EP1067829B1 - Plasma nozzle - Google Patents

Plasma nozzle Download PDF

Info

Publication number
EP1067829B1
EP1067829B1 EP00113748A EP00113748A EP1067829B1 EP 1067829 B1 EP1067829 B1 EP 1067829B1 EP 00113748 A EP00113748 A EP 00113748A EP 00113748 A EP00113748 A EP 00113748A EP 1067829 B1 EP1067829 B1 EP 1067829B1
Authority
EP
European Patent Office
Prior art keywords
casing
nozzle according
plasma nozzle
plasma
mouthpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00113748A
Other languages
German (de)
French (fr)
Other versions
EP1067829A3 (en
EP1067829A2 (en
Inventor
Peter FÖRNSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasma Treat GmbH
Original Assignee
Plasma Treat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasma Treat GmbH filed Critical Plasma Treat GmbH
Publication of EP1067829A2 publication Critical patent/EP1067829A2/en
Publication of EP1067829A3 publication Critical patent/EP1067829A3/en
Application granted granted Critical
Publication of EP1067829B1 publication Critical patent/EP1067829B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3463Oblique nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the invention relates to a plasma nozzle for pretreating surfaces with a tubular housing having an axis, which forms a nozzle channel through which a working gas, with an electrode arranged coaxially to the axis in the nozzle channel and with a counter electrode surrounding the nozzle channel, wherein a high voltage generator for generating a high-frequency AC voltage between the electrode and the counter electrode is provided.
  • a plasma nozzle of this type is described in DE 195 32 412 A and serves, for example, to pretreat plastic surfaces in such a way that it is possible or easier to apply adhesives, printing inks and the like onto the plastic surface.
  • Such a pretreatment is required because plastic surfaces are not wettable with liquids in the normal state and therefore do not accept the printing ink or the adhesive.
  • the pre-treatment changes the surface structure of the plastic so that the surface becomes wettable for relatively high surface tension liquids.
  • the surface tension of the liquids with which the surface is just still wettable represents a measure of the quality of the pretreatment.
  • a relatively cool, but highly reactive plasma jet is achieved, which has approximately the shape and dimensions of a candle flame and thus also the pretreatment of profile parts relatively deep relief allowed. Due to the high reactivity of the plasma jet, a very short-term pretreatment is sufficient, so that the workpiece can be guided past the plasma jet at a correspondingly high speed. Due to the comparatively low temperature of the plasma jet, therefore, the pretreatment of heat-sensitive plastics is possible. Since no counter electrode on the back of the workpiece is required, the surfaces of any thick, block-like workpieces, hollow bodies and the like can be easily pretreated. For a uniform treatment of larger surfaces, a battery of several staggered plasma nozzles has been proposed in the cited publication. In this case, however, a relatively high expenditure on equipment is required.
  • DE 298 05 999 U discloses a device in which two plasma nozzles are arranged eccentrically and with parallel axes on a common rotary head, so that when the surface is swept over by the rotary head, a strip is pretreated whose width corresponds to the diameter of the rotary head.
  • this device is not suitable for treating curved surfaces whose radius of curvature is of the order of the diameter of the rotary head.
  • high inertial and gyroscopic forces occur when the rotary head is moved in several axes, for example by means of a robot arm.
  • the plasma is ejected in the axial direction of the nozzle channel in the known plasma nozzles.
  • This has the disadvantage in complicated-shaped workpieces that the points to be treated are often difficult to achieve, especially when the nozzle is guided along the workpiece by means of a robot.
  • the object of the invention is therefore to provide a plasma nozzle, with which the desired surface areas of the workpiece can be pretreated faster.
  • the housing or at least the part of the housing forming the nozzle channel or the mouthpiece is preferably rotatable relative to the housing about its axis. If the housing or the mouthpiece is set in rapid rotation and the plasma nozzle is guided along the workpiece, it is thus possible in one operation to treat a surface strip whose width is substantially greater than the diameter of the plasma jet. Since only a single nozzle is used, the expenditure on equipment is significantly lower than in the case of the rotary head described above. In addition, significantly smaller inertial forces arise because the housing rotates about its longitudinal axis. Thus, a plasma nozzle is provided which has a compact construction and nevertheless allows a rational plasma treatment of larger surfaces.
  • the housing or the mouthpiece is thus rotatable relative to the electrodes arranged in the nozzle channel and to the supply device for the working gas, so that this electrode and the gas supply device can be held rotationally fixed and only the surrounding housing or only the mouthpiece rotates.
  • the counter electrode can be formed directly by the rotating housing and is preferably grounded, so that no contact protection measures are required for the housing and the associated rotary drive.
  • the deflection angle of the plasma jet relative to the axis of rotation can be selected as needed and may for example be 90 °.
  • the plasma nozzle is particularly suitable for pretreating the inner surfaces of pipes or hoses. For example, it is possible to mount the plasma nozzle within the annular gap of an extrusion die, so that a freshly extruded pipe string can be pretreated immediately after it leaves the extruder.
  • the working gas is preferably twisted so that it flows vortex-shaped through the nozzle channel and therefore channels the arc formed between the electrode and the counter electrode into the mouth region of the nozzle channel in the vortex core.
  • the plasma jet is stabilized, and in the vortex core there is an intimate contact between the working gas and the arc, so that the reactivity of the plasma is increased.
  • the plasma nozzle shown in FIG. 1 has a tubular housing 10 which, in its upper area in the drawing, widens in diameter and is rotatably mounted on a fixed support tube 14 with the aid of a bearing 12. Inside the housing 10, a nozzle channel 16 is formed, which leads from the open end of the support tube 14 to an opening 18 in the drawing lower end of the housing.
  • an electrically insulating ceramic tube 20 is inserted in the support tube 14.
  • a working gas for example air
  • the working gas is supplied through the support tube 14 and the ceramic tube 20 into the nozzle channel 16.
  • the working gas is twisted so that it flows vortex-shaped through the nozzle channel 16 to the mouth 18, as symbolized in the drawing by a helical arrow.
  • the nozzle channel 16 thus creates a vortex core which extends along the axis A of the housing.
  • a pin-shaped electrode 24 is mounted, which protrudes coaxially into the nozzle channel 16 and to which by means of a high voltage generator 26, a high-frequency alternating voltage is applied.
  • the metal housing 10 is grounded through the bearing 12 and the support tube 14 and serves as a counter electrode, so that an electrical discharge between the electrode 24 and the housing 10 can be caused.
  • the high voltage generator 26 is switched on, due to the high frequency of the alternating voltage and due to the dielectricity of the ceramic tube 20, a corona discharge first occurs at the swirl device 22 and the electrode 24. This corona discharge ignites an arc discharge from the electrode 24 to the housing 10.
  • the arc of this discharge is entrained by the vortexed incoming working gas and channeled in the core of the vortex-shaped gas flow, so that the arc then extends almost straight from the top of the electrode 24 along the axis A and only in the area the mouth of the housing 10 branches radially onto the housing wall. In this way, a plasma jet 28 is generated, which exits through the mouth 18.
  • the mouth 18 of the nozzle channel is formed by a mouthpiece 30 made of metal, which is screwed into a threaded bore 32 of the housing 10 and in which a tapered to the mouth 18 and obliquely with respect to the axis A extending channel 34 is formed.
  • the plasma jet 28 emerging from the orifice 18 forms an angle with the axis A of the housing, which angle is approximately 45 ° in the example shown.
  • this angle can be varied as needed.
  • a gear 36 is arranged, which is in driving connection with a motor, not shown, for example via a toothed belt or a pinion.
  • the motor driven housing 10 is rotated at high speed about the axis A, so that the plasma jet 28 describes a conical surface that sweeps over the surface of a workpiece, not shown, to be machined.
  • the plasma nozzle is moved along the surface of the workpiece or vice versa, the workpiece is moved along the plasma nozzle, a relatively uniform pretreatment of the surface of the workpiece is achieved on a strip whose width to the diameter of the cone described by the plasma jet 28 on the Workpiece surface corresponds.
  • the width of the pretreated area can be influenced.
  • the plasma jet 28 impinging obliquely on the workpiece surface which in turn is twisted, intensive action of the plasma on the workpiece surface is achieved.
  • the twist direction of the plasma jet can be in the same direction or in opposite directions to the direction of rotation of the housing 10.
  • FIG. 2 shows an embodiment in which only the mouthpiece 30 is rotatable relative to the stationary housing 10.
  • the housing 10 is tapered conically at its outlet end and forms an axial / radial bearing for a flared upstream portion of the mouthpiece 30.
  • the bearing is formed in the example shown as a magnetic bearing 38.
  • the mouthpiece 30 is pressed by the dynamic pressure of the outflowing air against the conical bearing surface of the housing 10, but is held by the magnetic bearing 38 without contact in the housing, so that it is on its entire circumference forms a narrow gap with a width of only about 0.1 to 0.2 mm with the housing.
  • the grounding of the mouthpiece 30 is carried out by sparkover across this gap.
  • an aerodynamic drive is provided in the example shown, for example in the form of an air nozzle 40, are flowed through the arranged on the outer periphery of the mouthpiece blades 42 tangentially with air.
  • the aerodynamic drive can also be done by arranged inside the mouthpiece blades or ribs, which are acted upon by the air flowing in a spiral manner through the channel 34.
  • the rotational movement of the mouthpiece 30 can also be generated in that the mouth 18 is made somewhat in the circumferential direction, so that the mouthpiece is rotated by the recoil of the outflowing air in rotation.
  • This embodiment has the advantage that the rotary drive is structurally simplified and the moment of inertia of the rotating masses is limited to a minimum.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The plasma nozzle is designed so that the mouth (18) of the nozzle duct is curved in relation to the vertical axis (A). The housing (10) is rotatable about its axis (A). The housing (10) is located rotationally on a carrying tube (14). The counter electrode is formed by the housing (10).

