention is to be able to enrich the surface of the carbon and nitrogen part in a range of much wider temperature, from around 750 to around 1050 ° C, depending on the enrichment sequences considered.
  • the use of the reaction of dissociation of ethylene at low pressure allows be able to provide carbon from 750 ° C and thus lowering the temperature to benefit from a power nitriding more important ammonia because the availability of atomic nitrogen useful for diffusion, is greater. This increases the possibilities for surface carbon enrichment and in nitrogen.
  • the carbonitriding either by subjecting said parts to the simultaneous action of the fuel and gas mixture nitriding, either by subjecting said parts to the successive action of the fuel and gas mixture nitriding.
  • the method of the invention can include an additional processing step vacuum diffusion of the parts, after they have been subjected to the action of the fuel and gas mixture nitriding.
  • Such treatment can be carried out at a temperature from about 750 to about 1050 ° C, under pressures not exceeding 100 hPa.
  • Metallic alloys susceptible to be treated by the process of the invention can be of various types. We can in particular use cobalt-based steels and superalloys. Among steels, the process advantageously applies to treatment of passivable steels, containing by example 2 to 9% chromium and to the treatment of steels stainless steel containing for example 9 to 18% chromium, thanks to the low pressure technique. The treatment of such steels allows more enrich nitrogen to a high degree up to 4%.
  • Nitrogen can also partly enter into a solid solution in the matrix, its beneficial action in this form on the corrosion resistance already recognized.
  • the method of the invention so allows on these steels to get in the layer superficial, the C / N ratio offering the best compromise for desired strength properties wear and / or corrosion resistance, by example.
  • the method of the invention allows, by expanding the temperature range, by possibility to link in a simple way different simultaneous or alternating enrichment sequences in carbon and / or nitrogen, to realize gradients in very varied carbon and nitrogen and this on steels very diverse, even passive.
  • the subject of the invention is also steel parts obtained by this process.
  • These parts can be, for example, steel parts passivable comprising 2 to 9% chromium, which are enriched in nitrogen on their surface up to a content 2% by mass, or stainless steel parts comprising 9 to 18% chromium, which are enriched in nitrogen on their surface up to a content of 4% mass.
  • a so-called double vacuum oven can be used with hot walls or an oven with cold walls, such as the devices described in FR-A-2 663 953.
  • steps 6) and 7) can be repeated several times if necessary.
  • the pressure in the tank is preferably maintained at approximately 25 hPa.
  • a preliminary austenitization step is carried out under vacuum at 10 -2 hPa, at a temperature of 850 ° C., for 30 minutes.
  • Steps 6) and 7) are then carried out under the conditions given in table 2.
  • the reference of the alloys used, the compositions of which are given in table 1, has also been specified.
  • step 6) corresponds to carbonitriding with simultaneous shipment ethylene and ammonia and step 7) is a diffusion treatment under vacuum.
  • step 6) corresponds to carbonitriding with simultaneous shipment ethylene and ammonia (at a lower rate) and step 7) is a nitriding treatment with ammonia alone.
  • step 6) corresponds to a carburetion and step 7) to a nitriding.
  • step 6) corresponds to carbonitriding with simultaneous shipment ethylene and ammonia, but the ammonia flow is very high and step 7) is a diffusion processing under vacuum.
  • step 6 which corresponds to a carbonitriding by simultaneous shipment of ethylene and of ammonia, for a longer period than that of previous examples.
  • the process of the invention is therefore very advantageous because it leads to degrees of enrichment much higher nitrogen than we can get with the conventional methods of carbonitriding where the nitrogen content at the surface are at most about 0.3%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)

