EP1079464A1 - Antennensystem - Google Patents

Antennensystem Download PDF

Info

Publication number
EP1079464A1
EP1079464A1 EP99116679A EP99116679A EP1079464A1 EP 1079464 A1 EP1079464 A1 EP 1079464A1 EP 99116679 A EP99116679 A EP 99116679A EP 99116679 A EP99116679 A EP 99116679A EP 1079464 A1 EP1079464 A1 EP 1079464A1
Authority
EP
European Patent Office
Prior art keywords
antenna system
groups
radiators
antenna
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99116679A
Other languages
English (en)
French (fr)
Inventor
Michael Daginnus
Mehran Aminzadeh
Georg Bucksch
Walter Denn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuba Automotive GmbH and Co KG
Original Assignee
Fuba Automotive GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19834577A priority Critical patent/DE19834577B4/de
Application filed by Fuba Automotive GmbH and Co KG filed Critical Fuba Automotive GmbH and Co KG
Priority to EP99116679A priority patent/EP1079464A1/de
Priority to US09/386,542 priority patent/US6317096B1/en
Publication of EP1079464A1 publication Critical patent/EP1079464A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation

Definitions

  • the invention relates to an antenna system for motor vehicles, especially for the reception of television and radio broadcasts and for data transfer via geostationary satellites in the Frequency range greater than 10 Ghz.
  • the elevation angle in Central Europe is 30 °.
  • Known and common satellite receiving antennas are the parabolic mirror antennas and, to a lesser extent, the planar antennas. If you wanted to place a parabolic mirror antenna with the geometry and size necessary for a sufficient profit somewhere on the body of a vehicle, this would not be accepted according to the current design ideas and for aerodynamic reasons.
  • the planar antennas are more compact, their radiation lobe, which is also orthogonal to the aperture, is just as unsuitable.
  • an antenna arranged in or on the vehicle with a directional characteristic also has to react incessantly to the changes in the direction of radiation, in accordance with the constant changes in direction during driving.
  • Antennas with directional characteristics are known from radar technology, in which an omnidirectional radiation effect is achieved by continuous rotation of the radiator or reflector. They combine the high or at least sufficient gain achievable with the directivity with an azimuth scan of 360 °.
  • the antenna - usually a parabolic mirror antenna - is rotated by mechanical means at a constant speed and direction.
  • this principle is not suitable for motor vehicles, especially for cars, because of the design of the antenna.
  • reception of signals from geostationary satellites from the vehicle has so far only been possible by parking the vehicle and extending or setting up a satellite antenna of the type described and then manually or automatically aligning it like a stationary antenna - depending on the level of comfort of the equipment. This is common, for example, in mobile homes.
  • the purpose of the invention is to enable the mobile reception of television and radio broadcast transmissions and of data from geostationary satellites, regardless of the operating state of the vehicle.
  • the invention is based on the object of realizing an antenna arrangement for motor vehicles for the frequency range greater than 10 GHz with quasi-omnidirectional radiation in the horizontal radiation diagram, preferably by directionally selective reception with an azimuth scanning of 360 °.
  • the antenna arrangement should be integrated into the vehicle body in such a way that it cannot be perceived optically.
  • the invention By bundling a large number of individual radiators with high packing density on one surface, the invention creates an overall compact structure.
  • the individual radiators all have the same elevation angle, which is the same as the elevation of the overall arrangement.
  • the necessary reception power is guaranteed, depending on the power flux density, by a certain number of individual radiators, the apertures of which add up.
  • the basis of the directionally selective reception according to the invention with intermittent change in the radiation direction are the diversity principle and the combined use of a gyromagnetic sensor and GPS (Global positioning system), with which changes in the direction of travel of the vehicle and thus the azimuth angle for the antennas with respect to a selected one Satellites are recognized and compensated.
  • GPS Global positioning system
  • a control signal for a change in the reception parameters is generated when the direction of travel changes. If the current reception quality is reduced, the diversity circuit additionally searches the surroundings of the radiation direction or the emitter group switched to reception and switches to a more favorable emitter group when the threshold value is undershot. This applies to the variant of electronic rotation. In the case of mechanical rotation, a control signal is generated for the motor of the base plate, and the system pivots in the new receiving direction by mechanical rotation.
  • the advantages of the invention are obvious: Above all, a way has been found to ensure stable reception of broadcasts from geostationary satellites in the moving vehicle even under the geographical conditions, for example of Central Europe, with low elevation.