Description

Die Erfindung betrifft eine Plasmadüse zum Vorbehandeln von Oberflächen mit einem rohrförmigen, eine Achse aufweisenden Gehäuse, das einen von einem Arbeitsgas durchströmten Düsenkanal bildet, mit einer koaxial zur Achse in dem Düsenkanal angeordneten Elektrode und mit einer den Düsenkanal umgebenden Gegenelektrode, wobei ein Hochspannungsgenerator zum Erzeugen einer hochfrequenten Wechselspannung zwischen der Elektrode und der Gegenelektrode vorgesehen ist.The invention relates to a plasma nozzle for pretreating surfaces with a tubular housing having an axis, which forms a nozzle channel through which a working gas, with an electrode arranged coaxially to the axis in the nozzle channel and with a counter electrode surrounding the nozzle channel, wherein a high voltage generator for generating a high-frequency AC voltage between the electrode and the counter electrode is provided.

Eine Plasmadüse dieser Art wird in DE 195 32 412 A beschrieben und dient beispielsweise dazu, Kunststoffoberflächen so vorzubehandeln, dass ein Auftragen von Klebstoffen, Druckfarben und dergleichen auf die Kunststoffoberfläche ermöglicht oder erleichtert wird. Eine solche Vorbehandlung ist erforderlich, da Kunststoffoberflächen im Normalzustand nicht mit Flüssigkeiten benetzbar sind und deshalb die Druckfarbe oder den Klebstoff nicht annehmen. Durch die Vorbehandlung wird die Oberflächenstrukturdes Kunststoffs so verändert, dass die Oberfläche für Flüssigkeiten mit relativ großer Oberflächenspannung benetzbar wird. Die Oberflächenspannung der Flüssigkeiten, mit denen die Oberfläche gerade noch benetzbar ist, stellt ein Maß für die Qualität der Vorbehandlung dar.A plasma nozzle of this type is described in DE 195 32 412 A and serves, for example, to pretreat plastic surfaces in such a way that it is possible or easier to apply adhesives, printing inks and the like onto the plastic surface. Such a pretreatment is required because plastic surfaces are not wettable with liquids in the normal state and therefore do not accept the printing ink or the adhesive. The pre-treatment changes the surface structure of the plastic so that the surface becomes wettable for relatively high surface tension liquids. The surface tension of the liquids with which the surface is just still wettable represents a measure of the quality of the pretreatment.

Durch die bekannte Plasmadüse wird ein verhältnismäßig kühler, jedoch hochreaktiver Plasmastrahl erreicht, der etwa die Gestalt und die Abmessungen einer Kerzenflamme hat und somit auch die Vorbehandlung von Profilteilen mit verhältnismäßig tiefem Relief gestattet. Aufgrund der hohen Reaktivität des Plasmastrahls genügt eine sehr kurzzeitige Vorbehandlung, so dass das Werkstück mit entsprechend hoher Geschwindigkeit an dem Plasmastrahl vorbeigeführt werden kann. Aufgrund der vergleichsweise niedrigen Temperatur des Plasmastrahls ist daher auch die Vorbehandlung von wärmeempfindlichen Kunststoffen möglich. Da keine Gegenelektrode auf der Rückseite des Werkstücks erforderlich ist, können auch die Oberflächen von beliebig dicken, blockartigen Werkstücken, Hohlkörpern und dergleichen problemlos vorbehandelt werden. Für eine gleichmäßige Behandlung größerer Oberflächen ist in der genannten Veröffentlichung eine Batterie aus mehreren versetzt angeordneten Plasmadüsen vorgeschlagen worden. In diesem Fall ist jedoch ein relativ hoher apparativer Aufwand erforderlich.By the known plasma nozzle, a relatively cool, but highly reactive plasma jet is achieved, which has approximately the shape and dimensions of a candle flame and thus also the pretreatment of profile parts relatively deep relief allowed. Due to the high reactivity of the plasma jet, a very short-term pretreatment is sufficient, so that the workpiece can be guided past the plasma jet at a correspondingly high speed. Due to the comparatively low temperature of the plasma jet, therefore, the pretreatment of heat-sensitive plastics is possible. Since no counter electrode on the back of the workpiece is required, the surfaces of any thick, block-like workpieces, hollow bodies and the like can be easily pretreated. For a uniform treatment of larger surfaces, a battery of several staggered plasma nozzles has been proposed in the cited publication. In this case, however, a relatively high expenditure on equipment is required.