Description

Domaine technique
La présente invention a pour objet un procédé de carbonitruration de pièces en alliage métallique.
Elle s'applique en particulier à la carbonitruration de pièces en acier, notamment d'aciers riches en chrome utilisables dans les industries de pointe et l'industrie automobile.
Etat de la technique antérieure
La carbonitruration est un traitement thermochimique de diffusion simultanée de carbone et d'azote à partir de la surface d'un alliage ferreux à l'état solide. Elle s'effectue généralement dans un four étanche, dans lequel on maintient une atmosphère contrôlée, constituée d'un gaz support auquel on ajoute si nécessaire, pour atteindre le potentiel carbone souhaité, un gaz d'enrichissement en carbone, et en plus, un gaz azoté. Généralement, le gaz support est un gaz de générateur endothermique comprenant un alcane qui est oxydé en monoxyde de carbone CO, car on réalise l'oxydation en défaut d'air par rapport à la réaction stoechiométrique qui transformerait tout le carbone en CO2. Les gaz utilisés peuvent être des mélanges azote-méthanol ou des mélanges endothermiques à base d'hydrocarbure et d'ammoniac, comme il est décrit dans « Les Techniques de l'Ingénieur, M1226-8 à 14, juillet 1994, [1].
Ainsi, le procédé classique met en oeuvre des atmosphères qui contiennent toutes de l'oxygène dû à la présence ou à la formation de CO. L'oxygène libéré par la décomposition du CO conduit à une oxydation superficielle de l'acier qui, d'une part, freine l'absorption du carbone et, d'autre part, conduit à des structures néfastes au plan des caractéristiques mécaniques de la pièce traitée, fatigue de contact par exemple. Il faut signaler que les pièces carbonitrurées de cette façon sont le plus souvent utilisées en l'état, sans aucune retouche mécanique de la surface.
Le document FR-A-2 663 953, [2] décrit un procédé et une installation de cémentation de pièces en alliage métallique à basse pression évitant la présence d'oxygène. Cette technique basse pression n'a toutefois jamais été envisagée pour réaliser des traitements de carbonitruration.
Exposé de l'invention
La présente invention a pour objet un procédé de carbonitruration qui permet d'éviter la présence néfaste d'oxygène, lors du traitement thermochimique de diffusion du carbone et de l'azote dans la pièce en alliage métallique.
Selon l'invention, le procédé de carbonitruration de pièces en alliage métallique consiste à soumettre lesdites pièces à l'action d'un mélange carburant constitué d'éthylène et d'hydrogène, et à l'action d'un gaz nitrurant constitué d'ammoniac, sous une pression inférieure à 100 hPa et à une température d'environ 750 à environ 1050°C.
Dans ce procédé, l'apport de carbone se fait par la dissociation directe d'un hydrocarbure, en l'occurrence l'éthylène, dans l'enceinte d'un four à vide, et l'apport d'azote provient de la dissociation du gaz ammoniac, selon la réaction activée thermiquement : 2NH3 → N2 + 3H2.
Selon l'invention, on utilise pour ce traitement de carbonitruration des températures plus élevées que celles utilisées habituellement pour ce type de réaction, qui se situaient généralement dans un domaine de 400 à 600°C.
Aux températures plus élevées utilisées dans l'invention, la réaction de dissociation de l'ammoniac est thermodynamiquement totale, mais sa cinétique est faible. De ce fait, il existe encore au niveau de la pièce de l'ammoniac à dissocier, générant de l'azote naissant actif. C'est pour cette raison que l'on peut utiliser l'ammoniac pour l'apport d'azote.
D'autre part, le fait de travailler sous pression réduite, permet de bénéficier d'une vitesse de passage du gaz dans la charge supérieure à la cinétique de dissociation.
La pression utilisée peut être en particulier dans la gamme de 10 à 100 hPa.
