EP1079008A1 - Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens - Google Patents
Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens Download PDFInfo
- Publication number
- EP1079008A1 EP1079008A1 EP00116243A EP00116243A EP1079008A1 EP 1079008 A1 EP1079008 A1 EP 1079008A1 EP 00116243 A EP00116243 A EP 00116243A EP 00116243 A EP00116243 A EP 00116243A EP 1079008 A1 EP1079008 A1 EP 1079008A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- zone
- shaft
- filaments
- cooling shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000008569 process Effects 0.000 title claims abstract description 9
- 238000009987 spinning Methods 0.000 title claims description 19
- 238000001816 cooling Methods 0.000 claims abstract description 215
- 239000002826 coolant Substances 0.000 claims abstract description 71
- 238000007711 solidification Methods 0.000 claims abstract description 18
- 230000008023 solidification Effects 0.000 claims abstract description 18
- 230000001133 acceleration Effects 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000007664 blowing Methods 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 7
- 239000012815 thermoplastic material Substances 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 2
- -1 Polypropylene Polymers 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 238000002425 crystallisation Methods 0.000 description 29
- 230000008025 crystallization Effects 0.000 description 29
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 208000010513 Stupor Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
- D01D5/092—Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
Definitions
- the invention relates to a method for spinning a multifilament thread a thermoplastic material according to the preamble of claim 1 and a device for performing the method according to the preamble of Claim 11.
- the freshly extruded filaments are in their Movement supported by an air flow. This ensures that the Solidification area of the filaments moves away from the spinneret. This in turn leads to delayed crystallization, which is beneficial to the physical properties of the thread affects. For example, at the production speed of a POY yarn and thus the Elongation can be increased without affecting the yarn Change the elongation values required for further processing.
- the known device has a below the spinneret Cooling device, which has an upper cooling shaft and one with the upper Cooling shaft connected lower cooling shaft.
- the lower cooling shaft is connected on an outlet side to a cooling power generator, which in the lower cooling shaft creates a negative pressure.
- the upper cooling shaft is designed gas permeable, so that due to the lower cooling shaft prevailing negative pressure, an air stream flows into the upper cooling shaft and is directed towards the lower cooling shaft. In doing so, a Coolant flow generated, which has a flow rate that in is essentially equal to the running speed of the filaments.
- a method and a device are known from US Pat. No. 4,277,430 which the filaments in the cooling zone below the spinneret through a Cross-flow blowing can be cooled.
- the invention is based on the knowledge that the crystallization of the filaments from the exit from the spinneret to solidification and formation of the thread is determined by two mutually influencing effects. It is known, that when a polymer melt cools it down from a certain one Temperature solidifies. This process is solely based on the temperature dependent and is referred to here as thermal crystallization.
- thermal crystallization When spinning the filament bundle is pulled off the spinneret by threads. Do it pulling forces on the thread, which result in a tension-induced crystallization in the Effect filaments.
- the thermal Crystallization and the stress-induced crystallization are superimposed on and together lead to the solidification of the filament. To influence the tension-induced crystallization becomes the filament bundle before solidification led into a tension zone in which the thread friction and thus the the thread tension acting on the thread can be changed.
- the invention now provides a method and an apparatus provided, which makes it possible to influence the voltage-induced Carry out crystallization under essentially constant conditions to be able to.
- the filaments are cooled after exiting the Spinneret set within the cooling zone so that the position of the Solidification range of the filaments within the tension zone in one specified target range of the voltage zone can be kept.
- the torpor the filaments in the tension zone in the lower cooling shaft thus take place in the essential always in the same place, so that a uniform treatment of the Filaments for influencing the stress-induced crystallization is granted.
- the through the Cooling medium in the cooling zone acting cooling effects changeable his.
- the filaments before entering the Tension zone a certain stability, especially in the outer Boundary layers, must already have to the in the stress zone Thread tension treatment generated coolant flow undamaged bear.
- a particularly advantageous variant for controlling the cooling is given by the development of the invention, in which the cooling medium before Entry into the cooling zone is tempered.
- the cooling medium can its temperature before entering the cooling zone to a value preferably in Range from 20 ° C to 300 ° C.
- the cooling medium is by an as Medium heating device preheated to a higher temperature.
- the thermal crystallization is influenced in such a way that the Filament bundles are not solidified before entering the tension zone.
- a blower is used as a means which the volume flow blown into the cooling zone is controllable.
- the cooling medium flow only in an acceleration section within the voltage zone to that for the Thread tension treatment of the filament bundle required Flow speed accelerates.
- the coolant flow is at least accelerated to a flow rate equal to the running speed of the filaments so that the filaments do not slow down in their movement become.
- the process variant with the features of claim 5 and the Further development of the device according to claim 15 are characterized in that that the voltage-induced crystallization also within wide limits is adjustable.