Zum Vorbehandeln größerer Flächen ist aus DE 298 05 999 U eine Vorrichtung bekannt, bei der zwei Plasmadüsen exzentrisch und mit parallelen Achsen auf einem gemeinsamen Rotationskopf angeordnet sind, so dass, wenn die Oberfläche mit dem Rotationskopf überstrichen wird, ein Streifen vorbehandelt wird, dessen Breite dem Durchmesser des Rotationskopfes entspricht. Diese Vorrichtung eignet sich jedoch nicht zum Behandeln von gewölbten Oberflächen, deren Krümmungsradius in der Größenordnung des Durchmessers des Rotationskopfes liegt. Außerdem treten aufgrund der exzentrischen Anordnung von mindestens zwei Düsen und aufgrund der relativ hohen Rotationsgeschwindigkeit hohe Trägheits- und Kreiselkräfte auf, wenn der Rotationskopf beispielsweise mit Hilfe eines Roboterarms in mehren Achsen bewegt wird.For pretreatment of larger areas, DE 298 05 999 U discloses a device in which two plasma nozzles are arranged eccentrically and with parallel axes on a common rotary head, so that when the surface is swept over by the rotary head, a strip is pretreated whose width corresponds to the diameter of the rotary head. However, this device is not suitable for treating curved surfaces whose radius of curvature is of the order of the diameter of the rotary head. In addition, due to the eccentric arrangement of at least two nozzles and due to the relatively high rotational speed high inertial and gyroscopic forces occur when the rotary head is moved in several axes, for example by means of a robot arm.

Generell wird bei den bekannten Plasmadüsen das Plasma in Axialrichtung des Düsenkanals ausgestoßen. Dies hat bei kompliziert geformten Werkstücken den Nachteil, dass die zu behandelnden Stellen oft nur schwer zu erreichen sind, insbesondere, wenn die Düse mit Hilfe eines Roboters am Werkstück entlang geführt wird.In general, the plasma is ejected in the axial direction of the nozzle channel in the known plasma nozzles. This has the disadvantage in complicated-shaped workpieces that the points to be treated are often difficult to achieve, especially when the nozzle is guided along the workpiece by means of a robot.

Aus dem Stand der Technik der FR 2 672 459 Al, der DE 36 12 722 Al und die US 5,278,387 A sind Plasmabrenner bzw. Plasmaschneidern bekannt, die jeweils einen energiereichen Plasmastrahl mit hoher Temperatur erzeugen, deren gut gebündelte Plasmastrahlen in Ausgangsnähe umgelenkt werden. Die Plasmastrahlen werden zum Schmelzen des Oberflächenmaterials und zum Schweißen von Werkstücken eingesetzt.The prior art FR 2 672 459 A1, DE 36 12 722 A1 and US Pat. No. 5,278,387 A disclose plasma torches and plasma cutters, each of which generates a high-temperature plasma jet at high temperature whose well-focused plasma jets are deflected into the vicinity of the exit. The plasma jets are used to melt the surface material and to weld workpieces.

Aufgabe der Erfindung ist es deshalb, eine Plasmadüse zu schaffen, mit der die gewünschten Oberflächenbereiche des Werkstücks schneller vorbehandelt werden können.The object of the invention is therefore to provide a plasma nozzle, with which the desired surface areas of the workpiece can be pretreated faster.

Diese Aufgabe wird bei einer Plasmadüse der eingangs genannten Art dadurch gelöst, dass die Mündung des Düsenkanals gegenüber der Achse des Gehäuses abgewinkelt ist.This object is achieved in a plasma nozzle of the type mentioned in that the mouth of the nozzle channel is angled relative to the axis of the housing.

Mit dieser Düse wird somit ein Plasmastrahl erzeugt, der schräg zur Achse des Düsenkanals gerichtet ist, so dass beispielsweise Hinterschnitte an einem Werkstück besser erreicht werden können.With this nozzle thus a plasma jet is generated, which is directed obliquely to the axis of the nozzle channel, so that, for example, undercuts on a workpiece can be better achieved.

Obgleich der Plasmastrahl an der Mündung der Düse aus der ursprünglichen Axialrichtung abgelenkt wird, hat sich in Versuchen gezeigt, dass die Stabilität des Plasmastrahls und seine Wirksamkeit bei der Vorbehandlung von Oberflächen nicht beeinträchtigt wird.Although the plasma jet at the mouth of the nozzle is deflected from the original axial direction, experiments have shown that the stability of the plasma jet and its effectiveness in the pretreatment of surfaces is not compromised.

Das Gehäuse oder zumindest der den Düsenkanal bildende Teil des Gehäuses oder das Mundstück ist in bevorzugter Weise gegenüber dem Gehäuse um seine Achse drehbar. Wenn das Gehäuse bzw. das Mundstück in rasche Drehung versetzt wird und die Plasmadüse am Werkstück entlang geführt wird, kann somit in einem Arbeitsgang ein Oberflächenstreifen behandelt werden, dessen Breite wesentlich größer ist als der Durchmesser des Plasmastrahls. Da nur mit einer einzigen Düse gearbeitet wird, ist der apparative Aufwand deutlich geringer als bei dem zuvor beschriebenen Rotationskopf. Außerdem ergeben sich deutlich kleinere Trägheitskräfte, da das Gehäuse um seine Längsachse rotiert. Es wird somit eine Plasmadüse geschaffen, die einen kompakten Aufbau aufweist und dennoch eine rationelle Plasmabehandlung größerer Oberflächen ermöglicht.The housing or at least the part of the housing forming the nozzle channel or the mouthpiece is preferably rotatable relative to the housing about its axis. If the housing or the mouthpiece is set in rapid rotation and the plasma nozzle is guided along the workpiece, it is thus possible in one operation to treat a surface strip whose width is substantially greater than the diameter of the plasma jet. Since only a single nozzle is used, the expenditure on equipment is significantly lower than in the case of the rotary head described above. In addition, significantly smaller inertial forces arise because the housing rotates about its longitudinal axis. Thus, a plasma nozzle is provided which has a compact construction and nevertheless allows a rational plasma treatment of larger surfaces.

Das Gehäuse bzw. das Mundstück ist also relativ zu der im Düsenkanal angeordneten Elektroden und zu der Zufuhreinrichtung für das Arbeitsgas drehbar, so dass diese Elektrode und die Gaszufuhreinrichtung drehfest gehalten werden können und nur das umgebende Gehäuse bzw. nur das Mundstück rotiert. Für die Spannungsversorgung der Elektrode und für die Zufuhr des Arbeitsgases werden deshalb keine Schleifkontakte, Drehdurchführungen oder dergleichen benötigt. Die Gegenelektrode kann unmittelbar durch das rotierende Gehäuse gebildet werden und ist vorzugsweise geerdet, so dass für das Gehäuse und den zugehörigen Drehantrieb keine Berührungsschutzmaßnahmen erforderlich sind.The housing or the mouthpiece is thus rotatable relative to the electrodes arranged in the nozzle channel and to the supply device for the working gas, so that this electrode and the gas supply device can be held rotationally fixed and only the surrounding housing or only the mouthpiece rotates. For the power supply of the electrode and for the supply of the working gas therefore no sliding contacts, rotary unions or the like are required. The counter electrode can be formed directly by the rotating housing and is preferably grounded, so that no contact protection measures are required for the housing and the associated rotary drive.