Un des autres avantages du procédé de l'invention est de pouvoir enrichir la surface de la pièce en carbone et en azote dans un domaine de température beaucoup plus large, depuis environ 750 à environ 1050°C, selon les séquences d'enrichissement envisagées. En effet, l'utilisation de la réaction de dissociation de l'éthylène à basse pression permet de pouvoir apporter du carbone dès 750°C et donc ainsi en diminuant la température de bénéficier d'un pouvoir nitrurant plus important de l'ammoniac car la disponibilité en azote atomique utile pour la diffusion, est plus grande. Ceci permet d'accroítre les possibilités d'enrichissement superficiel en carbone et en azote.
Ainsi selon l'invention, on peut obtenir des degrés et des profondeurs d'enrichissement en carbone et en azote voulus en choisissant de façon appropriée les débits d'éthylène et d'ammoniac, la température et la durée du traitement par le mélange carburant et le gaz nitrurant en fonction de l'alliage constituant lesdites pièces.
Selon l'invention, on peut réaliser la carbonitruration, soit en soumettant lesdites pièces à l'action simultanée du mélange carburant et du gaz nitrurant, soit en soumettant lesdites pièces à l'action successive du mélange carburant et du gaz nitrurant.
On peut encore effectuer le traitement en soumettant les pièces à l'action simultanée du mélange carburant et du gaz nitrurant, puis en les soumettant à l'action du gaz nitrurant seul.
Ces étapes peuvent être répétées et combinées entre elles en utilisant des débits, température et durées différentes, situées dans les gammes données ci-dessus.
Enfin, le procédé de l'invention peut comprendre une étape complémentaire de traitement de diffusion sous vide des pièces, après qu'elles aient été soumises à l'action du mélange carburant et du gaz nitrurant. Un tel traitement peut être effectuée à une température d'environ 750 à environ 1050°C, sous des pressions ne dépassant pas 100 hPa.
Les alliages métalliques susceptibles d'être traités par le procédé de l'invention peuvent être de divers types. On peut en particulier utiliser des aciers et des superalliages à base de cobalt. Parmi les aciers, le procédé s'applique avantageusement au traitement des aciers passivables, contenant par exemple 2 à 9 % de chrome et au traitement d'aciers inoxydables contenant par exemple 9 à 18 % de chrome, grâce à la technique de la basse pression. Le traitement de tels aciers permet de plus de les enrichir en azote à un degré élevé pouvant atteindre 4 %.
Actuellement, ces aciers inoxydables sont, pour certaines applications liées à l'usure, utilisés à l'état cémenté. Après cémentation et traitement d'emploi, la couche superficielle durcie est très riche en carbures de chrome, ce qui dégrade fortement la résistance à la corrosion de ces aciers naturellement inoxydables avant cémentation.
Le fait de pouvoir substituer en surface une partie du carbone par de l'azote, permet de former des précipités de nature différente, et ainsi de consommer moins de chrome de la matrice. L'azote peut également entrer en partie en solution solide dans la matrice, son action bénéfique sous cette forme sur la tenue à la corrosion étant déjà reconnue.
Par sa souplesse, le procédé de l'invention permet donc sur ces aciers d'obtenir dans la couche superficielle, le rapport C/N offrant le meilleur compromis pour les propriétés recherchées de résistance à l'usure et/ou de résistance à la corrosion, par exemple.
En fait, le procédé de l'invention permet, par l'élargissement du domaine de température, par la possibilité d'enchaíner de façon simple différentes séquences d'enrichissement simultanées ou alternées en carbone et/ou en azote, de réaliser des gradients en carbone et azote très variés et ceci sur des aciers très divers, même passifs.