- the cooling medium flow from the out of the voltage zone escaping cooling medium and one immediately before the inlet of the voltage zone supplied cooling medium generated. Due to the additional cooling medium supplied is additionally achieved that the cooling of the filament bundle in the Voltage zone can be influenced. Especially when spinning threads with large thread titers can by adding an additional cooling medium Output of the tension zone when gathering the thread desired Minimum cooling can be achieved.
- the method according to the invention is independent of whether the cooling medium flow in the tension zone by suction or by blowing is produced.
- the process variant in which a suction flow in the Tension zone prevails has the advantage that the thermal crystallization in the cooling zone and the stress-induced crystallization in the stress zone can be influenced essentially independently of one another.
- filament of the filament bundle is the process variant according to Claim 8 particularly suitable.
- the filament bundle is replaced by a Cooling channel, for example a pipe.
- the Cooling channel On the inlet side, the Cooling channel a cross-sectional narrowing, so that the entering the cooling channel Air receives an acceleration.
- the inventive method is due to its flexibility for spinning of threads made of polyester, polyamide or polypropylene. This can the procedure by an appropriate one after spinning the thread Aftertreatment of the thread can be used, for example a fully drawn thread (FDY), a pre-oriented thread (POY) or one to produce highly oriented thread (HOY).
- FDY fully drawn thread
- POY pre-oriented thread
- HOY highly oriented thread
- the method according to the invention can be advantageous, in particular, by Device are carried out in which the cooling device has an upper Cooling shaft and a lower cooling shaft.
- the upper cooling shaft is arranged immediately below the spinneret and forms the cooling zone, in which the thermal crystallization by a introduced into the cooling shaft Cooling medium is affected.
- the lower cooling shaft is with the upper one Cooling shaft connected and forms the tension zone.
- the cooling device has cooling medium flow flowing parallel to the thread a cooling power generator. So that is in the lower cooling shaft Coolant flow generated at a predetermined flow rate.
- the device for performing the method has Means for adjusting the cooling of the filaments in the upper cooling shaft.
- the cooling of the filaments in the upper cooling shaft is such by the means can be influenced that the filaments only in a predetermined target range of solidify lower cooling shaft.
- the device according to the invention is thus suitable to the location of the solidification area of the filaments along the Change spinning line, especially in the area of the lower cooling shaft.
- Means can both act directly on the cooling device also such devices acting directly on the cooling medium are used become.
- the agent When using cooling air, the agent is advantageous as a heating device formed, which tempered the cooling air entering the lower cooling shaft.
- the heating device is controlled by a control device with appropriate predetermined setting values operated.
- the development of the device according to claim 14 is special advantageous.
- One in the bottom Cooling medium entering cooling shaft is thus at a flow rate accelerates, which depends essentially on the pressure difference, which between the inlet side and the inside of the lower cooling shaft prevails.
- the cooling power generator can be used both as a blower, which the cooling medium blows into the lower cooling shaft, as well as one Vacuum source on the outlet side with the lower cooling shaft is connected and sucks the cooling medium into the lower cooling shaft, To run.
- the lower cooling shaft is formed by a tube through which a bundle of filaments to be led.
- a confuser on the inlet side and an on the outlet side Diffuser provided. Through the confuser, an even one Surrounding filament bundle of cooling media flow generated. Through the diffuser becomes a slow decrease in the flow rate of the cooling medium flow reached so that the filament bundle through the lower cooling shaft is guided.
- a second confuser between the arranged upper and lower cooling shaft This can be an essential turbulence-free transition of the cooling medium from the upper cooling shaft into the ensure the lower cooling shaft.
- the acceleration distance the is characterized by the narrowest flow cross-section, both in the first or second confuser.
- an additional cooling medium is introduced into the voltage zone.
- FIG. 1 schematically shows a first embodiment of an inventive one Device for spinning a multifilament thread shown.
- a thread 26 is made from a thermoplastic material spun and wound into a coil 25.
- the Thermoplastic material is used in an extruder and a pump (here not shown) melted.
- the melt is via a melt line 3 conveyed to a heated spinning head 1 by means of a spinning pump.
- At the A spinneret 2 is attached to the underside of the spinning head 1. From the spinneret 2 the melt exits in the form of fine filament strands 8.
- the filaments 8 pass through a cooling zone 4, which is formed by an upper cooling shaft 5.
- the cooling shaft 5 is arranged directly below the spinning head 1 and encloses the filaments 8 with a gas-permeable wall 7 the cooling shaft 5 has an outer side of the walls 7 Air supply 33 on.
- the air supply 33 is open to the environment.
- a heating device 10 is arranged, one from the outside introduced air flow heated before entering the gas-permeable wall 7.
- the Heating device 10 is coupled to a control device 11.
- the lower cooling shaft 7 is designed as a tube 12.
- the tube 12 has on the Inlet side of the cooling shaft 7 has a confuser 14 which is connected to the outlet side of the upper cooling shaft 5 is connected.
- In the wall of the confuser 14 are several inlet openings 15.1 and 15.2 are formed.
- two inlet openings shown symmetrical to the circumference of the confuser 14th are arranged.