Der Ablenkwinkel des Plasmastrahls relativ zur Drehachse kann nach Bedarf gewählt werden und kann beispielsweise auch 90° betragen. In dieser Ausführungsform eignet sich die Plasmadüse insbesondere zum Vorbehandeln der Innenflächen von Rohren oder Schläuchen. Beispielsweise ist es möglich, die Plasmadüse innerhalb des Ringspaltes eines Extrusionswerkzeuges zu montieren, so dass ein frisch extrudierter Rohrstrang unmittelbar nach seinem Austritt aus dem Extruder vorbehandelt werden kann.The deflection angle of the plasma jet relative to the axis of rotation can be selected as needed and may for example be 90 °. In this embodiment, the plasma nozzle is particularly suitable for pretreating the inner surfaces of pipes or hoses. For example, it is possible to mount the plasma nozzle within the annular gap of an extrusion die, so that a freshly extruded pipe string can be pretreated immediately after it leaves the extruder.

Wie bei der eingangs beschriebenen herkömmlichen Plasmadüse wird das Arbeitsgas vorzugsweise verdrallt, so dass es wirbelförmig durch den Düsenkanal strömt und daher den zwischen der Elektrode und der Gegenelektrode gebildeten Lichtbogen bis in den Mündungsbereich des Düsenkanals hinein im Wirbelkern kanalisiert. Auf diese Weise wird der Plasmastrahl stabilisiert, und im Wirbelkern kommt es zu einer innigen Berührung zwischen dem Arbeitsgas und dem Lichtbogen, so dass die Reaktivität des Plasmas gesteigert wird.As with the conventional plasma nozzle described above, the working gas is preferably twisted so that it flows vortex-shaped through the nozzle channel and therefore channels the arc formed between the electrode and the counter electrode into the mouth region of the nozzle channel in the vortex core. In this way, the plasma jet is stabilized, and in the vortex core there is an intimate contact between the working gas and the arc, so that the reactivity of the plasma is increased.

Im folgenden werden ein Ausführungsbeispiele anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1
einen axialen Schnitt durch die Plasmadüse; und
Fig. 2
einen Schnitt durch den Mündungsbereich einer Plasmadüse gemäß einer abgewandelten Ausführungsform.
In the following, an exemplary embodiments are explained in more detail with reference to the drawing. Show it:
Fig. 1
an axial section through the plasma nozzle; and
Fig. 2
a section through the mouth region of a plasma nozzle according to a modified embodiment.

Die in Figur 1 gezeigte Plasmadüse weist ein rohrförmiges Gehäuse 10 auf, das in seinem in der Zeichnung oberen Bereich im Durchmesser erweitert und mit Hilfe eines Lagers 12 drehbar auf einem festen Tragrohr 14 gelagert ist. Im Inneren des Gehäuses 10 wird ein Düsenkanal 16 gebildet, der vom offenen Ende des Tragrohres 14 zu einer Mündung 18 in der Zeichnung unteren Ende des Gehäuses führt.The plasma nozzle shown in FIG. 1 has a tubular housing 10 which, in its upper area in the drawing, widens in diameter and is rotatably mounted on a fixed support tube 14 with the aid of a bearing 12. Inside the housing 10, a nozzle channel 16 is formed, which leads from the open end of the support tube 14 to an opening 18 in the drawing lower end of the housing.

In das Tragrohr 14 ist ein elektrisch isolierendes Keramikrohr 20 eingesetzt. Ein Arbeitsgas, beispielsweise Luft, wird durch das Tragrohr 14 und das Keramikrohr 20 in den Düsenkanal 16 zugeführt. Mit Hilfe einer in das Keramikrohr 20 eingesetzten Dralleinrichtung 22 wird das Arbeitsgas so verdrallt, daß es wirbelförmig durch den Düsenkanal 16 zur Mündung 18 strömt, wie in der Zeichnung durch einen schraubenförmigen Pfeil symbolisiert wird. In dem Düsenkanal 16 entsteht so ein Wirbelkern, der längs der Achse A des Gehäuses verläuft.In the support tube 14, an electrically insulating ceramic tube 20 is inserted. A working gas, for example air, is supplied through the support tube 14 and the ceramic tube 20 into the nozzle channel 16. With the aid of a twisting device 22 inserted into the ceramic tube 20, the working gas is twisted so that it flows vortex-shaped through the nozzle channel 16 to the mouth 18, as symbolized in the drawing by a helical arrow. In the nozzle channel 16 thus creates a vortex core which extends along the axis A of the housing.

An der Dralleinrichtung 22 ist eine stiftförmige Elektrode 24 montiert, die koaxial in den Düsenkanal 16 ragt und an die mit Hilfe eines Hochspannungsgenerators 26 eine hochfrequente Wechselspannung angelegt wird. Das aus Metall bestehende Gehäuse 10 ist über das Lager 12 und das Tragrohr 14 geerdet und dient als Gegenelektrode, so daß eine elektrische Entladung zwischen der Elektrode 24 und dem Gehäuse 10 hervorgerufen werden kann. Beim Einschalten des Hochspannungsgenerators 26 kommt es aufgrund der hohen Frequenz der Wechselspannung und aufgrund der Dielektrizität des Keramikrohrs 20 zunächst zu einer Koronaentladung an der Dralleinrichtung 22 und der Elektrode 24. Durch diese Koronaentladung wird eine Bogenentladung von der Elektrode 24 zum Gehäuse 10 gezündet. Der Lichtbogen dieser Entladung wird durch das verdrallt einströmende Arbeitsgas mitgenommen und im Kern der wirbelförmigen Gasströmung kanalisiert, so daß der Lichtbogen dann nahezu gradlinig von der Spitze der Elektrode 24 längs der Achse A verläuft und sich erst im Bereich der Mündung des Gehäuses 10 radial auf die Gehäusewand verzweigt. Auf diese Weise wird ein Plasmastrahl 28 erzeugt, der durch die Mündung 18 austritt.At the swirl device 22, a pin-shaped electrode 24 is mounted, which protrudes coaxially into the nozzle channel 16 and to which by means of a high voltage generator 26, a high-frequency alternating voltage is applied. The metal housing 10 is grounded through the bearing 12 and the support tube 14 and serves as a counter electrode, so that an electrical discharge between the electrode 24 and the housing 10 can be caused. When the high voltage generator 26 is switched on, due to the high frequency of the alternating voltage and due to the dielectricity of the ceramic tube 20, a corona discharge first occurs at the swirl device 22 and the electrode 24. This corona discharge ignites an arc discharge from the electrode 24 to the housing 10. The arc of this discharge is entrained by the vortexed incoming working gas and channeled in the core of the vortex-shaped gas flow, so that the arc then extends almost straight from the top of the electrode 24 along the axis A and only in the area the mouth of the housing 10 branches radially onto the housing wall. In this way, a plasma jet 28 is generated, which exits through the mouth 18.

