TWI674041B - Apparatus for generating atmospheric environment plasma - Google Patents

Apparatus for generating atmospheric environment plasma Download PDF

Info

Publication number
TWI674041B
TWI674041B TW106145124A TW106145124A TWI674041B TW I674041 B TWI674041 B TW I674041B TW 106145124 A TW106145124 A TW 106145124A TW 106145124 A TW106145124 A TW 106145124A TW I674041 B TWI674041 B TW I674041B
Authority
TW
Taiwan
Prior art keywords
perforation
generating device
atmospheric plasma
plasma generating
item
Prior art date
Application number
TW106145124A
Other languages
Chinese (zh)
Other versions
TW201929611A (en
Inventor
吳清吉
陳裕豐
Original Assignee
雷立強光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雷立強光電科技股份有限公司 filed Critical 雷立強光電科技股份有限公司
Priority to TW106145124A priority Critical patent/TWI674041B/en
Priority to CN201811319280.7A priority patent/CN109951943A/en
Publication of TW201929611A publication Critical patent/TW201929611A/en
Application granted granted Critical
Publication of TWI674041B publication Critical patent/TWI674041B/en

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

一種大氣電漿產生裝置,包含殼體、內電極、進氣機構以及電弧導引電極。殼體具有入口部以及出口部。內電極設置在殼體內,且鄰近入口部。進氣機構連接內電極與入口部,且進氣機構具有至少一進氣口。電弧導引電極設置於出口部並與內電極相對設置,且此電弧導引電極包含柱狀部以及尖端部,尖端部由柱狀部的表面朝向內電極延伸,其中柱狀部連接出口部,且柱狀部具有作為電漿出口的穿孔位於尖端部相對之另一側。 An atmospheric plasma generating device includes a casing, an internal electrode, an air intake mechanism, and an arc guide electrode. The casing has an inlet portion and an outlet portion. The internal electrode is disposed in the case and is adjacent to the entrance portion. The air intake mechanism is connected to the internal electrode and the inlet, and the air intake mechanism has at least one air inlet. The arc guide electrode is disposed at the exit portion and is opposite to the inner electrode. The arc guide electrode includes a columnar portion and a tip portion. The tip portion extends from the surface of the columnar portion toward the inner electrode. And the columnar part has a perforation as a plasma outlet on the opposite side of the tip part.

Description

一種大氣電漿產生裝置 Atmospheric plasma generating device

本發明實施例係關於一種大氣電漿產生裝置,特別是一種具有導引電弧之大氣電漿產生裝置。 The embodiment of the invention relates to an atmospheric plasma generating device, in particular to an atmospheric plasma generating device with a guided arc.

電漿為一種主要由帶電離子及自由電子所組成的物質形態。除了固態、液態及氣態之外,電漿常被視為物質的第四態。利用電漿的特性可引發許多特殊的化學與物理反應,現已廣泛應用於各種領域,例如半導體製程中的乾式蝕刻、電路板的清潔及材料表面性質的改變等等。 Plasma is a material form mainly composed of charged ions and free electrons. In addition to solid, liquid, and gaseous states, plasma is often considered the fourth state of matter. The use of the characteristics of the plasma can cause many special chemical and physical reactions, which have been widely used in various fields, such as dry etching in semiconductor processes, cleaning of circuit boards, and changes in surface properties of materials.

電漿源的種類眾多,包含微波表面波電漿源、電感式電漿源、電漿火炬及大氣電漿源等。就大氣電漿而言,噴射式的大氣電漿常用於元件的清潔以及表面改質。然而,由於電漿產生時之電弧容易溢散並損傷元件表面,影響製程良率。因此,發展出一種具有控制電弧的大氣電漿產生裝置為當前亟需解決的問題。 There are many types of plasma sources, including microwave surface wave plasma sources, inductive plasma sources, plasma torches and atmospheric plasma sources. As far as atmospheric plasma is concerned, spray-type atmospheric plasma is often used for component cleaning and surface modification. However, the arc at the time of plasma generation easily spills and damages the component surface, which affects the process yield. Therefore, the development of an atmospheric plasma generating device with a controlled arc is a problem that needs to be solved urgently at present.