  • the spatial dimensions of the antenna arrangement according to the invention are still limited even under unfavorable conditions - low gain of the individual radiator at the edge of the coverage area and thus a high number of radiators required - and can also be realized on average passenger cars. This applies even under the condition that the system must guarantee at least 30 dBi antenna gain.
  • Another advantage is that the overall arrangement can be divided into sectors or segments with radiator groups, which are integrated into different components of the body and are switched via a central management system. This provides a high degree of variability in the assignment and integration of the antenna units.
  • the antenna system is completely, as a compact structural unit, integrated in an essentially horizontal surface of the vehicle body, such as the roof.
  • horn radiators 2 of the pyramid horn type
  • stripline antennas 3 are arranged in FIGS. 1 and 2.
  • the stripline antennas are grouped into groups of four.
  • the elevation angle of about 30 ° is achieved with the horn radiators corresponding angling of the funnel-shaped area achieved; at the stripline antennas are the surface segments on carriers 4 grouped on the peripheral rings 5 with prism cross-section the plate 1 are held.
  • the full circle is divided into reception-effective sectors with the aid of the feed line network, the lobes of which overlap each other in the 3 dB range.
  • the radiator sectors can also be separated in such a way that when the azimuth angle changes, the groups move laterally by an angle smaller than the sector angle.
  • the waveguides of the radiators are shown in FIG. 1 standing "and in Figure 2 lying on the base plate 1.
  • the base plate with the Radiators mechanically moved by the drive 5.
  • the drive must be light, low inertia and reliable, and where it is at the Body or is arranged on the base plate 1 depends on the premises of the individual case.
  • radiator groups can be formed that are not spatially concentrated to form a full circle.
  • the base plate is divided into sections with either one or more reception groups, and the sections are positioned on different body elements.
  • the main requirement is that the fictitious omnidirectional effect results again - and that the feeder network is manageable and there are no serious differences in runtime.
  • FIG. 4 and 5 show examples of the proportions of the individual radiators or an elementary group.
  • radiators of this construction here in a simplified representation - broadband reception in one polarization is possible.
  • the practical execution itself and the choice of materials and the resulting dimensional corrections and the physical optimization of the emitters and the system are then significantly influenced by the space available, the reception spectrum and also by technological factors - these are tasks that have to be done with the developer available means of the known prior art in terms of optimizing the system are to be solved.
  • 2.1 is the waveguide corresponding to 11.7 GHz
  • 2.2 the funnel-shaped extension and 2.3 the decoupling element with the connection to the feeder network.
  • the diameter of a base plate 1 with stripline antennas of the construction described here and for electronic rotation is approximately 600 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Die Erfindung betrifft ein Antennensystem in waagerechter Anordnung mit Rundstrahlwirkung, insbesondere für den mobilen Empfang von geostationären Satelliten mit Frequenzen größer 10 GHz. Dabei ist auf einer im wesentlichen waagerechten Grundplatte (1) eine Vielzahl Einzelstrahler (2, 3) angeordnet, die nach einer Variante der Erfindung durch ein Steuerungssystem gruppenweise schmalkeulig auf die Signalquelle fokussiert werden. Die Fokussierung umfaßt durch intermittierende Rotation insgesamt eine Azimut-Abtastung von 360°, wobei die jeweils aktuell auf die Signalquelle fokussierte Gruppe von Einzelstrahlern alle Empfangsparameter nach vordefinierten Gütekriterien gewährleistet. Nach einer anderen Variante der Erfindung wird richtungsselektiver Empfang durch mechanisch erzeugte intermittierende Rotation vorzugsweise aller Strahler (2, 3) gemeinsam erzeugt, wobei die Strahler auf einer vorzugsweise kreisrunden, als ganzes drehbaren Grundplatte (1) angeordnet sind. Die erfindungsgemäße Anordnung kann vorteilhaft in das Dach von Pkw integriert werden und ist dann optisch nicht wahrnehmbar. Eine derartige, die Fahrzeug-Silhuette nicht beeinträchtigende Positionierung ist mit herkömmlichen Antennenkonstruktionen, wie Parabolspiegel-Antennen und Planarantennen, nicht möglich. Weitere Gründe für die Ablehnung herkömmlicher Lösungen sind die aktuellen Design-Vorstellungen und aerodynamischen Gründe. Die Erfindung eröffnet eine Möglichkeit, den stabilen Empfang von Sendungen von geostationären Satelliten im bewegten Fahrzeug auch unter den geographischen Bedingungen z.B. Mitteleuropas - bei geringer Elevation - zu gewährleisten. Die räumlichen Abmessungen der erfindungsgemäßen Antennenanordnung halten sich selbst für ungünstige Verhältnisse in Grenzen. Die Erfindung läßt sich auch an durchschnittlichen Pkw realisieren. <IMAGE>