Aussi, l'invention a également pour objet des pièces en acier obtenues par ce procédé. Ces pièces peuvent être, par exemple, des pièces en acier passivable comprenant 2 à 9 % de chrome, qui sont enrichies en azote sur leur surface jusqu'à une teneur de 2 % en masse, ou des pièces en acier inoxydable comprenant 9 à 18 % de chrome, qui sont enrichies en azote sur leur surface jusqu'à une teneur de 4 % en masse.
Pour mettre en oeuvre le procédé de l'invention, on peut utiliser un four à double vide dit à parois chaudes ou un four à parois froides, tels que les dispositifs décrits dans FR-A-2 663 953.
A titre d'exemple, le procédé peut comprendre les étapes suivantes :
  • 1) prévidage de la cuve du four jusqu'à une pression de 10-1 hPa de façon à éliminer l'air,
  • 2) remplissage de la cuve par de l'azote à la pression atmosphérique,
  • 3) enfournement de la cuve contenant les pièces métalliques et mise sous vide de la cuve à environ 10-2 hPa,
  • 4) chauffage jusqu'à la température d'austénitisation avec des paliers si nécessaire, et maintien à cette température pendant 30 minutes pour l'homogénéisation des pièces,
  • 5) introduction d'hydrogène jusqu'à 500 hPa, de préférence ou moins selon le type de four,
  • 6) traitement de carbonitruration qui peut être effectué de différentes façons :
  • a) une période d'enrichissement en carbone par introduction du gaz carburant éthylène, suivie d'une période d'enrichissement en azote par introduction d'ammoniac, ou l'inverse, ou
  • a') période d'enrichissement en carbone et en azote par introduction simultanée d'éthylène et d'ammoniac,
  • 7) éventuellement un traitement d'enrichissement analogue à celui de l'étape 6), ou un traitement de diffusion sous vide à une température de 750 à 1050°C, sous une pression de 10-1 hPa, par exemple, et
  • 8) introduction d'azote dans le four en vue du défournement.
  • Il est à noter que les étapes 6) et 7) peuvent être répétées plusieurs fois si nécessaire.
    Lors de l'envoi des gaz éthylène et ammoniac, la pression dans la cuve est de préférence maintenue à environ 25 hPa.
    Exposé détaillé des modes de réalisation
    D'autres caractéristiques et avantages de l'invention ressortiront des exemples de réalisations qui suivent donnés bien entendu à titre illustratif et non limitatif.
    Dans les exemples qui suivent on a utilisé les alliages répertoriés dans le tableau 1 dont les compositions (% en masse) sont données également dans le tableau 1.
    Dans ces exemples, on a suivi le mode opératoire général décrit ci-dessus, pour les étapes 1 à 5 et 8 et les étapes 6 et 7 ont été réalisées en utilisant des débits d'éthylène et d'ammoniac et des séquences d'enrichissement et/ou de diffusion différentes.
    Dans tous les exemples, on réalise une étape préalable d'austénitisation sous vide à 10-2 hPa, à une température de 850°C, pendant 30 minutes. On effectue ensuite les étape 6) et 7) dans les conditions données dans le tableau 2. Dans ce tableau, on a spécifié également la référence des alliages utilisés dont les compositions sont données dans le tableau 1.
    Dans les exemples 1 et 2, l'étape 6) correspond à une carbonitruration avec envoi simultané d'éthylène et d'ammoniac et l'étape 7) est un traitement de diffusion sous vide.
    Dans les exemples 3 et 4, l'étape 6) correspond à une carbonitruration avec envoi simultané d'éthylène et d'ammoniac ( à un débit plus faible) et l'étape 7) est un traitement de nitruration par l'ammoniac seul.
    Dans les exemples 5 et 6, l'étape 6) correspond à une carburation et l'étape 7) à une nitruration.
    Dans les exemples 7 à 9, l'étape 6) correspond à une carbonitruration avec envoi simultané d'éthylène et d'ammoniac, mais le débit d'ammoniac est très élevé et l'étape 7) est un traitement de diffusion sous vide.
    Dans les exemples 10 à 16, on réalise seulement l'étape 6) qui correspond à une carbonitruration par envoi simultané d'éthylène et d'ammoniac, pendant une durée supérieure à celle des exemples précédents.