- the pipe points to the outlet side of the lower cooling shaft 12 has a diffuser 13 which opens into an outlet chamber 17.
- On the The underside of the outlet chamber 17 is an outlet opening in the thread running plane 19 introduced into the outlet chamber 17.
- a suction nozzle 21 opens into the outlet chamber 17.
- a vacuum generator 20 connected.
- the lower one Cooling shaft 7 forms the tension zone 6, in which the thread friction on the Filament bundles is affected.
- Preparation device 22 In the thread running plane below the outlet chamber 17 there are one Preparation device 22 and a treatment device 23 and a Winding device 24 arranged.
- a swirl nozzle in the treatment device or drafting devices can be arranged so that the thread in its. before winding Tension can be influenced and stretched.
- additional heating devices for stretching or relaxation within the To arrange treatment device 23 There is also the possibility additional heating devices for stretching or relaxation within the To arrange treatment device 23.
- a thermoplastic material is in molten state fed to the spinning head 1 and via the spinneret 2 extruded from a plurality of nozzle bores as filament strands 8.
- the end The bundle 8 formed by the filaments is wound by the winding device 24 deducted.
- the filaments 8 pass through with increasing Speed the cooling zone 4 within the upper cooling shaft 5.
- the filaments then enter the tension zone 6 via the confuser 14 of the lower cooling shaft 7.
- a negative pressure is generated by the negative pressure generator 20. Because of the Negative pressure and due to one generated by the filament movement Self-suction effect is in the upper cooling shaft from the outside Air supply 33 sucked an air stream into the cooling zone 4.
- the airflow is before entering the cooling zone 4 by the heater 10 on a predetermined temperature warmed.
- the heating device is controlled here by the control device 11.
- the filaments in the Cooling zone 4 by a predetermined temperature in the cooling medium pre-cooled.
- the filaments 8 enter the Voltage zone 6 a.
- the air entering the cooling zone 4 carried or sucked in.
- Inside the confuser 14 is from the outside Inlets 15.1 and 15.2 sucked in additional cooling air.
- the from the cooling zone 4 escaping air and the air entering via inlet 15 become common in an acceleration section 16 in the tube 12 to a cooling medium flow accelerates.
- the air flow is due to the acceleration path 16 a narrowest cross section in the tube 12 under the action of the vacuum generator 20 accelerated so that no counteracting the filament movement in the tube Air flow is more there. This will reduce the strain on the filaments and thus the thread tension is reduced.
- the filaments through the Pre-cooling in the cooling zone 4 due to the thermal crystallization in the are only solidified in their peripheral layers, are within the Stress zone 6 due to a delayed stress-induced crystallization in solidify a defined target area within the lower cooling shaft 7, the itself from the acceleration section 16 to an inlet area in the Diffuser 6 extends. The filaments are cooled further.
- the air flow through the diffuser 13 in the Outlet chamber 17 initiated.
- a screen cylinder 18 of the filament bundle encloses. The air is then through the nozzle 21 and the Vacuum generator 20 sucked out of the outlet chamber 17 and discharged.
- the filaments 8 pass through on the underside of the outlet chamber 17 Outlet opening 19 out of the lower cooling shaft 7 and run into the Preparation device 22 a. Until the filaments 8 emerge from the lower one Cooling shaft 7 leads to a complete cooling of the filaments. By the preparation device 22, the filaments 8 become a thread 26 merged. After treatment, the thread 26 with the Winding device 24 wound into a bobbin 25.
- the one shown in Fig. 1 An arrangement can be produced, for example, with a polyester thread Winding speed of greater than 7,000 m / min is wound up.
- the device shown in Fig. 1 is characterized in that the in Air entering the cooling zone before entering the cooling zone to a predetermined Temperature is heated. Thermal crystallization can thus be advantageous be influenced within the cooling zone in such a way that the filaments 8 are still in can not enter solidified state in the voltage zone 6.
- the Pre-cooling of the filaments is set so that the filaments within the Solidify stress zone 6 in a predetermined target range. This The target range is usually in or immediately below the Acceleration path 16 in the tube 12. This ensures that the to Air flow influencing thread friction even before the filaments solidify the filaments is effective.
- This advantageous treatment of the filaments the voltage-induced crystallization is delayed such that a Production increase in the manufacture of the thread with consistently good physical properties is guaranteed.
- By the on the inlet side of the lower cooling shaft 7 additionally supplied air is also sufficient Cooling effect despite parallel flow in the tension zone reached.
- FIGS. 2 to 4 show further exemplary embodiments of the invention Device shown.
- the cooling devices are of different types modified to the cooling medium in the cooling zone as well as the cooling medium flow in to vary the tension zone.
- the basic structure of that in FIGS 4 through 4 are essentially identical to the device to Fig. 1. In this respect, reference is made to the preceding description.
- FIG. 2 shows an embodiment of the device according to the invention, in which the cooling device also from an upper cooling shaft 5 and a lower cooling shaft 7 is formed.
- the cooling zone 4 below the The filaments through the gas-permeable wall 9 become the spinneret 2 enclosed.