Description

Die Erfindung betrifft ein Antennensystem für Kraftfahrzeuge, insbesondere für den Empfang von Fernseh- und Hörrundfunksendungen und für den Datentransfer über geostationäre Satelliten im Frequenzbereich größer 10 Ghz.
Für Antennen zum Empfang von Sendungen von geostationären Satelliten liegt der Elevationswinkel in Mitteleuropa bei 30°.
Bekannte und gebräuchliche Satelliten-Empfangsantennen sind die Parabolspiegel-Antennen und, in geringerem Maß, die Planarantennen.
Wollte man nun irgendwo an der Karosserie eines Fahrzeugs eine Parabolspiegel-Antenne mit der für einen ausreichenden Gewinn notwendigen Geometrie und Größe anordnen, so würde dies nach den aktuellen Design-Vorstellungen und aus aerodynamischen Gründen nicht akzeptiert.
Die Planarantennen sind zwar kompakter, sind aber mit ihrer ebenfalls orthogonal zur Apertur stehenden Strahlungskeule ebensowenig geeignet. Würde man eine Planarantenne z.B. in waagerechter Lage in ein Fahrzeug-Dach integrieren, wäre die Strahlungsrichtung falsch; würde man sie mit der richtigen Elevation positionieren, hätte man die gleichen Probleme wie mit den Parabolspiegel-Antennen.
Hinzu kommt, daß eine im oder am Fahrzeug angeordnete Antenne mit Richtcharakteristik auch noch, entsprechend den ständigen Richtungsänderungen bei Fahrbetrieb, unablässig auf die Änderungen der Strahlungsrichtung reagieren muß.
Aus der Radartechnik sind Antennen mit Richtcharakteristik bekannt, bei denen ein Rundstrahlungseffekt durch kontinuierliche Rotation des Strahlers bzw. Reflektors erzielt wird. Sie verbinden den mit der Richtwirkung erzielbaren hohen bzw. zumindest ausreichenden Gewinn mit einer Azimut-Abtastung von 360°. Die Antenne - meist eine Parabolspiegel-Antenne - wird mit mechanischen Mitteln mit konstanter Drehzahl und Richtung gedreht.
Dieses Prinzip ist jedoch wegen der Bauform der Antenne für Kraftfahrzeuge, insbesondere für Pkw, nicht geeignet. Darüber hinaus denke man an die vergleichsweise hohen Drehzahlen, mit denen das System für den Satellitenempfang rotieren müßte, und an den damit verbundenen Aufwand.
In Mitteleuropa ist der Empfang von Signalen von geostationären Satelliten vom Fahrzeug aus bisher nur möglich, indem man das Fahrzeug parkt und eine Satellitenantenne der beschriebenen Art ausfährt oder aufstellt und sie dann wie eine stationäre Antenne manuell oder automatisch ausrichtet - je nach Komfortgrad der Ausrüstung.
Dies ist z.B. bei Wohnmobilen gang und gäbe.
Es ist Zweck der Erfindung, den mobilen Empfang von Fernseh- und Hörrundfunksendungen und von Daten von geostationären Satelliten, unabhängig vom Betriebszustand des Fahrzeugs, zu ermöglichen.
Der Erfindung liegt die Aufgabe zugrunde, für Kraftfahrzeuge eine Antennenanordnung für den Frequenzbereich größer 10 Ghz mit quasi-Rundumstrahlung im horizontalen Strahlungsdiagramm, vorzugsweise durch richtungsselektiven Empfang bei einer Azimut-Abtastung von 360°, zu realisieren. Die Antennenanordnung soll so in den Fahrzeugaufbau integriert sein, daß sie optisch nicht wahrzunehmen ist.
Diese Aufgabe wird mit den im Hauptanspruch angegebenen Merkmalen gelöst. Die Unteransprüche enthalten bevorzugte Ausführungsvarianten und -details.
Die Erfindung schafft durch Bündelung einer Vielzahl von Einzelstrahlern mit hoher Packungsdichte auf einer Fläche ein insgesamt kompaktes Gebilde. Die Einzelstrahler haben sämtlich denselben Erhebungswinkel, der gleich der Elevation der Gesamtanordnung ist.
Die notwendige Empfangsleistung wird, in Abhängigkeit von der Leistungsflußdichte, durch eine bestimmte Zahl von Einzelstrahlern gewährleistet, deren Aperturen sich summieren.