Die Mündung 18 des Düsenkanals wird durch ein Mundstück 30 aus Metall gebildet, das in eine Gewindebohrung 32 des Gehäuses 10 eingeschraubt ist und in dem ein sich zur Mündung 18 verjüngender und schräg in Bezug auf die Achse A verlaufender Kanal 34 ausgebildet ist. Auf diese Weise bildet der aus der Mündung 18 austretende Plasmastrahl 28 mit der Achse A des Gehäuses einen Winkel, der im gezeigten Beispiel etwa 45° beträgt. Durch Auswechseln des Mundstücks 30 kann dieser Winkel nach Bedarf variiert werden.The mouth 18 of the nozzle channel is formed by a mouthpiece 30 made of metal, which is screwed into a threaded bore 32 of the housing 10 and in which a tapered to the mouth 18 and obliquely with respect to the axis A extending channel 34 is formed. In this way, the plasma jet 28 emerging from the orifice 18 forms an angle with the axis A of the housing, which angle is approximately 45 ° in the example shown. By replacing the mouthpiece 30, this angle can be varied as needed.

Auf dem erweiterten oberen Teil des Gehäuses 10 ist ein Zahnrad 36 angeordnet, das beispielsweise über einen Zahnriemen oder ein Ritzel mit einem nicht gezeigten Motor in Antriebsverbindung steht. Im Betrieb läßt man das durch den Motor angetriebene Gehäuse 10 mit hoher Drehzahl um die Achse A rotieren, so daß der Plasmastrahl 28 einen Kegelmantel beschreibt, der die zu bearbeitende Oberfläche eines nicht gezeigten Werkstücks überstreicht. Wenn dann die Plasmadüse an der Oberfläche des Werkstücks entlang bewegt wird oder umgekehrt das Werkstück an der Plasmadüse entlang bewegt wird, so wird eine relativ gleichmäßige Vorbehandlung der Oberfläche des Werkstücks auf einem Streifen erreicht, dessen Breite dem Durchmesser des vom Plasmastrahl 28 beschriebenen Kegels auf der Werkstückoberfläche entspricht. Durch variieren des Abstands zwischen dem Mundstück 30 und dem Werkstück läßt sich die Breite des vorbehandelten Bereiches beeinflussen. Durch den schräg auf die Werkstückoberfläche auftreffenden Plasmastrahl 28, der seinerseits verdrallt ist, wird eine intensive Einwirkung des Plasmas auf die Werkstückoberfläche erreicht. Die Drallrichtung des Plasmastrahls kann dabei gleichsinnig oder gegensinnig zur Rotationsrichtung des Gehäuses 10 sein.On the extended upper part of the housing 10, a gear 36 is arranged, which is in driving connection with a motor, not shown, for example via a toothed belt or a pinion. In operation, the motor driven housing 10 is rotated at high speed about the axis A, so that the plasma jet 28 describes a conical surface that sweeps over the surface of a workpiece, not shown, to be machined. Then, when the plasma nozzle is moved along the surface of the workpiece or vice versa, the workpiece is moved along the plasma nozzle, a relatively uniform pretreatment of the surface of the workpiece is achieved on a strip whose width to the diameter of the cone described by the plasma jet 28 on the Workpiece surface corresponds. By varying the distance between the mouthpiece 30 and the workpiece, the width of the pretreated area can be influenced. As a result of the plasma jet 28 impinging obliquely on the workpiece surface, which in turn is twisted, intensive action of the plasma on the workpiece surface is achieved. The twist direction of the plasma jet can be in the same direction or in opposite directions to the direction of rotation of the housing 10.

Figur 2 zeigt eine Ausführungsform, bei der nur das Mundstück 30 relativ zu dem stationären Gehäuse 10 drehbar ist. Das Gehäuse 10 ist hier an seinem auslaßseitigen Ende konisch verjüngt und bildet ein Axial/Radial-Lager für einen konisch erweiterten stromaufwärtigen Teil des Mundstücks 30. Das Lager ist im gezeigten Beispiel als Magnetlager 38 ausgebildet. Das Mundstück 30 wird durch den dynamischen Druck der ausströmenden Luft gegen die konische Lagerfläche des Gehäuses 10 angedrückt, wird jedoch durch das Magnetlager 38 berührungsfrei in dem Gehäuse gehalten, so daß es auf seinem gesamten Umfang einen schmalen Spalt mit einer Breite von nur etwa 0,1 bis 0,2 mm mit dem Gehäuse bildet. Die Erdung des Mundstücks 30 erfolgt durch Funkenüberschlag über diesen Spalt hinweg.Figure 2 shows an embodiment in which only the mouthpiece 30 is rotatable relative to the stationary housing 10. The housing 10 is tapered conically at its outlet end and forms an axial / radial bearing for a flared upstream portion of the mouthpiece 30. The bearing is formed in the example shown as a magnetic bearing 38. The mouthpiece 30 is pressed by the dynamic pressure of the outflowing air against the conical bearing surface of the housing 10, but is held by the magnetic bearing 38 without contact in the housing, so that it is on its entire circumference forms a narrow gap with a width of only about 0.1 to 0.2 mm with the housing. The grounding of the mouthpiece 30 is carried out by sparkover across this gap.

Als Drehantrieb für das Mundstück 30 ist im gezeigten Beispiel ein aerodynamischer Antrieb vorgesehen, beispielsweise in der Form einer Luftdüse 40, durch die am äußeren Umfang des Mundstücks angeordnete Schaufeln 42 tangential mit Luft angeströmt werden. Wahlweise kann der aerodynamische Antrieb auch durch im Inneren des Mundstücks angeordnete Schaufeln oder Rippen erfolgen, die durch die drallförmig durch den Kanal 34 strömende Luft beaufschlagt werden. Schließlich läßt sich die Drehbewegung des Mundstücks 30 auch dadurch erzeugen, daß die Mündung 18 etwas in Umfangsrichtung angestellt wird, so daß das Mundstück durch den Rückstoß der ausströmenden Luft in Drehung versetzt wird.As a rotary drive for the mouthpiece 30, an aerodynamic drive is provided in the example shown, for example in the form of an air nozzle 40, are flowed through the arranged on the outer periphery of the mouthpiece blades 42 tangentially with air. Optionally, the aerodynamic drive can also be done by arranged inside the mouthpiece blades or ribs, which are acted upon by the air flowing in a spiral manner through the channel 34. Finally, the rotational movement of the mouthpiece 30 can also be generated in that the mouth 18 is made somewhat in the circumferential direction, so that the mouthpiece is rotated by the recoil of the outflowing air in rotation.

Diese Ausführungsform hat den Vorteil, daß der Drehantrieb konstruktiv vereinfacht wird und das Trägheitsmoment der rotierenden Massen auf ein Minimum begrenzt wird.This embodiment has the advantage that the rotary drive is structurally simplified and the moment of inertia of the rotating masses is limited to a minimum.