- the blow chamber 27 is connected to a blower 28.
- By the blower 28, a cooling medium is introduced into the blow chamber 27.
- the Blower 28 is connected to a control device 11.
- the lower cooling shaft 7 is over the confuser 14 connected to the upper cooling shaft 5.
- the lower cooling shaft is cylindrical formed with the tube 12, which on the inlet side with the confuser 14 and is connected to the diffuser 13 on the outlet side.
- the tube 12 or the diffuser 13 Outlet opening 34 through which the filaments and the cooling medium flow can exit.
- the cooling medium flow in the voltage zone 6 is in the Cooling zone 4 through the fan 28, cooling air into the upper cooling shaft 5 initiated.
- the cooling medium introduced into the cooling zone becomes Flush out tension zone 6 and through the narrowing of the cross section inside the acceleration section 16 accelerates.
- the Inlet openings 15.1 and 15.2 sucked in an additional air flow, the led through the voltage zone 6 together with the injected cooling air becomes.
- the inlets 15.1 and 15.2 Blower 28 to connect, so that the additional air flow into the voltage zone is blown in.
- the blower 28 is predetermined by the control device 11 Speed operated so that a predetermined amount of air for pre-cooling in the Cooling zone arrives.
- FIG. 3 another embodiment is shown schematically, which in is essentially identical to the embodiment of FIG. 2. So far referred to the previous description and only to the differences shown.
- a heating device 10 such that the in the cooling zone 4th incoming air is previously heated to a predetermined temperature.
- the heating device 10 and the blower 28 with the control device 11 connected and controlled accordingly.
- a measuring device 29 is arranged such that the Temperature of the exiting air or the temperature of the filaments become. The measuring device 29 is connected to the control device 11.
- FIG. 4 shows a further exemplary embodiment of the device according to the invention shown, which has a substantially same structure as that shown in Fig. 1 Contraption.
- the inlet 15.1 and 15.2 with an annular chamber 30 connected.
- the annular chamber 30 is connected to a blower 31. This ensures that the additional cooling air in front of the acceleration section 16 is blown into the tension zone 6.
- a second confuser 32 is substantially coaxial the confuser 14 of the lower cooling shaft 7 is arranged. This will make that out the cooling air 4 exiting accelerated air without essential Turbulence supplied to the stress zone 6.
- the one in the acceleration section 16 trained cooling media flow thus consists of the cooling zone emerging cooling air and the blown cooling air together.
- the Coolant flow in the voltage zone 6 is under the effect of Vacuum generator 11 generated on the outlet side of the lower cooling shaft 7.
- the embodiment of the device according to the invention shown in FIG. 4 can be modified in a simple manner such that the Acceleration path 16 directly in the inlet area of the tension zone 6 is formed by the first confuser 14.
- the training that is additionally introduced into the lower cooling shaft 7 via the inlets 15 Cooling medium below the acceleration section into the voltage zone initiated.
- Such training has the advantage that during expansion of the accelerated cooling medium flow turbulence in the edge area of the diffuser be avoided.
- the devices shown in Figures 1 to 4 are in their structure given as an example. So the embodiment shown in Fig. 4 could with a cooling power generation shown in FIG. 3 can be combined.
- the upper Cooling shaft could also be used as a so-called cross-flow blowing be carried out, in which the cooling air only from one side to the Filament bundle hits.
- the lower cooling shaft can also be used to hold form several threads in a box shape. In this case, they would be in FIG. 1 shown side walls of the lower cooling shaft vertical to the plane of the drawing extended.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
- Fig. 1
- schematisch ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
- Fig. 2 bis 4
- schematisch weitere Ausführungsbeispiele der erfindungsgemäßen Vorrichtung.