Bei mechanischer Rotationsbewegung der Anordnung - wenn z.B. alle Einzelstrahler mit gleicher Strahlungsrichtung auf einer intermittierend um eine Achse bewegten Grundplatte stehen - kann die Zahl der aktuell auf die Signalquelle gerichteten Strahler gleich der Gesamtzahl der Strahler sein.
Bei elektronischer Rotation sind aus der Gesamtzahl der Strahler Gruppen zu bilden, die jede für sich im Empfangsfall den notwendigen Gewinn liefern, und deren Richtcharakteristika, mit jeweils einer gewissen Überlappung, sich zum Vollkreis addieren.
Grundlage des erfindungsgemäßen richtungsselektives Empfangs mit intermittierendem Wechsel der Strahlungsrichtung sind das Diversity-Prinzip sowie die kombinierte Nutzung eines gyromagnetischen Sensors und von GPS (Global positioning system), mit denen Änderungen der Fahrtrichtung des Fahrzeugs und damit des Azimutwinkels für die Antennen in bezug auf einen ausgewählten Satelliten erkannt und kompensiert werden.
Mit dem gyromagnetischen Sensor und, unterstützend, mit der GPS-Einheit wird bei Änderung der Fahrtrichtung ein Steuersignal für eine Änderung der Empfangsparameter generiert. Die Diversity-Schaltung sucht bei Minderung der aktuellen Empfangsqualität zusätzlich die Umgebung der Strahlungsrichtung bzw. der auf Empfang geschalteten Strahlergruppe ab und schaltet bei Unterschreiten eines Schwellenwerts auf eine günstigere Strahlergruppe um. Dies gilt für die Variante der elektronischen Rotation. Bei mechanischer Rotation wird ein Steuersignal für den Motor der Grundplatte generiert, und das System schwenkt durch mechanische Drehung in die neue Empfangsrichtung.
Die Vorteile der Erfindung sind offensichtlich: Vor allem wurde eine Möglichkeit gefunden, einen stabilen Empfang von Sendungen von geostationären Satelliten im bewegten Fahrzeug auch unter den geographischen Bedingungen z.B. Mitteleuropas - bei geringer Elevation - zu gewährleisten. Die räumlichen Abmessungen der erfindungsgemäßen Antennenanordnung halten sich selbst für ungünstige Verhältnisse - geringer Gewinn des Einzelstrahlers am Rande des Versorgungsgebiets und damit hohe notwendige Strahlerzahl - noch in Grenzen und lassen sich auch an durchschnittlichen Pkw realisieren. Dies gilt selbst unter der Voraussetzung, daß mit dem System mindestens 30 dBi Antennengewinn zu gewährleisten sind.
Ein weiterer Vorteil besteht darin, daß eine Aufteilung der Gesamtanordnung in Sektoren oder Segmente mit Strahlergruppen möglich ist, die in unterschiedliche Bauteile der Karosserie integriert werden und über ein zentrales Management geschaltet werden. Dadurch ist eine hohe Variabilität der Zuordnung und Integration der Antenneneinheiten gegeben.
Das erfindungsgemäße Prinzip wird in den vorliegenden Ansprüchen und Ausführungsbeispielen in Varianten und mit Details dargestellt, an denen die Funktion und die Vorteile bereits geprüft und nachgewiesen wurden.
Das heißt nicht, daß der Erfindungsgedanke nicht auch weitere Ausgestaltungen und Varianten umfaßt. Zu denken ist vor allem auch an die Integration in senkrechte Karosserieelemente, wie die Seitenteile, oder, z.B. bei einem Bus, die senkrechte Anordnung hinter den großflächigen Scheiben, einschließlich Front- und Heckscheibe.
Dort wären auch Antennensysteme, wie die flachen Planarantennen, in erfindungsgemäßer Zusammenschaltung denkbar.
Die meist rechteckigen Planarantennen haben sich im häuslichen Gebrauch nicht wie zunächst angenommen durchgesetzt, könnten sich aber bei bestimmten Fahrzeugen auf Grund der einfachen Bauweise und der möglichen geringen Masse als vorteilhaft erweisen.
Die Erfindung wird im folgenden an Hand von Ausführungsbeispielen näher erläutert. In der zugehörigen Zeichnung zeigen
Figur 1.
Antennensystem aus Hornstrahlern auf kreisrunder Grundplatte, für elektronische Rotation
Figur 2.
Hornstrahler auf kreisrunder Grundplatte, für mechanische Rotation
Figur 3.