本發明之一態樣為一種大氣電漿產生裝置,包含一殼體、一內電極、一進氣機構以及一電弧導引電極。殼體具有一入口部以及一出口部。內電極,設置在殼體內,且鄰近入口部。進氣機構,連接內電極與入口部,且進氣機構具有至少一進氣口。電弧導引電極,設置於出口部並與內電極相對設置,電弧導引電極包含一柱狀部以及一尖端部,尖端部由柱狀部的一表面朝向內電極延伸,其中柱狀部連接出口部,且柱狀部具有一作為電漿出口的穿孔位於尖端部相對之另側。 One aspect of the present invention is an atmospheric plasma generating device including a casing, an internal electrode, an air intake mechanism, and an arc guiding electrode. The casing has an inlet portion and an outlet portion. The internal electrode is disposed in the casing and is adjacent to the entrance portion. The air intake mechanism is connected to the internal electrode and the inlet, and the air intake mechanism has at least one air inlet. An arc guide electrode is disposed at the exit portion and is opposite to the inner electrode. The arc guide electrode includes a columnar portion and a tip portion. The tip portion extends from a surface of the columnar portion toward the inner electrode, and the columnar portion is connected to the outlet The columnar portion has a perforation as a plasma outlet on the opposite side of the tip portion.

根據本發明的一些實施方式,其中尖端部包含一三角稜柱,且三角稜柱的一稜線實質上平行柱狀部的表面。 According to some embodiments of the present invention, the tip portion includes a triangular prism, and a ridge line of the triangular prism is substantially parallel to the surface of the columnar portion.

根據本發明的一些實施方式,其中穿孔實質上垂直柱狀部的表面。 According to some embodiments of the invention, the perforations are substantially perpendicular to the surface of the columnar portion.

根據本發明的一些實施方式,其中穿孔之一軸線與柱狀部的表面形成約20度至90度的夾角。 According to some embodiments of the present invention, an axis of the perforation forms an included angle with the surface of the columnar portion of about 20 degrees to 90 degrees.

根據本發明的一些實施方式,其中穿孔之軸線實質上平行三角稜柱的一側壁。 According to some embodiments of the invention, the axis of the perforation is substantially parallel to a side wall of the triangular prism.

根據本發明的一些實施方式,其中三角稜柱的一側壁鄰接穿孔之一邊緣。 According to some embodiments of the invention, a side wall of the triangular prism abuts an edge of the perforation.

根據本發明的一些實施方式,其中穿孔包含一圓形入口或一矩形入口。 According to some embodiments of the present invention, the perforation includes a circular entrance or a rectangular entrance.

根據本發明的一些實施方式,其中穿孔為一矩形狹縫,且此矩形狹縫的一側壁與三角稜柱的一側壁共平 面。 According to some embodiments of the present invention, the perforation is a rectangular slit, and a sidewall of the rectangular slit is coplanar with a sidewall of the triangular prism. surface.

根據本發明的一些實施方式,其中尖端部包含一錐體。 According to some embodiments of the invention, the tip portion includes a cone.

根據本發明的一些實施方式,其中穿孔實質上垂直柱狀部的表面。 According to some embodiments of the invention, the perforations are substantially perpendicular to the surface of the columnar portion.

根據本發明的一些實施方式,其中穿孔之一軸線與柱狀部的表面形成約20度至90度的夾角。 According to some embodiments of the present invention, an axis of the perforation forms an included angle with the surface of the columnar portion of about 20 degrees to 90 degrees.

根據本發明的一些實施方式,其中穿孔之軸線實質上平行錐體的一側壁。 According to some embodiments of the invention, the axis of the perforation is substantially parallel to a side wall of the cone.

根據本發明的一些實施方式,其中錐體的一側壁鄰接穿孔之一邊緣。 According to some embodiments of the invention, a side wall of the cone abuts an edge of the perforation.

根據本發明的一些實施方式,其中穿孔包含一圓形入口或一矩形入口。 According to some embodiments of the present invention, the perforation includes a circular entrance or a rectangular entrance.

根據本發明的一些實施方式,其中穿孔為一矩形狹縫,且此矩形狹縫的一側壁與錐體的一側壁共平面。 According to some embodiments of the present invention, the perforation is a rectangular slit, and a sidewall of the rectangular slit is coplanar with a sidewall of the cone.

根據本發明的一些實施方式,其中尖端部具有一鏡像對稱結構。 According to some embodiments of the present invention, the tip portion has a mirror-symmetric structure.