    Les résultats obtenus dans chaque exemple, c'est-à-dire les profils d'enrichissement superficiel en carbone et en azote (en % en masse) pour chacun des alliages traités, sont donnés dans les tableaux 3 à 8.
    Les résultats obtenus dans les exemples 1 à 6 sur des nuances classiques de carbonitruration sont voisins de ceux que l'on peut obtenir en réalisant une carbonitruration gazeuse classique.
    Dans les exemples 7 à 9, on obtient de bons résultats en traitant des alliages plus riches en chrome, donc plus passifs.
    Dans les exemples 10 à 16, on observe que l'on peut atteindre superficiellement des valeurs très élevées en azote sur des aciers inoxydables riches en chrome où les taux d'azote atteignent respectivement 2,86 et 4 % d'azote dans les exemples 14 et 15. Ainsi, l'azote remplace en partie le carbone superficiel, ce qui permet d'obtenir des couches avec des propriétés particulières.
    Le procédé de l'invention est donc très avantageux car il conduit à des degrés d'enrichissement en azote beaucoup plus élevés que ceux que l'on peut obtenir avec les procédés classiques de carbonitruration où les teneurs en azote en surface sont au plus d'environ 0,3 %
    Références citées
  • [1] : Techniques de l'Ingénieur M 1226-8 à 14, Juillet 1994
  • [2] : FR-A-2 663 953
  • Acier C Ni Cr Mo V Al
    20 NC 6 0,17 1,60 0,85
    27 CD 4 0,27 1,0 0,2
    20 CD 12 0,25 3,0 0,4
    32 CDV 13 0,30 3,0 1,0 0,20
    40 CAD 6.12 0,40 1,8 0,25 1,0
    20 DN 34.13 0,20 3,0 3,5
    Z 15 CN 17.03 0,16 2,0 17,0
    Z 12 CNDV 12 0,12 2,5 11,5 1,6 0,30
    Ex Acier Etape 6) Etape 7)
    t
    (°C)
    durée
    (min)
    C2H4
    (l/h)
    NH3
    (l/h)
    P
    (hPa)
    t
    (°C)
    durée
    (min)
    NH3
    (l/n)
    P
    (hPa)
    1 20NC6 850 45 50 300 25 850 45 - 0,1
    2 27CD4
    3 20NC6 850 45 50 100 25 850 45 100 25
    4 27CD4
    5 20NC6 850 45 50 - 25 850 45 100 25
    6 27CD4
    7 27CD4
    8 32CVD13 850 45 50 600 25 850 45 - 0,1
    9 Z15CN17.03
    10 20NC6
    11 27D4
    12 20CD12
    13 40CAD6.12 850 360 50 300 25
    14 Z12CNDV12
    15 Z15CN17.03
    16 20DN34.13
    Ex 1 2
    Alliage 20 NC 6 27 CD 4
    Profondeur
    (mm)
    C % N % C % N %
    0,05 0,50 0,304 0,61 0,324
    0,15 0,45 0,215 0,58 0,223
    0,25 0,45 0,113 0,51 0,122
    0,35 0,33 0,039 0,47 0,043
    coeur 0,19 0,0059 0,27 0,0080
    Ex 3 4
    Alliage 20 NC 6 27 CD 4
    Profondeur
    (mm)
    C % N % C % N %
    0,05 0,72 0,297 0,75 0,279
    0,15 0,66 0,203 0,69 0,189
    0,25 0,57 0,114 0,61 0,102
    0,35 0,46 0,049 0,51 0,037
    coeur 0,19 0,0059 0,27 0,0081
    Ex 5 6
    Alliage 20 NC 6 27 CD 4
    Profondeur
    (mm)
    C % N % C % N %
    0,05 0,79 0,148 0,82 0,165
    0,15 0,71 0,094 0,72 0,078
    0,25 0,56 0,029 0,57 0,028
    0,35 0,37 0,0092 0,44 0,012
    coeur 0,19 0,0059 0,27 0,0081
    Ex 7 8 9
    Alliage 27 CD4 32CDV13 Z15CN17.03
    Profondeur
    (mm)
    C % N % C % N % C % N %
    0,05 0,63 0,22 0,34 0,73 0,89 2,00
    0,15 0,58 0,19 0,60 0,29 0,77 0,08
    0,25 0,54 0,12 0,55 0,03 0,33 0,05
    0,35 0,46 0,05 0,44 0,01 0,20 0,05
    Ex 10 11 12 13
    Alliage 20NC6 27CD4 20CD12 40CAD6.12
    Profondeur
    (mm)
    C % N % C % N % C % N % C % N %
    0,05 0,98 0,52 0,93 0,44 0,60 0,89 0,81 0,98
    0,15 0,86 0,51 0,86 0,44 0,54 0,80 0,77 0,84
    0,25 0,81 0,45 0,79 0,41 0,54 0,55 0,89 0,48
    0,35 0,73 0,31 0,77 0,31 0,73 0,12 0,80 0,04
    0,45 0,65 0,20 0,66 0,24 0,57 0,04 0,66 0,01
    0,55 0,56 0,09 0,51 0,15 0,46 0,02 0,57 0,01
    Ex 14 15 16
    Alliage Z12CNDV12 Z15CN17.03 20DN34.13
    Profondeur
    (mm)
    C % N % C % N % C % N %
    0,05 0,41 2,86 0,61 4,00 0,57 0,53
    0,15 2,07 0,26 2,45 0,36 0,53 0,41
    0,25 1,32 0,07 1,21 0,08 0,50 0,31
    0,35 1,62 0,04 0,51 0,05 0,46 0,19
    0,45 0,22 0,03 0,26 0,04 0,40 0,11
    0,55 0,14 0,03 0,20 0,04 0,35 0,08