Konstruktive Details einer Anordnung mit StreifenleiterAntennen (patch antennas), für elektronische Rotation
Figur 4.
Hornstrahler für 11,7 GHz
Figur 5.
Gruppe von Streifenleiter-Antennen für 11,7 GHz
Bei den schematischen Darstellungen in Figur 1 und 2 wird davon ausgegangen, daß das Antennensystem komplett, als kompakte Baueinheit in eine im wesentlichen waagerechte Fläche der Fahrzeug-Karosserie, wie das Dach, integriert wird.
Auf der kreisrunden Grundplatte 1 sind in Figur 1 und 2 Hornstrahler 2 (vom Typ Pyramidenhorn) und bei dem Beispiel nach Figur 3 Streifenleiter-Antennen 3 angeordnet. Die Streifenleiter-Antennen sind jeweils zu Vierergruppen zusammengefaßt.
Der Elevationswinkel von etwa 30° wird bei den Hornstrahlern durch entsprechendes Anwinkeln des trichterförmigen Bereichs erzielt; bei den Streifenleiter-Antennen sind die Flächensegmente auf Trägern 4 gruppiert, die periphär auf Ringsicken 5 mit Prismenquerschnitt auf der Platte 1 gehalten werden.
Bei der Anordnung nach Figur 1 ist der Vollkreis mit Hilfe des Speiseleitungsnetzes in empfangswirksame Sektoren aufgeteilt, deren Keulen sich jeweils im 3-db-Bereich überlappen. Man kann die Strahlersektoren schaltungtechnisch auch so separieren, daß sich die Gruppen bei Änderung des Azimutwinkels seitlich um einen Winkel kleiner als der Sektorwinkel verschieben. Die Hohlleiter der Strahler sind in Figur 1
Figure 00050001
stehend" und in Figur 2 liegend auf der Grundplatte 1 angeordnet.
Bei dem Antennensystem nach Figur 2 wird die Grundplatte mit den Strahlern durch den Antrieb 5 mechanisch bewegt. Der Antrieb muß leicht, trägheitsarm und zuverlässig sein, und wo er an der Karosserie bzw. an der Grundplatte 1 angeordnet ist, hängt von den Prämissen des Einzelfalls ab.
Das über die Gruppen und das Speiseleitungsnetz für das Beispiel nach Figur 1 Gesagte gilt auch für das System mit Streifenleiter-Antennen, von dem Figur 3 einen Sektor und Einzelheiten der Bauelemente zeigt.
Hier wird gleichzeitig deutlich, daß man bei elektronischer Abtastung des Azimuts Strahlergruppen bilden kann, die nicht räumlich zu einem Vollkreis konzentriert sind. Man teilt die Grundplatte in Abschnitte mit entweder einer oder mit jeweils mehreren empfangswirksamen Gruppen, und die Abschnitte werden auf unterschiedlichen Karosserielelementen positioniert.
Bedingung ist dabei vor allem, daß sich insgesamt wieder der fiktive Rundstrahlungseffekt ergibt - und daß das Speiseleitungsnetz beherrschbar ist und sich keine gravierenden Laufzeitunterschiede einstellen. Diese Aufgaben werden gelöst, indem jeder Flächenabschnitt an einen eigenen Konverter angeschlossen ist. Der Zusammenschluß der Konverter auf der Ebene der Zwischenfrequenz ist mit an sich bekannter Schaltungstechnik einfach zu beherrschen.
In Figur 4 und 5 werden Beispiele für die Maßverhältnisse der Einzelstrahler bzw. einer Elementargruppe gezeigt. Mit Strahlern dieses Aufbaus - hier in vereinfachter Dargestellung - ist breitbandiger Empfang in jeweils einer Polarisation möglich.
Die praktische Ausführung selbst und die Wahl der Materialien und daraus wiederum resultierend maßliche Korrekturen und die physikaliche Optimierung der Strahler und des Systems werden dann noch maßgeblich von den Platzverhältnissen, vom Empfangsspektrum und auch von technologischen Faktoren beeinflußt - das sind Aufgaben, die mit den dem Entwickler zur Verfügung stehenden Mitteln des an sich bekannten Stands der Technik im Sinne der Optimierung des Systems zu lösen sind.
In Figur 4 sind 2.1 der Hohlleiter entsprechend 11,7 Ghz, 2.2 die trichterförmige Erweiterung und 2.3 das Auskoppelelement mit der Anbindung an das Speiseleitungs-Netzwerk.
Der Durchmesser einer Grundplatte 1 mit Streifenleiter-Antennen des hier beschriebenen Aufbaus und für elektronische Rotation liegt bei etwa 600 mm.