100‧‧‧大氣電漿產生裝置 100‧‧‧ Atmospheric plasma generating device

105‧‧‧殼體 105‧‧‧shell

110‧‧‧入口部 110‧‧‧Entrance

115‧‧‧出口部 115‧‧‧Export Department

120‧‧‧內電極 120‧‧‧Internal electrode

125‧‧‧進氣元件 125‧‧‧Air intake element

130‧‧‧進氣口 130‧‧‧air inlet

135‧‧‧進氣機構 135‧‧‧Air intake mechanism

140‧‧‧柱狀部 140‧‧‧Columnar

145‧‧‧尖端部 145‧‧‧tip

150‧‧‧電弧導引電極 150‧‧‧arc guide electrode

155‧‧‧稜線 155‧‧‧Edge

160‧‧‧表面 160‧‧‧ surface

165‧‧‧穿孔 165‧‧‧perforation

170‧‧‧側壁 170‧‧‧ sidewall

175‧‧‧導線 175‧‧‧conductor

180‧‧‧電源供應器 180‧‧‧ Power Supply

185‧‧‧尖端 185‧‧‧ tip

200‧‧‧氣體 200‧‧‧gas

300‧‧‧電弧 300‧‧‧arc

400‧‧‧電漿 400‧‧‧ Plasma

L‧‧‧軸線 L‧‧‧ axis

M‧‧‧軸線 M‧‧‧ axis

θ‧‧‧夾角 θ ‧‧‧ angle

當結合附圖閱讀以下詳細描述時將更好地理解本揭露內容之態樣。但須注意依照本產業的標準做法,各種特徵未按照比例繪製。事實上,各種特徵的尺寸為了清楚的討論而可被任意放大或縮小。 The aspect of the disclosure will be better understood when reading the following detailed description in conjunction with the accompanying drawings. However, it must be noted that in accordance with the standard practice of this industry, various features are not drawn to scale. In fact, the dimensions of various features may be arbitrarily enlarged or reduced for clarity of discussion.

第1圖係根據本發明一些實施方式,繪示一種大氣電漿產生裝置的立體示意圖。 FIG. 1 is a schematic perspective view of an atmospheric plasma generating device according to some embodiments of the present invention.

第2圖係依據第1圖,繪示一種大氣電漿產生裝置沿線段AA’的剖面示意圖。 Fig. 2 is a schematic cross-sectional view along line AA 'of an atmospheric plasma generating device according to Fig. 1.

第3圖至第8圖係根據本發明一些實施方式,繪示各種不同電弧導引電極的立體示意圖。 3 to 8 are perspective views of various arc guiding electrodes according to some embodiments of the present invention.

第9圖係依據第1圖,繪示另一種大氣電漿產生裝置沿線段AA’的剖面示意圖。 Fig. 9 is a schematic sectional view along line AA 'of another atmospheric plasma generating device according to Fig. 1.

本揭露接下來將會提供許多不同的實施方式或實施例以實施本揭露中不同的特徵。各特定實施例中的組成及配置將會在以下作描述以簡化本揭露。這些為實施例僅作為式範並非用於限定本揭露。例如,一第一元件形成於一第二元件「上方」或「之上」可包含實施例中的第一元件與第二元件直接接觸,亦可包含第一元件與第二元件之間更有其他額外元件使第一元件與第二元件無直接接觸。此外,在本揭露各種不同的範例中,將重複地使用元件符號及/或字母。此重複乃為了簡化與清晰的目的,而其本身並不決定各種實施例及/或結構配置之間的關係。此外,各種特徵乃為了簡化與清晰可能會依不同比例做繪製。 This disclosure will next provide many different implementations or examples to implement different features in this disclosure. The composition and configuration of each specific embodiment will be described below to simplify the present disclosure. These are examples only and are not intended to limit the present disclosure. For example, a first element formed "above" or "above" a second element may include the first element in the embodiment in direct contact with the second element, or it may include that the first element and the second element are more Other additional elements make the first element in no direct contact with the second element. In addition, in various examples of this disclosure, component symbols and / or letters will be used repeatedly. This repetition is for the purpose of simplicity and clarity, and does not itself determine the relationship between various embodiments and / or structural configurations. In addition, various features may be drawn at different scales for simplicity and clarity.

更進一步,像是「之下」、「下面」、「較低」、「上面」、「較高」、以及其他類似之相對空間關係的用語,可 用於此處以便描述圖式中一元件或特徵與另一元件或特徵之間的關係。該等相對空間關係的用語乃為了涵蓋除了圖式所描述的方向以外,裝置於使用或操作中之各種不同的方向。舉例來說,若於圖中的裝置被翻轉過來,原先被描述為在其他元件或特徵「之下」或「下面」的元件則變成在其他元件或特徵「上面」。因此,範例用語「之下」皆能包含上面及之下之方位。上述裝置可另有其他導向方式(旋轉90度或朝其他方向),此時的空間相對關係也可依上述方式解讀。 Further, terms such as "below", "below", "lower", "above", "higher", and other similar relative spatial relationships may be Used herein to describe the relationship between one element or feature and another element or feature in a drawing. The terms of relative spatial relationship are intended to cover various directions of the device in use or operation in addition to the directions described in the drawings. For example, if the device in the figure is turned over, elements that were previously described as "below" or "beneath" other elements or features become "above" the other elements or features. Therefore, the example term "below" can include both directions above and below. The above device may have other guiding methods (rotate 90 degrees or in other directions), and the spatial relative relationship at this time can also be interpreted in the above manner.