    Claims (12)

    1. Procédé de carbonitruration de pièces en alliage métallique, dans lequel on soumet lesdites pièces à l'action d'un mélange carburant constitué d'éthylène et d'hydrogène et à l'action d'un gaz nitrurant constitué d'ammoniac, sous une pression inférieure à 100 hPa et à une température d'environ 750 à 1050°C.
    2. Procédé selon la revendication 1, dans lequel la pression est de 10 à 100 hPa.
    3. Procédé selon l'une quelconque des revendications 1 et 2, dans lequel l'alliage métallique est un acier.
    4. Procédé selon la revendication 3, dans lequel les débits d'éthylène et d'ammoniac, la température et la durée du traitement par le mélange carburant et le gaz nitrurant sont choisis de façon à obtenir un enrichissement en azote de la surface de la pièce pouvant aller jusqu'à 4 % en masse.
    5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'alliage métallique est un acier passivable comprenant 2 à 9 % en masse de chrome.
    6. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'alliage métallique est un acier inoxydable comprenant 9 à 18 % en masse de chrome.
    7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel on soumet lesdites pièces à l'action simultanée du mélange carburant et du gaz nitrurant.
    8. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel on soumet lesdites pièces successivement à l'action du mélange carburant, puis à l'action du gaz nitrurant.
    9. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel on soumet les pièces 1) à l'action simultanée du mélange carburant et du gaz nitrurant, puis 2) à l'action du gaz nitrurant seul.
    10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel après avoir soumis les pièces à l'action du mélange carburant et du gaz nitrurant, on soumet les pièces à un traitement de diffusion sous vide, à une température d'environ 750 à 1050°C.
    11. Procédé selon la revendication 5, dans lequel on enrichit en azote la surface de ladite pièce jusqu'à une teneur de 2 % en masse.
    12. Procédé selon la revendication 6, dans lequel on enrichit en azote la surface de ladite pièce jusqu'à une teneur de 4 % en masse.
    EP99915850A 1998-04-28 1999-04-27 Procede de carbonitruration a basse pression de pieces en alliage metallique Expired - Lifetime EP1080243B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9805311A FR2777911B1 (fr) 1998-04-28 1998-04-28 Procede de carbonitruration a basse pression de pieces en alliage metallique
    FR9805311 1998-04-28
    PCT/FR1999/000998 WO1999055928A1 (fr) 1998-04-28 1999-04-27 Procede de carbonitruration a basse pression de pieces en alliage metallique