Claims (9)

  1. Antennensystem in waagerechter Anordnung mit Rundstrahlwirkung, für Elevationswinkel kleiner 90°, insbesondere für den mobilen Empfang von geostationären Satelliten mit Frequenzen größer 10 GHz, bei dem
    auf einer im wesentlichen waagerechten Grundplatte (1) eine Vielzahl Einzelstrahler (2, 3) angeordnet ist,
    die Strahlungsrichtung vorzugsweise an Hand einer Kennung der Signalquelle, das heißt des Satelliten, gewählt wird,
    die Einzelstrahler (2, 3) durch ein kombiniertes Steuerungssystem mit gyromagnetischer Sensorik, GPS (Global positioning system) und Antennen-Diversity vorzugsweise gruppenweise schmalkeulig auf die Signalquelle fokussiert werden,
    die Fokussierung durch intermittierende Rotation insgesamt eine Azimut-Abtastung von 360° umfaßt,
    die Diversity-Steuerung vorzugsweise in Abhängigkeit vom Nutzsignal-Pegel und der Signalqualität erfolgt und
    die jeweils aktuell auf die Signalquelle fokussierte Gruppe von Einzelstrahlern alle Empfangsparameter nach vordefinierten Gütekriterien gewährleistet.
  2. Antennensystem nach Anspruch 1, gekennzeichnet durch in vorbestimmten Gruppen und variabel zu Gruppen zusammenschaltbaren Einzelstrahlern.
  3. Antennensystem nach Anspruch 1 und 2, gekennzeichnet durch richtungsselektiven Empfang durch mechanisch erzeugte intermittierende Rotation vorzugsweise aller Strahler (2, 3), wobei die Strahler auf einer vorzugsweise kreisrunden Grundplatte (1) angeordnet sind.
  4. Antennensystem nach Anspruch 1 und 2, gekennzeichnet durch elektronische Rotation, das heißt selektive Speisung eines veränderlichen Anteils der Einzelstrahler (2, 3), die zu unterschiedlichen Gruppen zusammengefaßt auf die Signalquelle fokussierbar sind.
  5. Antennensystem nach Anspruch 4, gekennzeichnet durch die Anordnung der Einzelstrahler (2, 3) auf einer Grundplatte (1) in konzentrischen Kreisen mit radialer Strahlung.
  6. Antennensystem nach Anspruch 4, dadurch gekennzeichnet, daß Strahlergruppen auf unterschiedlichen, im wesentlichen waagerechten Teilen einer Fahrzeugkarosserie verteilt sind und so ausgerichtet sind, daß sich die Strahlungskeulen von in bezug auf die Strahlungsrichtung benachbarten Gruppen seitlich überlappen und daß fiktiv in der Summe eine Rundumcharakteristik gegeben ist, wobei jedem separaten Grundplattenteil mit einer oder mehreren Gruppen ein eigener Konverter zugeordnet ist.
  7. Antennensystem nach Anspruch 1, gekannzeichnet durch Hornantennen (2) als Einzelstrahler.
  8. Antennensystem nach Anspruch 1, gekennzeichnet durch Streifenleiter-Antennen (3, patch antenna) und durch davon gebildete Elementargruppen als Einzelstrahler.
  9. Antennensystem nach Anspruch 1, dadurch gekennzeichnet, daß die Einzelstrahler (2, 3) fest auf einen bestimmten gemeinsamen Elevationswinkel eingestellt sind.
EP99116679A 1998-07-31 1999-08-26 Antennensystem Withdrawn EP1079464A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19834577A DE19834577B4 (de) 1998-07-31 1998-07-31 Antennensystem
EP99116679A EP1079464A1 (de) 1998-07-31 1999-08-26 Antennensystem
US09/386,542 US6317096B1 (en) 1998-07-31 1999-08-30 Antenna system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19834577A DE19834577B4 (de) 1998-07-31 1998-07-31 Antennensystem
EP99116679A EP1079464A1 (de) 1998-07-31 1999-08-26 Antennensystem
US09/386,542 US6317096B1 (en) 1998-07-31 1999-08-30 Antenna system

Publications (1)

Publication Number Publication Date
EP1079464A1 true EP1079464A1 (de) 2001-02-28

Family

ID=27218555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99116679A Withdrawn EP1079464A1 (de) 1998-07-31 1999-08-26 Antennensystem

Country Status (3)