- 1
- Spinnkopf
- 2
- Spinndüse
- 3
- Schmelzeleitung
- 4
- Kühlzone
- 5
- Oberer Kühlschacht
- 6
- Spannungszone
- 7
- Unterer Kühlschacht
- 8
- Filamente
- 9
- Wandung
- 10
- Heizeinrichtung
- 11
- Steuereinrichtung
- 12
- Rohr
- 13
- Diffusor
- 14
- Konfusor
- 15
- Einlaß
- 16
- Beschleunigungsstrecke
- 17
- Auslaufkammer
- 18
- Siebzylinder
- 19
- Auslaß
- 20
- Unterdruckerzeuger
- 21
- Saugleitung
- 22
- Präparationseinrichtung
- 23
- Behandlungseinrichtung
- 24
- Aufwickeleinrichtung
- 25
- Spule
- 26
- Faden
- 27
- Blaskammer
- 28
- Gebläse
- 29
- Meßeinrichtung
- 30
- Ringkammer
- 31
- Gebläse
- 32
- Konfusor
- 33
- Luftzuführung
- 34
- Auslaßöffnung
Claims (19)
- Verfahren zum Spinnen eines multifilen Fadens aus einem thermoplastischem Material, bei welchem das aufgeschmolzene Material durch eine Vielzahl von Düsenlöcher einer Spinndüse zu einem Filamentbündel mit vielen Filamenten extrudiert und nach dem Erstarren als Faden aufgewickelt wird, bei welchem das Filamentbündel in einer Kühlzone unterhalb der Spinndüse durch ein Kühlmedium derart vorgekühlt wird, daß die Filamente des Filamentbündels innerhalb der Kühlzone nicht erstarren und bei welchem das Filamentbündel in einer Spannungszone unterhalb der Kühlzone unter Einwirkung eines in Fadenlauf gerichteten Kühlmediumstroms derart geführt und weiter gekühlt wird, daß die Filamente des Filamentbündels innerhalb der Spannungszone erstarren, dadurch gekennzeichnet, daß die Kühlung der Filamente innerhalb der Kühlzone derart einstellbar ist, daß die Lage des Erstarrungbereiches der Filamente innerhalb der Spannungszone in einem vorgegebenem Sollbereich der Spannungszone gehalten wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur des Kühlmediums vor Eintritt in die Kühlzone veränderbar ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Volumenstrom des Kühlmediums vor Eintritt in die Kühlzone veränderbar ist.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Kühlmediumstrom in einer Beschleunigungsstrecke innerhalb der Spannungszone auf eine Fließgeschwindigkeit beschleunigt wird und daß innerhalb der Spannungszone der Sollbereich zur Erstarrung der Filamente in oder unmittelbar unter der Beschleunigungsstrecke des Kühlmedium liegt.
- Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß der Kühlmediumstrom aus dem aus der Kühlzone austretendem Kühlmedium und aus einem unterhalb der Kühlzone im Einlaufbereich der Spannungszone zugeführtem Kühlmedium erzeugt wird.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kühlmediumstrom in der Spannungszone durch eine Saugwirkung erzeugt wird.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kühlmediumstrom in der Spannungszone durch eine Blaswirkung erzeugt wird.
- Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die Spannungszone durch einen Kühlkanal gebildet wird, durch welchen das Filamentbündel geführt wird und welcher auf der Einlaßseite eine als Beschleunigungsstrecke wirkende Querschnittsverengung aufweist.
- Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das Kühlmedium in der Kühlzone durch eine Saugwirkung oder durch eine Blaswirkung dem Filamentbündel zugeführt wird.
- Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß das thermoplastische Material aus der Basis von Polyester, Polyamid oder Polypropylen besteht.
- Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10 mit einer Spinndüse (2) zum Extrudieren mehrerer Filamente (8), mit einer Kühleinrichtung (5, 7) zum Abkühlen der Filamente (8) und mit einer Aufwickeleinrichtung (24) zum Aufspulen eines aus den Filamenten gebildeten Fadens (26), wobei die Kühleinrichtung einen oberen Kühlschacht (5) (Kühlzone) mit zumindest einer gasdurchlässigen Seitenwand (9), einen im Fadenlauf unterhalb des oberen Kühlschachtes (5) angeordneten unteren Kühlschacht (7) (Spannungszone) und zumindest einem Kühlstromerzeuger (20) aufweist, wobei der obere Kühlschacht (5), der untere Kühlschacht (7) und der Kühlstromerzeuger (20) derart miteinander verbunden sind, daß ein Kühlmedium in den oberen Kühlschacht (5) eintritt und daß sich ein in Fadenlaufrichtung gerichteter Kühlmediumstrom in dem unteren Kühlschacht (7) ausbildet, wobei die Filamente erst innerhalb des unteren Kühlschachtes (7) erstarren, dadurch gekennzeichnet, daß ein Mittel (10, 28) zur Einstellung der Kühlung der Filamente in dem oberen Kühlschacht (5) vorgesehen ist, wobei durch das Mittel (10, 28) die Kühlung der Filamente im oberen Kühlschacht (5) derart beeinflußbar ist, daß die Lage des Erstarrungbereiches der Filamente (8) innerhalb eines vorgegebenen Sollbereiches im unteren Kühlschacht (7) gehalten wird.
- Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß das Mittel eine Heizeinrichtung (10) aufweist, die das Kühlmedium vor Eintritt in den oberen Kühlschacht (5) erwärmt.
- Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß das Mittel ein Gebläse (28) aufweist, das den Volumenstrom des Kühlmediums vor Eintritt in den oberen Kühlschacht (5) verändert.
- Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß der untere Kühlschacht (7) eine durch eine Querschnittsverengung bestimmte Beschleunigungsstrecke (16) aufweist, um den Kühlmediumstrom auf eine Fließgeschwindigkeit zu beschleunigen und daß innerhalb des unteren Kühlschachtes (7) die Beschleunigungsstrecke (16) oberhalb des Sollbereiches zur Erstarrung der Filamente (8) ausgebildet ist.
- Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß der obere Kühlschacht (5) mit dem unteren Kühlschacht (7) verbunden ist und daß unterhalb des oberen Kühlschachts (5) ein Einlaß (15) in dem unteren Kühlschacht (7) zur Zuführung eines zusätzlichen Kühlmediums ausgebildet ist.
- Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß der Kühlstromerzeuger ein Gebläse (28) ist, welcher das Kühlmedium in den unteren Kühlschacht (7) einbläst.
- Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß der Kühlstromerzeuger eine Unterdruckquelle (20) ist, die auf der Auslaßseite mit dem unteren Kühlschacht (7) verbunden ist und das Kühlmedium in den unteren Kühlschacht (7) einsaugt.
- Vorrichtung nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, daß der untere Kühlschacht (7) durch ein Rohr (12) gebildet wird und daß das Rohr (12) auf der Einlaufseite einen Konfusor (14) und auf der Auslaßseite einen Diffusor (13) aufweist, wobei der Konfusor (14) und der Diffusor (13) sich mit ihren engsten Querschnitten gegenüberliegen.
- Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß dem Konfusor (14) des Rohres (12) ein zweiter Konfusor (32) vorgeschaltet ist, welcher auf der Auslaßseite des oberen Kühlschachtes (5) angeordnet ist und daß zwischen den beiden Konfusoren (14, 32) der Einlaß (15) für ein zusätzliches Kühlmedium angeordnet ist.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19940591 | 1999-08-26 | ||
| DE19940591 | 1999-08-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1079008A1 true EP1079008A1 (de) | 2001-02-28 |
Family
ID=7919742
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00116243A Withdrawn EP1079008A1 (de) | 1999-08-26 | 2000-08-08 | Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6551545B1 (de) |
| EP (1) | EP1079008A1 (de) |
| JP (1) | JP2001081625A (de) |
| KR (1) | KR100643014B1 (de) |
| CN (1) | CN1174128C (de) |
| BR (1) | BR0003805A (de) |
| TR (1) | TR200002479A3 (de) |
| TW (1) | TW479078B (de) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006024435A1 (de) * | 2004-08-27 | 2006-03-09 | Diolen Industrial Fibers B.V. | Spinnverfahren und vorrichtung zu seiner durchführung |
| WO2006037371A1 (de) * | 2004-09-30 | 2006-04-13 | Saurer Gmbh & Co. Kg | Meltblown-verfahren zum schmelzspinnen von feinen vliesfasern und vorrichtung zur durchführung des verfahrens |
| US7731876B2 (en) | 2002-07-05 | 2010-06-08 | Diolen Industrial Fibers B.V. | Spinning method |
| WO2011141427A1 (de) * | 2010-05-11 | 2011-11-17 | Oerlikon Textile Gmbh & Co. Kg | Verfahren und vorrichtung zum schmelzspinnen und abkühlen einer vielzahl synthetischer fäden |
| CN113622037A (zh) * | 2021-08-25 | 2021-11-09 | 上海化工研究院有限公司 | 超高分子量聚乙烯纤维及其制备方法和应用 |
| WO2022238168A1 (de) * | 2021-05-08 | 2022-11-17 | Oerlikon Textile Gmbh & Co. Kg | Vorrichtung zum abkühlen einer vielzahl synthetischer filamente |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE50005349D1 (de) * | 1999-09-07 | 2004-03-25 | Barmag Barmer Maschf | Verfahren zum schmelzspinnen |
| JP2002302862A (ja) * | 2001-04-06 | 2002-10-18 | Mitsui Chemicals Inc | 不織布の製造方法及び装置 |
| US7384583B2 (en) * | 2001-04-06 | 2008-06-10 | Mitsui Chemicals, Inc. | Production method for making nonwoven fabric |
| US6670034B2 (en) * | 2001-10-18 | 2003-12-30 | Shakespeare Company, Llc | Single ingredient, multi-structural filaments |
| KR20030058353A (ko) * | 2001-12-31 | 2003-07-07 | 백석기 | 열가소성 합성섬유세사 방사장치의 냉풍 제어방법 및제어장치 |
| ITMI20041137A1 (it) * | 2004-06-04 | 2004-09-04 | Fare Spa | Apparecchiatura per il trattamento di filati sintetici |
| EP1819854B1 (de) * | 2004-12-01 | 2009-03-04 | Oerlikon Textile GmbH & Co. KG | Verfahren und vorrichtung zum führen und verwirbeln eines multifilen fadens |
| JP4946111B2 (ja) * | 2006-03-20 | 2012-06-06 | 東レ株式会社 | 合成繊維の溶融紡糸装置および合成繊維の製造方法 |
| JP5407089B2 (ja) * | 2007-01-09 | 2014-02-05 | 国立大学法人山梨大学 | 極細フィラメントの製造方法及び製造装置 |
| JP5526531B2 (ja) * | 2007-11-29 | 2014-06-18 | 東レ株式会社 | 紡糸用冷却装置および溶融紡糸方法 |
| US20110076907A1 (en) * | 2009-09-25 | 2011-03-31 | Glew Charles A | Apparatus and method for melt spun production of non-woven fluoropolymers or perfluoropolymers |