    Publications (2)

    Publication Number Publication Date
    EP1080243A1 EP1080243A1 (fr) 2001-03-07
    EP1080243B1 true EP1080243B1 (fr) 2002-07-17

    Family

    ID=9525752

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99915850A Expired - Lifetime EP1080243B1 (fr) 1998-04-28 1999-04-27 Procede de carbonitruration a basse pression de pieces en alliage metallique

    Country Status (9)

    Country Link
    EP (1) EP1080243B1 (fr)
    AT (1) ATE220732T1 (fr)
    CA (1) CA2326239C (fr)
    DE (1) DE69902169T2 (fr)
    ES (1) ES2179639T3 (fr)
    FR (1) FR2777911B1 (fr)
    PT (1) PT1080243E (fr)
    TW (1) TW460620B (fr)
    WO (1) WO1999055928A1 (fr)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8303731B2 (en) 2005-04-19 2012-11-06 Ecm Technologies Low pressure carbonitriding method and device
    CN103946411A (zh) * 2011-10-31 2014-07-23 标致·雪铁龙汽车公司 在初始渗氮阶段上在扩展的温度范围内的低压碳氮共渗方法
    US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE274073T1 (de) * 2000-05-24 2004-09-15 Ipsen Int Gmbh Verfahren und vorrichtung zur wärmebehandlung metallischer werkstücke
    DE10118494C2 (de) * 2001-04-04 2003-12-11 Aichelin Gesmbh Moedling Verfahren zur Niederdruck-Carbonitrierung von Stahlteilen
    AU2002221138A1 (en) * 2001-12-13 2003-06-23 Koyo Thermo Systems Co., Ltd. Vacuum carbo-nitriding method
    DE102004058838B4 (de) * 2004-12-06 2007-11-29 Schramm, Armin Düseneinsatz aus Stahl
    WO2012048669A1 (fr) * 2010-10-11 2012-04-19 Ipsen International Gmbh Procédé et dispositif de carburation et carbonitruration de matériaux métalliques
    FR2981948B1 (fr) * 2011-10-31 2014-01-03 Peugeot Citroen Automobiles Sa Procede de carbonitruration basse pression, a gradient reduit de temperature dans une phase de nitruration initiale
    EP2804965B1 (fr) 2012-01-20 2020-09-16 Swagelok Company Écoulement concourant de gaz d'activation pour carburation à basse température
    EP3802903A1 (fr) * 2018-06-11 2021-04-14 Swagelok Company Activation chimique de métaux d'auto-passivation

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CA692161A (en) * 1964-08-11 N. Ipsen Harold Method of heat treating metal parts
    DE2336680A1 (de) * 1973-07-19 1975-01-30 Degussa Verfahren zum gasnitrieren von staehlen im unterdruckbereich
    FR2288785A2 (fr) * 1974-10-21 1976-05-21 Air Liquide Procede de traitement thermique de l'acier et de controle dudit traitement
    FR2271295A1 (en) * 1973-12-21 1975-12-12 Air Liquide Gas mixtures for heat treating steel - esp. for controlled carburisation

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8303731B2 (en) 2005-04-19 2012-11-06 Ecm Technologies Low pressure carbonitriding method and device
    US8784575B2 (en) 2005-04-19 2014-07-22 Ecm Technologies Low pressure carbonitriding method and device
    EP1885904B2 (fr) 2005-04-19 2017-02-01 Ecm Technologies Procede de carbonitruration a basse pression
    US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
    CN103946411A (zh) * 2011-10-31 2014-07-23 标致·雪铁龙汽车公司 在初始渗氮阶段上在扩展的温度范围内的低压碳氮共渗方法
    CN103946411B (zh) * 2011-10-31 2016-01-20 标致·雪铁龙汽车公司 在初始渗氮阶段上在扩展的温度范围内的低压碳氮共渗方法