Country Link
US (1) US6317096B1 (de)
EP (1) EP1079464A1 (de)
DE (1) DE19834577B4 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20007834U1 (de) 2000-04-29 2000-09-07 Frasch von Ploetz, Günther, 71093 Weil im Schönbuch Mobile Satellitenantenne
US6697610B1 (en) * 2000-06-15 2004-02-24 Zenith Electronics Corporation Smart antenna for RF receivers
US7379707B2 (en) * 2004-08-26 2008-05-27 Raysat Antenna Systems, L.L.C. System for concurrent mobile two-way data communications and TV reception
US7705793B2 (en) * 2004-06-10 2010-04-27 Raysat Antenna Systems Applications for low profile two way satellite antenna system
DE20314930U1 (de) 2003-09-26 2003-12-11 Ten Haaft Gmbh Satellitenantenne mit Photovoltaik-Elementen zur Stromversorgung
US7911400B2 (en) * 2004-01-07 2011-03-22 Raysat Antenna Systems, L.L.C. Applications for low profile two-way satellite antenna system
US20110215985A1 (en) * 2004-06-10 2011-09-08 Raysat Antenna Systems, L.L.C. Applications for Low Profile Two Way Satellite Antenna System
US20060273965A1 (en) * 2005-02-07 2006-12-07 Raysat, Inc. Use of spread spectrum for providing satellite television or other data services to moving vehicles equipped with small size antenna
US8761663B2 (en) * 2004-01-07 2014-06-24 Gilat Satellite Networks, Ltd Antenna system
US20070001914A1 (en) * 2004-08-26 2007-01-04 Raysat, Inc. Method and apparatus for incorporating an antenna on a vehicle
US20100183050A1 (en) * 2005-02-07 2010-07-22 Raysat Inc Method and Apparatus for Providing Satellite Television and Other Data to Mobile Antennas
US20100218224A1 (en) * 2005-02-07 2010-08-26 Raysat, Inc. System and Method for Low Cost Mobile TV
DE102006039357B4 (de) * 2005-09-12 2018-06-28 Heinz Lindenmeier Antennendiversityanlage zum Funkempfang für Fahrzeuge
DE102007017478A1 (de) * 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit einer Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
EP2037593A3 (de) * 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Antennendiversityanlage für den relativ breitbandigen Funkempfang in Fahrzeugen
DE102007039914A1 (de) * 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage mit zwei Antennen für den Funkempfang in Fahrzeugen
DE102008003532A1 (de) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
EP2209221B8 (de) * 2009-01-19 2019-01-16 Fuba Automotive Electronics GmbH Empfangsanlage zur Summation gephaster Antennensignale
DE102009011542A1 (de) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
DE102009023514A1 (de) * 2009-05-30 2010-12-02 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für zirkulare Polarisation mit einer leitenden Grundfläche
US9379437B1 (en) 2011-01-31 2016-06-28 Ball Aerospace & Technologies Corp. Continuous horn circular array antenna system
US8648768B2 (en) 2011-01-31 2014-02-11 Ball Aerospace & Technologies Corp. Conical switched beam antenna method and apparatus
WO2012161612A1 (en) 2011-05-23 2012-11-29 Autonomous Non-Commercial Organization "Research Institute "Sitronics Labs"" Electronically beam steerable antenna device
RU2585309C2 (ru) 2011-10-20 2016-05-27 Общество с ограниченной ответственностью "Радио Гигабит" Система и способ радиорелейной связи с электронной подстройкой луча
DE102012020648A1 (de) 2012-10-19 2014-04-24 Daimler Ag Drehschieberventil
RU2530330C1 (ru) 2013-03-22 2014-10-10 Общество с ограниченной ответственностью "Радио Гигабит" Станция радиорелейной связи со сканирующей антенной

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452970A2 (de) * 1990-04-19 1991-10-23 Nec Corporation Verfahren zur Strahlausrichtung für mobiles Satellitenkommunikationssystem
EP0578316A1 (de) * 1992-07-06 1994-01-12 Societe Francaise De Production Et De Creation Audiovisuelles S.F.P. Verfahren und Anordnung zur gegenseitigen Ausrichtung zweier Antennen
EP0810685A2 (de) * 1996-05-29 1997-12-03 Toyota Jidosha Kabushiki Kaisha In einem Fahrzeug eingebauter Satellitenempfänger
WO1998029968A2 (en) * 1996-12-30 1998-07-09 At & T Corp. Portable satellite phone for communication with direct link to satellite
US5835057A (en) * 1996-01-26 1998-11-10 Kvh Industries, Inc. Mobile satellite communication system including a dual-frequency, low-profile, self-steering antenna assembly
US5917446A (en) * 1995-11-08 1999-06-29 The Charles Stark Draper Laboratory, Inc. Radio-wave reception system using inertial data in the receiver beamforming operation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414550A (en) * 1981-08-04 1983-11-08 The Bendix Corporation Low profile circular array antenna and microstrip elements therefor
JPS6116634A (ja) * 1984-07-02 1986-01-24 Nippon Denso Co Ltd 移動体用衛星電波受信装置
JPS61224703A (ja) * 1985-03-29 1986-10-06 Aisin Seiki Co Ltd 移動体上アンテナの姿勢制御装置
US5061936A (en) * 1989-09-14 1991-10-29 Aisin Seiki K.K. Attitude control system for mobile antenna
JP3198514B2 (ja) * 1990-12-27 2001-08-13 株式会社デンソー 車両用gps受信装置
JP3032310B2 (ja) * 1991-02-28 2000-04-17 株式会社豊田中央研究所 追尾アンテナ装置
FI91028C (fi) * 1991-10-30 1994-04-25 Valtion Teknillinen Satelliittiantennijärjestely
JP3070239B2 (ja) * 1992-03-13 2000-07-31 日産自動車株式会社 電子制御アンテナシステム
US5398035A (en) * 1992-11-30 1995-03-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
JP3364295B2 (ja) * 1993-10-08 2003-01-08 株式会社日立国際電気 衛星放送受信用平面アレーアンテナ
GB9402942D0 (en) * 1994-02-16 1994-04-06 Northern Telecom Ltd Base station antenna arrangement
US6070071A (en) * 1995-11-13 2000-05-30 Interwave Communications International Ltd. Multiple antenna cellular network
US5774087A (en) * 1997-02-20 1998-06-30 Litton Systems Inc. Apparatus for measuring moving emitter elevation and azimuth direction from doppler change measurements
US6061022A (en) * 1999-06-04 2000-05-09 Itt Manufacturing Enterprises, Inc. Azimuth and elevation direction finding system based on hybrid amplitude/phase comparison