| EP2550381A2 (de) * | 2010-03-24 | 2013-01-30 | Oerlikon Textile GmbH & Co. KG | Verfahren und vorrichtung zum schmelzspinnen und abkühlen einer vielzahl synthetischer fäden |
| US9074308B2 (en) | 2010-04-30 | 2015-07-07 | University Of Yamanashi | Battery separator comprising a polyolefin nanofilament porous sheet |
| CN102505161B (zh) * | 2011-11-23 | 2014-04-30 | 福建锦江科技有限公司 | 化纤抽丝防断方法及送风控制装置 |
| CN102560705B (zh) * | 2012-01-13 | 2014-12-03 | 常州惠明精密机械有限公司 | 纺粘无纺布纺丝下拉伸装置 |
| KR101371386B1 (ko) * | 2012-03-06 | 2014-03-07 | 주식회사 다운나라 | 태데니어 원사의 제조방법 |
| JP2015014071A (ja) * | 2013-07-08 | 2015-01-22 | Tmtマシナリー株式会社 | 糸条冷却装置 |
| CN105612278B (zh) * | 2013-09-26 | 2018-02-09 | 瑞来斯实业公司 | 用于使合成复丝纤维骤冷的系统、方法和设备 |
| KR101508743B1 (ko) * | 2013-11-14 | 2015-04-07 | 도레이케미칼 주식회사 | 방사구금 냉각장치 |
| CN109881274B (zh) * | 2019-03-04 | 2020-08-11 | 浙江恒百华化纤有限公司 | 一种poy丝生产设备 |
| CN111893588B (zh) * | 2020-07-07 | 2021-06-08 | 诸暨永新色纺有限公司 | 冰凉感抗菌poy丝的制作方法 |
| DE102022003355A1 (de) * | 2022-09-12 | 2024-03-14 | Oerlikon Textile Gmbh & Co. Kg | Vorrichtung und Verfahren zur Herstellung synthetischer Fäden |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995015409A1 (de) * | 1993-12-03 | 1995-06-08 | Rieter Automatik Gmbh | Schmelzspinnverfahren für filamente |
| WO2000005439A1 (de) * | 1998-07-23 | 2000-02-03 | Barmag Ag | Spinnvorrichtung und -verfahren zum spinnen eines synthetischen fadens |
| WO2000063468A1 (en) * | 1999-04-15 | 2000-10-26 | E.I. Du Pont De Nemours And Company | Apparatus and process for spinning polymeric filaments |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4277430A (en) | 1978-08-01 | 1981-07-07 | Allied Chemical Corporation | Quench process for synthetic fibers using fog and flowing air |
| JPH0441711A (ja) * | 1990-06-07 | 1992-02-12 | Unitika Ltd | ポリエステル繊維の高速紡糸方法 |
| US5976431A (en) | 1993-12-03 | 1999-11-02 | Ronald Mears | Melt spinning process to produce filaments |
| US6013223A (en) * | 1998-05-28 | 2000-01-11 | Biax-Fiberfilm Corporation | Process and apparatus for producing non-woven webs of strong filaments |
-
2000
- 2000-08-08 EP EP00116243A patent/EP1079008A1/de not_active Withdrawn
- 2000-08-23 JP JP2000252491A patent/JP2001081625A/ja not_active Withdrawn
- 2000-08-24 TR TR2000/02479A patent/TR200002479A3/tr unknown
- 2000-08-25 KR KR1020000049534A patent/KR100643014B1/ko not_active Expired - Fee Related
- 2000-08-25 CN CNB001240714A patent/CN1174128C/zh not_active Expired - Fee Related
- 2000-08-25 TW TW089117241A patent/TW479078B/zh not_active IP Right Cessation
- 2000-08-25 BR BR0003805-9A patent/BR0003805A/pt not_active Application Discontinuation
- 2000-08-28 US US09/649,624 patent/US6551545B1/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995015409A1 (de) * | 1993-12-03 | 1995-06-08 | Rieter Automatik Gmbh | Schmelzspinnverfahren für filamente |
| EP0682720A1 (de) * | 1993-12-03 | 1995-11-22 | RIETER AUTOMATIK GmbH | Schmelzspinnverfahren für filamente |
| WO2000005439A1 (de) * | 1998-07-23 | 2000-02-03 | Barmag Ag | Spinnvorrichtung und -verfahren zum spinnen eines synthetischen fadens |
| WO2000063468A1 (en) * | 1999-04-15 | 2000-10-26 | E.I. Du Pont De Nemours And Company | Apparatus and process for spinning polymeric filaments |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7731876B2 (en) | 2002-07-05 | 2010-06-08 | Diolen Industrial Fibers B.V. | Spinning method |
| US8182915B2 (en) | 2002-07-05 | 2012-05-22 | Diolen Industrial Fibers B.V. | Spinning method |
| WO2006024435A1 (de) * | 2004-08-27 | 2006-03-09 | Diolen Industrial Fibers B.V. | Spinnverfahren und vorrichtung zu seiner durchführung |
| WO2006037371A1 (de) * | 2004-09-30 | 2006-04-13 | Saurer Gmbh & Co. Kg | Meltblown-verfahren zum schmelzspinnen von feinen vliesfasern und vorrichtung zur durchführung des verfahrens |