第1圖繪示發明某些實施方式之大氣電漿產生裝置100的立體示意圖,第2圖繪示沿第1圖中線段AA,的剖面示意圖。如第1圖及第2圖所示,大氣電漿產生裝置100包含殼體105、內電極120、進氣機構135以及電弧導引電極150。 FIG. 1 is a schematic perspective view of an atmospheric plasma generating device 100 according to some embodiments of the invention, and FIG. 2 is a schematic cross-sectional view taken along line AA ′ in FIG. 1. As shown in FIGS. 1 and 2, the atmospheric plasma generating device 100 includes a case 105, an internal electrode 120, an air intake mechanism 135, and an arc guide electrode 150.

殼體105具有入口部110以及出口部115。在一實施例中,殼體105為中空外殼且可由金屬材料所組成。在一實施例中,入口部110為電極設置端,出口部115為電漿出口端,位於殼體105的兩端。 The casing 105 includes an inlet portion 110 and an outlet portion 115. In one embodiment, the casing 105 is a hollow casing and may be composed of a metal material. In one embodiment, the inlet portion 110 is an electrode setting end, and the outlet portion 115 is a plasma outlet end, which is located at both ends of the casing 105.

內電極120設置在殼體105內,且鄰近入口部110。在一實施例中,內電極120電性連接至電源供應器180。藉由電源供應器180所提供的電壓,內電極周圍氣體行解離作用進而形成電漿氣體,產生電弧300。在一實施例中,內電極120為金屬電極,可例如為銅、鎢、不銹鋼或類似耐高溫的合金,或其他適合的材料。 The internal electrode 120 is disposed in the case 105 and is adjacent to the entrance portion 110. In one embodiment, the internal electrode 120 is electrically connected to the power supply 180. With the voltage provided by the power supply 180, the gas around the internal electrode dissociates to form plasma gas, and an arc 300 is generated. In an embodiment, the internal electrode 120 is a metal electrode, and may be, for example, copper, tungsten, stainless steel, or a similar high-temperature resistant alloy, or other suitable materials.

進氣機構135連接內電極120與入口部110,並且進氣機構135具有至少一進氣口130。進氣機構135係用於導入產生電漿所需的氣體200。在一實施例中,進氣機構135具有進氣元件125。進氣元件125具有複數個進氣口130位於內電極120與殼體105之間。氣體供應器(未繪示)所供應之氣體200可通過該些進氣口130進入殼體105中,並持續提供產生電漿所需的氣體。 The air intake mechanism 135 is connected to the internal electrode 120 and the inlet 110, and the air intake mechanism 135 has at least one air inlet 130. The air intake mechanism 135 is used to introduce a gas 200 required for generating plasma. In one embodiment, the air intake mechanism 135 includes an air intake element 125. The air intake element 125 has a plurality of air inlets 130 located between the internal electrode 120 and the casing 105. The gas 200 supplied by the gas supplier (not shown) can enter the casing 105 through the air inlets 130 and continuously provide the gas required to generate the plasma.

電弧導引電極150設置於出口部115並與內電極120相對設置,且電弧導引電極150包含柱狀部140以及尖端部145。在一實施例中,殼體105為金屬材料,導線175連接至殼體105。電弧導引電極150可透過殼體105電性連接至電源供應器180。此外,內電極120與殼體105之間可進一步設置隔離元件(未繪示)以避免內電極120與殼體105產生電性接觸。在另一實施例中,殼體105為非金屬材料,電弧導引電極150可直接透過導線175連接至電源供應器180。 The arc guiding electrode 150 is disposed at the exit portion 115 and is opposite to the internal electrode 120. The arc guiding electrode 150 includes a columnar portion 140 and a tip portion 145. In one embodiment, the casing 105 is made of a metal material, and the conductive wire 175 is connected to the casing 105. The arc guiding electrode 150 can be electrically connected to the power supply 180 through the casing 105. In addition, an isolation element (not shown) may be further disposed between the internal electrode 120 and the casing 105 to prevent the internal electrode 120 from making electrical contact with the casing 105. In another embodiment, the casing 105 is made of a non-metallic material, and the arc guiding electrode 150 may be directly connected to the power supply 180 through a wire 175.