Claims (20)

  1. Plasma nozzle for pretreating surfaces,
    - with a tubular casing which has an axis (A) and defines a nozzle channel through which a working gas is passed,
    - with an electrode (24) disposed coaxially to the axis (A) in the nozzle channel(16),
    - with a counterelectrode (16) surrounding the nozzle channel,
    - wherein a high-voltage generator to generate a high-frequency alternative voltage is disposed between the electrode (24) and the counterelectrode,
    characterised in that
    - the mouth (18) of the nozzle channel (16) is angled with respect to the axis (A) of the casing (10).
  2. Plasma nozzle according to claim 1,
    characterised in that the mouth (18) is rotatable relative to the fixed electrode (24) about the axis (A) of the casing (10).
  3. Plasma nozzle according to claim 1 or 2,
    characterised in that
    - the mouth (18) of the nozzle channel (16) is formed by a mouthpiece (30) inserted in the casing (10) and
    - that a channel (34) running at an angle to the axis (A) of the casing (10) is formed in the mouthpiece (39).
  4. Plasma nozzle according to claim 3,
    characterised in that
    the channel (34) formed in the mouthpiece (30) tapers towards the free end.
  5. Plasma nozzles according to one of claims 1 to 4,
    characterised in that
    - the housing (10) is non-rotatably fixed to the mouthpiece (30) and
    - the housing (10) is rotatable relative to the stationary electrode (24) disposed in the nozzle channel (16) about the axis (A).
  6. Plasma nozzle according to claim 5,
    characterised in that
    the casing (10) is rotatably supported on a supporting tube (14).
  7. Plasma nozzle according to claim 6,
    characterised in that
    the supporting tube (14) serves to supply the working gas.
  8. Plasma nozzle according to claim one of claims 5 to 7,
    characterised in that
    the casing (10) is linked to the supporting tube (14) via an electrically-conductive bearing.
  9. Plasma nozzle according to one of claims 5 to 8,
    characterised in that
    the casing (10) carries a toothed wheel (36) or a pulley for rotatably driving the casing on its periphery.
  10. Plasma nozzle according to one of claims 1 to 4,
    characterised in that
    - the casing (10) is disposed non-rotatably opposite the stationary electrode (24) and
    - that the mouthpiece (30) is rotatably supported in the casing.
  11. Plasma nozzle according to claim 10
    characterised in that
    the mouth piece (30) is supported in the casing (10) by means of a contactless bearing, for example a magnetic bearing (38).
  12. Plasma nozzle according to claim 11,
    characterised in that
    the bearing gap between the casing (10) and the mouth piece (30) is so dimensioned that the mouth piece (30) is grounded across this gap by are discharge.
  13. Plasma nozzle according to claim 11 or 12,
    characterised in that
    the bearing (38) between the casing (10) and the mouthpiece (32) is an axial/radial bearing and that the mouthpiece (30) is dynamically biased against this bearing by the working gas flowing through the mouth piece.
  14. Plasma nozzle according to one of claims 10 to 13,
    characterised in that
    an aerodynamic rotary drive is provided for the mouth piece (30).
  15. Plasma nozzle according to claim 14,
    characterised in that
    the aerodynamic rotary drive is in the form of an air nozzle (40) and as blades (42) disposed on the outer perimeter of the mouthpiece (30).
  16. Plasma nozzle according to claim 14,
    characterised in that
    the aerodynamic rotary drive is in the form of blades or ribs disposed in the interior of the mouthpiece (30).
  17. Plasma nozzle according to claim 14,
    characterised in that
    the aerodynamic rotary drive is formed by an incidence of the mouth (18) towards the perimeter.
  18. Plasma nozzle according to one of claims 1 to 17,
    characterised in that
    the counterelectrode is formed by the casing (10).
  19. Plasma nozzle according to one of claims 1 to 18,
    characterised in that
    the counterelectrode is earthed.
  20. Plasma nozzle according to one of claims 1 to 19,
    characterised in that
    a swirling device (22) is provided which generates a vortex flow of the working gas in the nozzle channel (16).
EP00113748A 1999-07-09 2000-06-29 Plasma nozzle Expired - Lifetime EP1067829B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29911974U DE29911974U1 (en) 1999-07-09 1999-07-09 Plasma nozzle
DE29911974U 1999-07-09

Publications (3)

Publication Number Publication Date
EP1067829A2 EP1067829A2 (en) 2001-01-10
EP1067829A3 EP1067829A3 (en) 2003-06-25
EP1067829B1 true EP1067829B1 (en) 2006-05-17

Family

ID=8075901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00113748A Expired - Lifetime EP1067829B1 (en) 1999-07-09 2000-06-29 Plasma nozzle

Country Status (8)

Country Link
US (1) US6262386B1 (en)
EP (1) EP1067829B1 (en)
JP (1) JP4111659B2 (en)
AT (1) ATE326827T1 (en)
DE (2) DE29911974U1 (en)
DK (1) DK1067829T3 (en)
ES (1) ES2265312T3 (en)
PT (1) PT1067829E (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007018317U1 (en) 2006-12-20 2008-09-25 Plasmatreat Gmbh Apparatus for generating a plasma jet
DE102007024090A1 (en) 2007-05-22 2008-11-27 Diener, Christof, Dipl.-Ing. Device for plasma treatment of surfaces, has electrical generator and multiple plasma producers, where plasma producers are connected or disconnected together at individual output voltage of generators
DE202008013560U1 (en) 2008-10-15 2010-03-04 Raantec Verpachtungen Gmbh & Co. Kg Apparatus for generating a plasma jet
DE102009008907A1 (en) 2009-02-13 2010-09-23 Airbus Operations Gmbh Process for plasma treatment and painting of a surface
DE102015121252A1 (en) 2015-12-07 2017-06-08 Plasmatreat Gmbh Apparatus for generating an atmospheric plasma jet and method for treating the surface of a workpiece
DE102015121253A1 (en) 2015-12-07 2017-06-08 Plasmatreat Gmbh Apparatus for generating an atmospheric plasma jet for treating the surface of a workpiece
DE102021115020A1 (en) 2021-06-10 2022-12-15 Plasmatreat Gmbh DEVICE FOR GENERATING AN ATMOSPHERIC PLASMA BEAM FOR TREATMENT OF A SURFACE OF A WORKPIECE