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452970A2 (de) * 1990-04-19 1991-10-23 Nec Corporation Verfahren zur Strahlausrichtung für mobiles Satellitenkommunikationssystem
EP0578316A1 (de) * 1992-07-06 1994-01-12 Societe Francaise De Production Et De Creation Audiovisuelles S.F.P. Verfahren und Anordnung zur gegenseitigen Ausrichtung zweier Antennen
US5917446A (en) * 1995-11-08 1999-06-29 The Charles Stark Draper Laboratory, Inc. Radio-wave reception system using inertial data in the receiver beamforming operation
US5835057A (en) * 1996-01-26 1998-11-10 Kvh Industries, Inc. Mobile satellite communication system including a dual-frequency, low-profile, self-steering antenna assembly
EP0810685A2 (de) * 1996-05-29 1997-12-03 Toyota Jidosha Kabushiki Kaisha In einem Fahrzeug eingebauter Satellitenempfänger
WO1998029968A2 (en) * 1996-12-30 1998-07-09 At & T Corp. Portable satellite phone for communication with direct link to satellite

Also Published As

Publication number Publication date
DE19834577B4 (de) 2011-12-29
US6317096B1 (en) 2001-11-13
DE19834577A1 (de) 2000-02-03

Similar Documents

Publication Publication Date Title
DE19834577B4 (de) Antennensystem
EP1616367B1 (de) Multifunktionsantenne
DE69936884T2 (de) Niedrige preiswerte antenne mit hohem gewinn und system für mobile plattformen
EP2735055B1 (de) Reflektorantenne für ein radar mit synthetischer apertur
DE102008057088A1 (de) Reflektorantenne, insbesondere zum Empfangen und/oder Aussenden von Signalen von und/oder hin zu Satelliten
DE19501448A1 (de) Antenneneinrichtung für Satellitenempfang
WO2006063915A1 (de) Radarsystem mit adaptiver digitaler empfangs-strahlformung und umschaltbarer sende-richtcharakteristik zur abdeckung von nah- und fernbereich
EP2965382B1 (de) Antennenanordnung mit veränderlicher richtcharakteristik
DE1591811C3 (de) Satelliten-Antennensystem
DE60225453T2 (de) Konforme, zweidimensionale elektronisch gesteuerte antenne mit butlermatrix und elektronisch gesteuerter linsengruppe (esa)
DE2405520A1 (de) Phasengesteuerte antennenanordnung
DE602005006434T2 (de) Antennenbaugruppe und verfahren zum satelliten-tracking
DE19724087A1 (de) Sende- und Empfangsgerät für Hochfrequenzstrahlung und Verfahren zur Hochfrequenz-Übertragung
DE3522880A1 (de) Satellitenfunkwellen-empfangseinrichtung
DE102009005103B4 (de) Elektronisch steuerbare Antenne in Kugelform
DE69224033T2 (de) Antennensystem für Satelliten-Kommunikation
DE29813701U1 (de) Antennensystem
DE3820920C2 (de)
DE4128972C2 (de) Funkgerät für ein Satelliten-Kommunikationssystem
WO2005018043A1 (de) Antennenanordnung
DE10221989A1 (de) Konformes Antennen-Patch-Array für Kraftfahrzeuge
DE69413480T2 (de) In einem Satelliten untergebrachtes Mikrowellen-Abbildungsradarsystem mit doppeltem Erfassungsbereich
EP1077508A2 (de) Innenraum-Antenne mit änderbarer Antennencharakteristik für die Kommunikation mit hohen Datenraten
EP0090400B1 (de) Rundsuch-Radarantenne mit Höhenerfassung
EP1505407B1 (de) Luftverteidigungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010316

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20051116