| WO2011141427A1 (de) * | 2010-05-11 | 2011-11-17 | Oerlikon Textile Gmbh & Co. Kg | Verfahren und vorrichtung zum schmelzspinnen und abkühlen einer vielzahl synthetischer fäden |
| CN102859052A (zh) * | 2010-05-11 | 2013-01-02 | 欧瑞康纺织有限及两合公司 | 用于许多合成纱线的熔融纺丝和冷却的方法和装置 |
| CN102859052B (zh) * | 2010-05-11 | 2015-11-25 | 欧瑞康纺织有限及两合公司 | 用于许多合成纱线的熔融纺丝和冷却的方法和装置 |
| WO2022238168A1 (de) * | 2021-05-08 | 2022-11-17 | Oerlikon Textile Gmbh & Co. Kg | Vorrichtung zum abkühlen einer vielzahl synthetischer filamente |
| CN113622037A (zh) * | 2021-08-25 | 2021-11-09 | 上海化工研究院有限公司 | 超高分子量聚乙烯纤维及其制备方法和应用 |
Also Published As
| Publication number | Publication date |
|---|---|
| TR200002479A2 (tr) | 2001-03-21 |
| JP2001081625A (ja) | 2001-03-27 |
| TW479078B (en) | 2002-03-11 |
| CN1174128C (zh) | 2004-11-03 |
| TR200002479A3 (tr) | 2001-03-21 |
| KR100643014B1 (ko) | 2006-11-10 |
| US6551545B1 (en) | 2003-04-22 |
| BR0003805A (pt) | 2001-04-03 |
| KR20010050209A (ko) | 2001-06-15 |
| CN1286324A (zh) | 2001-03-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1079008A1 (de) | Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens | |
| EP1102878B1 (de) | Spinnvorrichtung und -verfahren zum spinnen eines synthetischen fadens | |
| EP1192301B1 (de) | Verfahren und vorrichtung zur herstellung von im wesentlichen endlosen feinen fäden | |
| DE3781313T3 (de) | Verfahren und Vorrichtung. | |
| EP0937791B1 (de) | Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens | |
| DE10065859B4 (de) | Verfahren und Vorrichtung zur Herstellung von im Wesentlichen endlosen feinen Fäden | |
| EP1090170B1 (de) | Spinnvorrichtung zum spinnen eines synthetischen fadens | |
| DE69637297T2 (de) | Verfahren und vorrichtung zur vliesstoffherstellung | |
| EP1045930B1 (de) | Verfahren und vorrichtung zum herstellen eines hochorientierten fadens | |
| EP0682720B1 (de) | Schmelzspinnverfahren für filamente | |
| DE19821778A1 (de) | Vorrichtung und Verfahren zur Herstellung von Mikrofilamenten von hoher Titer-Gleichmäßigkeit aus thermoplastischen Polymeren | |
| DE60003668T2 (de) | Vorrichtung und verfahren zum spinnen von polymerfilamenten | |
| EP1228268B1 (de) | Verfahren zum schmelzspinnen | |
| DE10005664A1 (de) | Verfahren und Vorrichtung zum Spinnen eines synthetischen Fadens | |
| DE10109838A1 (de) | Vorrichtung zum Abkühlen einer synthetischen Filamentschar beim Schmelzspinnen | |
| DE3941824C2 (de) | ||
| DE10116294A1 (de) | Verfahren zm Schmelzspinnen eines Verbundfadens und Spinnvorrichtung | |
| EP0826802A1 (de) | Verfahren zum Spinnen eines multifilen Fadens | |
| DE4032523C2 (de) | Verfahren und Vorrichtung zur Herstellung von Spinnvliesen | |
| DE10048133A1 (de) | Vorrichtung zum Abkühlen einer synthetischen Filamentschar beim Schmelzspinnen | |
| DE10102730A1 (de) | Spinnvorrichtung zum Spinnen eines synthetischen Fadens | |
| DE10046611A1 (de) | Vorrichtung zum Abkühlen einer Filamentschar | |
| DE10107232A1 (de) | Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens | |
| EP1467005A1 (de) | Verfahren und Vorrichtung zum Schmelzspinnen und Kühlen einer Filamentschar | |
| DE4120460A1 (de) | Verfahren und vorrichtung fuer die herstellung von polypropylengarn |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| 17P | Request for examination filed |
Effective date: 20010323 |
|
| AKX | Designation fees paid |
Free format text: CH DE FR GB IT LI |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAURER GMBH & CO. KG |
|
| 17Q | First examination report despatched |
Effective date: 20040527 |
|
| 17Q | First examination report despatched |
Effective date: 20040527 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OERLIKON TEXTILE GMBH & CO. KG |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OERLIKON TEXTILE GMBH & CO. KG |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20100302 |