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29919142U1 (en) 1999-10-30 2001-03-08 Agrodyn Hochspannungstechnik G Plasma nozzle
US20040011378A1 (en) * 2001-08-23 2004-01-22 Jackson David P Surface cleaning and modification processes, methods and apparatus using physicochemically modified dense fluid sprays
US6774336B2 (en) 2001-02-27 2004-08-10 Thermal Dynamics Corporation Tip gas distributor
JP4678973B2 (en) * 2001-03-29 2011-04-27 西日本プラント工業株式会社 Apparatus and method for generating plasma arc of thermal spray torch
AT412719B (en) * 2003-06-16 2005-06-27 Eckelt Glas Gmbh METHOD AND DEVICE FOR PROCESSING DEFLECTING GLASS PANELS
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US8134097B2 (en) * 2004-08-23 2012-03-13 Illinois Tool Works Inc. Multi-position head plasma torch
US20060052883A1 (en) * 2004-09-08 2006-03-09 Lee Sang H System and method for optimizing data acquisition of plasma using a feedback control module
DE102005020511A1 (en) * 2005-04-29 2006-11-09 Basf Ag Composite element, in particular window pane
US20100021340A1 (en) * 2005-12-20 2010-01-28 Plasmatreat Gmbh Method and device for the disinfection of objects
KR101022507B1 (en) * 2006-01-30 2011-03-16 사이안 가부시키가이샤 Work processing system and plasma generating apparatus
TW200742506A (en) * 2006-02-17 2007-11-01 Noritsu Koki Co Ltd Plasma generation apparatus and work process apparatus
JP4647566B2 (en) * 2006-08-30 2011-03-09 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP4619966B2 (en) * 2006-02-27 2011-01-26 株式会社サイアン Work processing device
JP4680095B2 (en) * 2006-02-28 2011-05-11 株式会社サイアン Work processing apparatus and plasma generating apparatus
US7547861B2 (en) * 2006-06-09 2009-06-16 Morten Jorgensen Vortex generator for plasma treatment
US20070284342A1 (en) * 2006-06-09 2007-12-13 Morten Jorgensen Plasma treatment method and apparatus
JP5055893B2 (en) * 2006-08-17 2012-10-24 パナソニック株式会社 Atmospheric pressure plasma generator
JP4620015B2 (en) * 2006-08-30 2011-01-26 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
JP4724625B2 (en) * 2006-08-30 2011-07-13 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
DE202007018327U1 (en) 2006-11-23 2008-08-07 Plasmatreat Gmbh Apparatus for generating a plasma
JP4719184B2 (en) * 2007-06-01 2011-07-06 株式会社サイアン Atmospheric pressure plasma generator and work processing apparatus using the same
US20100074810A1 (en) * 2008-09-23 2010-03-25 Sang Hun Lee Plasma generating system having tunable plasma nozzle
TWI387400B (en) * 2008-10-20 2013-02-21 Ind Tech Res Inst Plasma system
DE102008052102B4 (en) * 2008-10-20 2012-03-22 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Device for pre- and / or after-treatment of a component surface by means of a plasma jet
US7921804B2 (en) 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism
TWI380743B (en) * 2008-12-12 2012-12-21 Ind Tech Res Inst Casing and jet type plasma system
TWI407842B (en) * 2008-12-31 2013-09-01 Ind Tech Res Inst Wide area atmospheric pressure plasma jet apparatus
US20100201272A1 (en) * 2009-02-09 2010-08-12 Sang Hun Lee Plasma generating system having nozzle with electrical biasing
US20100254853A1 (en) * 2009-04-06 2010-10-07 Sang Hun Lee Method of sterilization using plasma generated sterilant gas
JP2011060688A (en) * 2009-09-14 2011-03-24 Kasuga Electric Works Ltd Plasma surface treatment device
DE102009048397A1 (en) 2009-10-06 2011-04-07 Plasmatreat Gmbh Atmospheric pressure plasma process for producing surface modified particles and coatings
CN101778525B (en) * 2010-01-22 2012-06-06 芜湖荣事达塑胶有限责任公司 Pneumatic rotary air plasma jet source
DE102010011643B4 (en) * 2010-03-16 2024-05-29 Christian Buske Device and method for plasma treatment of living tissue
WO2011142125A1 (en) 2010-05-13 2011-11-17 パナソニック株式会社 Plasma processing device and method
CN102387653B (en) 2010-09-02 2015-08-05 松下电器产业株式会社 Plasma processing apparatus and method of plasma processing
JP5617817B2 (en) 2011-10-27 2014-11-05 パナソニック株式会社 Inductively coupled plasma processing apparatus and inductively coupled plasma processing method
CN103094038B (en) 2011-10-27 2017-01-11 松下知识产权经营株式会社 Plasma processing apparatus and plasma processing method
KR20140102170A (en) * 2011-11-09 2014-08-21 브렌트 프리즈 Method and apparatus for compressing plasma to a high energy state
JP5510437B2 (en) * 2011-12-07 2014-06-04 パナソニック株式会社 Plasma processing apparatus and plasma processing method
FR2984678B1 (en) * 2011-12-15 2014-11-07 Renault Sa ROBOTIC DEVICE FOR PLASMA SURFACE PREPARATION OF A THERMOPLASTIC PIECE
US9211603B2 (en) 2012-01-31 2015-12-15 The Esab Group, Inc. Plasma gouging torch and angled nozzle therefor
DE102012003563B4 (en) * 2012-02-23 2017-07-06 Drägerwerk AG & Co. KGaA Device for disinfecting wound treatment
US10115565B2 (en) 2012-03-02 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and plasma processing method
DE102012206081A1 (en) * 2012-04-13 2013-10-17 Krones Ag Coating of containers with plasma nozzles
US9497845B2 (en) 2012-08-06 2016-11-15 Hypertherm, Inc. Consumables for a plasma arc torch for bevel cutting
US10314155B2 (en) 2012-08-06 2019-06-04 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
US10721812B2 (en) 2012-08-06 2020-07-21 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
US9781818B2 (en) 2012-08-06 2017-10-03 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
US9107282B2 (en) 2012-08-06 2015-08-11 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
CZ2012935A3 (en) * 2012-12-19 2014-07-02 Masarykova Univerzita Method of generating plasma under atmospheric pressure in slot nozzle and apparatus for making the same
KR101479767B1 (en) * 2012-12-26 2015-01-12 주식회사 다원시스 Arc-jet plasma generator
DE102013103259A1 (en) 2013-04-02 2014-10-02 Plasmatreat Gmbh Disinfection module for a serial process plant
WO2015088069A1 (en) * 2013-12-11 2015-06-18 주식회사 에이피아이 Plasma generating device
TWI531280B (en) 2014-04-16 2016-04-21 馗鼎奈米科技股份有限公司 Plasma device
CN104640339A (en) * 2015-01-12 2015-05-20 广东韦达尔科技有限公司 Plasma surface treatment device
TW201709775A (en) * 2015-08-25 2017-03-01 馗鼎奈米科技股份有限公司 Arc atmospheric pressure plasma device
DE102016209097A1 (en) * 2016-03-16 2017-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. plasma nozzle
KR101716698B1 (en) * 2016-04-15 2017-03-15 안선희 Portable Plasma skin care Apparatus
WO2018020434A1 (en) 2016-07-26 2018-02-01 BORISSOVA, Anastasiia Olegovna Tissue tolerable plasma generator and method for the creation of protective film from the wound substrate
US11361938B2 (en) 2016-08-02 2022-06-14 Feagle Co., Ltd Plasma enhancement member, and plasma supplying apparatus and medical instrument including the same
KR20180134182A (en) * 2017-06-08 2018-12-18 삼성전자주식회사 plasma processing apparatus
TWI674041B (en) * 2017-12-21 2019-10-01 雷立強光電科技股份有限公司 Apparatus for generating atmospheric environment plasma
TWI691237B (en) * 2018-02-13 2020-04-11 國立交通大學 Atmospheric-pressure plasma jet generating device
KR102032294B1 (en) * 2018-04-13 2019-10-15 주식회사 에이피피 Apparatus for generating atmospheric pressure plasma
DE102018132960A1 (en) 2018-12-19 2020-06-25 Plasmatreat Gmbh Device and method for treating a workpiece surface with an atmospheric plasma jet
EP4050973A4 (en) 2019-10-22 2022-11-09 Fuji Corporation Plasma generation device and plasma processing method
WO2021186448A2 (en) * 2020-03-19 2021-09-23 Caps Medical Ltd. Plasma system with directional features
JP2022538202A (en) * 2020-05-22 2022-09-01 フン リ,チャン Surface treatment system and method for cylindrical and annular objects to be treated using atmospheric pressure plasma generator
JP7420003B2 (en) * 2020-07-31 2024-01-23 株式会社デンソー Plasma discharge nozzle for plasma processing equipment and plasma processing equipment
US11692267B2 (en) * 2020-12-31 2023-07-04 Applied Materials, Inc. Plasma induced modification of silicon carbide surface