    Also Published As

    Publication number Publication date
    CA2326239C (fr) 2008-02-19
    ATE220732T1 (de) 2002-08-15
    TW460620B (en) 2001-10-21
    DE69902169D1 (de) 2002-08-22
    ES2179639T3 (es) 2003-01-16
    FR2777911B1 (fr) 2000-07-28
    WO1999055928A1 (fr) 1999-11-04
    FR2777911A1 (fr) 1999-10-29
    DE69902169T2 (de) 2003-02-27
    EP1080243A1 (fr) 2001-03-07
    PT1080243E (pt) 2002-12-31
    CA2326239A1 (fr) 1999-11-04

    Similar Documents

    Publication Publication Date Title
    EP1885904B2 (fr) Procede de carbonitruration a basse pression
    EP1080243B1 (fr) Procede de carbonitruration a basse pression de pieces en alliage metallique
    EP0465333B1 (fr) Procédé et installation de cémentation de pièces en alliage métallique à basse pression
    EP3218530B1 (fr) Procédé et installation de carbonitruration de pièce(s) en acier sous basse pression et haute température
    JP2007046088A (ja) 浸窒焼入品及びその製造方法
    FR2524006A1 (fr) Procede de durcissement superficiel de pieces metalliques
    EP0096602B1 (fr) Procédé de traitement thermique de pièces métalliques par carburation
    EP0010484B1 (fr) Perfectionnement dans la chromisation des aciers par voie gazeuse
    EP1280943B1 (fr) Procede de cementation basse pression
    JP2004332074A (ja) 浸炭方法
    FR2588281A1 (fr) Procede de traitement thermique pour la realisation de pieces en acier resistant a la corrosion
    US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
    JP2010222636A (ja) 鋼材の表面処理方法
    FR2722212A1 (fr) Procede et installation de traitement de cementation et de carbonitruration des aciers
    JP6257527B2 (ja) 低温浸炭における活性化ガスの同時流
    US4042428A (en) Process for hardening iron-containing surfaces with organic solvent and ammonia
    JP6935326B2 (ja) ガス浸炭方法
    FR2714075A1 (fr) Procédé de traitement thermique sous gaz de traitement pour des pièces à traiter à l'aide d'un traitement gazeux.
    JP2005232518A (ja) エンジンバルブの表面硬化処理法
    EP0985054B1 (fr) Procede de fabrication en continu d'une bande en acier pour emboutissage presentant des proprietes de surface ameliorees
    JP3661868B2 (ja) 浸炭方法
    FR2991341A1 (fr) Procede d'enrichissement thermochimique avec trempe par induction.
    WO2005038076A1 (fr) Procede et four de cementation basse pression
    JP2005200695A (ja) ガス浸炭方法
    FR2994195A1 (fr) Procede d'enrichissement thermochimique comprenant un affinage structural de l'acier

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000812

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI LU PT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010605

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI LU PT

    REF Corresponds to:

    Ref document number: 220732

    Country of ref document: AT

    Date of ref document: 20020815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69902169

    Country of ref document: DE

    Date of ref document: 20020822

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20021030

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20021011

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2179639

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030422

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CJ

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: CA

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20140318

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20140320

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140422

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20140422

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20140417

    Year of fee payment: 16

    Ref country code: AT

    Payment date: 20140317

    Year of fee payment: 16

    Ref country code: CH

    Payment date: 20140414

    Year of fee payment: 16

    Ref country code: IT

    Payment date: 20140417

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20140411

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20140429

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69902169

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20151027

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150427

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 220732

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20150427

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150427

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150427

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150427

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151103

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20151231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150427

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151027

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150428

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150430

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180626