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707615A (en) * 1971-11-12 1972-12-26 Metco Inc Nozzle for a plasma generator
FR2578138B1 (en) * 1985-02-22 1987-03-27 Soudure Autogene Francaise PLASMA WELDING OR CUTTING SYSTEM WITH TIMING
DE3612722A1 (en) * 1986-04-16 1987-10-29 Lothar Wittig Apparatus for plasma arc cutting
DE3642375A1 (en) * 1986-12-11 1988-06-23 Castolin Sa METHOD FOR APPLYING AN INTERNAL COATING INTO TUBES OD. DGL. CAVITY NARROW CROSS SECTION AND PLASMA SPLASH BURNER DAFUER
FR2672459B1 (en) * 1991-02-01 1993-04-30 Girard Frederic PLASMA RECHARGING DEVICE WITH OBLIQUE ORIFICE.
FR2674161B1 (en) * 1991-03-22 1993-06-11 Soudure Autogene Francaise CUTTING GUN FOR SHEET.
DE19532412C2 (en) * 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Device for surface pretreatment of workpieces
US5837959A (en) * 1995-09-28 1998-11-17 Sulzer Metco (Us) Inc. Single cathode plasma gun with powder feed along central axis of exit barrel
DE29805999U1 (en) 1998-04-03 1998-06-25 Agrodyn Hochspannungstechnik G Device for the plasma treatment of surfaces

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007018317U1 (en) 2006-12-20 2008-09-25 Plasmatreat Gmbh Apparatus for generating a plasma jet
DE102007024090A1 (en) 2007-05-22 2008-11-27 Diener, Christof, Dipl.-Ing. Device for plasma treatment of surfaces, has electrical generator and multiple plasma producers, where plasma producers are connected or disconnected together at individual output voltage of generators
DE202008013560U1 (en) 2008-10-15 2010-03-04 Raantec Verpachtungen Gmbh & Co. Kg Apparatus for generating a plasma jet
DE102009008907A1 (en) 2009-02-13 2010-09-23 Airbus Operations Gmbh Process for plasma treatment and painting of a surface
DE102009008907B4 (en) * 2009-02-13 2014-07-24 Airbus Operations Gmbh Process for plasma treatment and painting of a surface
DE102015121252A1 (en) 2015-12-07 2017-06-08 Plasmatreat Gmbh Apparatus for generating an atmospheric plasma jet and method for treating the surface of a workpiece
DE102015121253A1 (en) 2015-12-07 2017-06-08 Plasmatreat Gmbh Apparatus for generating an atmospheric plasma jet for treating the surface of a workpiece
WO2017097694A1 (en) 2015-12-07 2017-06-15 Plasmatreat Gmbh Device for generating an atmospheric plasma beam, and method for treating the surface of a workpiece
US10555411B2 (en) 2015-12-07 2020-02-04 Plasmatreat Gmbh Device for generating an atmospheric plasma beam, and method for treating the surface of a workpiece
DE102021115020A1 (en) 2021-06-10 2022-12-15 Plasmatreat Gmbh DEVICE FOR GENERATING AN ATMOSPHERIC PLASMA BEAM FOR TREATMENT OF A SURFACE OF A WORKPIECE
WO2022258654A1 (en) 2021-06-10 2022-12-15 Plasmatreat Gmbh Device for generating an atmospheric plasma jet for treating a surface of a workpiece

Also Published As

Publication number Publication date
DK1067829T3 (en) 2006-09-18
DE50012751D1 (en) 2006-06-22
EP1067829A3 (en) 2003-06-25
DE29911974U1 (en) 2000-11-23
JP2001068298A (en) 2001-03-16
EP1067829A2 (en) 2001-01-10
JP4111659B2 (en) 2008-07-02
US6262386B1 (en) 2001-07-17
PT1067829E (en) 2006-10-31
ATE326827T1 (en) 2006-06-15
ES2265312T3 (en) 2007-02-16

Similar Documents

Publication Publication Date Title
EP1067829B1 (en) Plasma nozzle
EP0986939B1 (en) Plasma processing device for surfaces
EP1236380B1 (en) Plasma nozzle
EP3387886B1 (en) Device for generating an atmospheric plasma beam, and method for treating the surface of a workpiece
EP0601968B1 (en) Plasma spray gun
EP0761415B2 (en) Method for improving the wettability of the surface of articles
EP0994637B1 (en) Method and device for plasma treatment of bar or wire shaped material
DE2144872B2 (en) Plasma spray device
DE2615679A1 (en) ARC METAL SPRAYER
DE102015121253A1 (en) Apparatus for generating an atmospheric plasma jet for treating the surface of a workpiece
DE3903887A1 (en) DEVICE FOR FLAME SPRAYING POWDERED MATERIALS BY MEANS OF AUTOGENIC FLAME
EP1335641A1 (en) Plasma nozzle
WO2009127540A1 (en) Device for treating an inner surface of a work piece
DE3734137A1 (en) AIR GUIDE DEVICE FOR A WELDING MACHINE FOR PROCESSING PLASTIC FILMS
EP3051927B1 (en) Plasma treatment device
WO1998024555A1 (en) Powder spraying device
EP1201316B1 (en) High-speed rotary atomizer for powder paint
EP1201314B1 (en) High speed rotary atomizer for applying a powder coating
DE3612722A1 (en) Apparatus for plasma arc cutting
DE19546930C1 (en) Corona nozzle for corona discharge of workpiece surfaces
EP2209354A2 (en) Generator for generating a bundled plasma jet
EP2532214B1 (en) Hollow funnel-shaped plasma generator
DE102009004968B4 (en) Beam generator for generating a collimated plasma jet
AT404686B (en) SPRAY GUIDE SLEEVE
EP4353054A1 (en) Device for generating an atmospheric plasma jet for treating a surface of a workpiece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLASMA TREAT GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030603

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20040430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50012751

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060824

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20060817

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2265312

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060517

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20170616

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20190619

Year of fee payment: 20

Ref country code: IT

Payment date: 20190624

Year of fee payment: 20

Ref country code: DE

Payment date: 20190618

Year of fee payment: 20

Ref country code: NL

Payment date: 20190619

Year of fee payment: 20

Ref country code: DK

Payment date: 20190621

Year of fee payment: 20

Ref country code: IE

Payment date: 20190619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190620

Year of fee payment: 20

Ref country code: FR

Payment date: 20190619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190618

Year of fee payment: 20

Ref country code: ES

Payment date: 20190724

Year of fee payment: 20

Ref country code: SE

Payment date: 20190624

Year of fee payment: 20

Ref country code: AT

Payment date: 20190619

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50012751

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200628

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20200629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200628

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 326827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200629

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200630