尖端部145由柱狀部140的表面160朝向內電極120的方向延伸,柱狀部140連接出口部115,且柱狀部140具有穿孔165位於尖端部145之一側。在一實施例中,由出口部115實質上圍繞並鄰接柱狀部140,故穿孔165為電漿出口。此外,前述尖端型式的設計(尖端部145)具有尖端放電的效果,可吸引電弧300至此沿側壁170自穿孔165噴出。 The tip portion 145 extends from the surface 160 of the columnar portion 140 toward the internal electrode 120. The columnar portion 140 is connected to the outlet portion 115. In an embodiment, the outlet portion 115 substantially surrounds and abuts the columnar portion 140, so the perforation 165 is a plasma outlet. In addition, the aforementioned tip-type design (tip portion 145) has the effect of tip discharge, which can attract the arc 300 to this point and eject from the perforation 165 along the side wall 170.

在某些實施方式中,尖端部145具有鏡像對稱結構。軸線m為實質上垂直表面160之法線。舉例來說,若 以軸線m作為對稱軸,則位於軸線m兩旁的尖端部145呈現鏡像對稱。在某些實施方式中,尖端部145位於內電極120之尖端185的正下方,且尖端部145至尖端185具有一距離為約10mm至約60mm。 In some embodiments, the tip portion 145 has a mirror-symmetrical structure. The axis m is a normal to the substantially vertical surface 160. For example, if With the axis m as the axis of symmetry, the tip portions 145 on both sides of the axis m appear mirror-symmetrical. In some embodiments, the tip portion 145 is located directly below the tip 185 of the internal electrode 120, and the tip portion 145 to the tip 185 has a distance of about 10 mm to about 60 mm.

繼續參照第3圖至第5圖,為各種不同實施方式之電弧導引電極150的立體示意圖。第3圖繪示一種電弧導引電極150具有三角稜柱之尖端設計及圓形直孔。在一些實施方式中,尖端部145包含三角稜柱,且三角稜柱的稜線155實質上平行柱狀部140的表面160。三角稜柱具有側壁170鄰接穿孔165之邊緣。穿孔165為實質上垂直表面160的圓形直孔。電弧300可藉由尖端部145的導引沿側壁170向下自穿孔165噴出電漿400。 Continuing to refer to FIG. 3 to FIG. 5, it is a three-dimensional schematic diagram of the arc guiding electrode 150 in various embodiments. FIG. 3 illustrates an arc guiding electrode 150 having a triangular prism tip design and a circular straight hole. In some embodiments, the tip portion 145 includes a triangular prism, and the ridge line 155 of the triangular prism is substantially parallel to the surface 160 of the cylindrical portion 140. The triangular prism has an edge of the side wall 170 adjacent to the perforation 165. The perforations 165 are circular straight holes that are substantially perpendicular to the surface 160. The electric arc 300 can eject the plasma 400 along the side wall 170 downward from the perforation 165 by the guide of the tip portion 145.

第4圖繪示一種電弧導引電極150具有三角稜柱之尖端設計及圓形斜孔。軸線L為貫穿穿孔165中心的虛設軸線。夾角θ為軸線L與表面160相交所夾的角度。在某些實施方式中,穿孔165之軸線L與表面160形成約20度至90度的夾角θ,故穿孔165為非垂直表面160的斜孔。在一實施例中,穿孔165之軸線L實質上平行三角稜柱的一側壁170,且三角稜柱的側壁170鄰接穿孔165之邊緣。此外,氣流會選擇阻力最小的路徑行進。若前述穿孔165鄰接且平行三角稜柱之側壁170時(斜孔),電弧300被導引至尖端部145後可順著側壁170筆直前進沿著穿孔165噴出。反之,若前述穿孔165垂直表面160時(直孔),電弧300順著側壁170向下流動進入穿孔165會先碰到穿孔165中的側壁, 故需改變路徑方向才可自穿孔165噴出。換言之,電弧300流經斜孔所受的阻力較直孔小,具有導引氣流的功能。 FIG. 4 shows an arc guiding electrode 150 having a triangular prism tip design and a circular oblique hole. The axis L is a dummy axis running through the center of the perforation 165. The included angle θ is the angle at which the axis L intersects the surface 160. In some embodiments, the axis L of the perforation 165 forms an angle θ with the surface 160 of about 20 degrees to 90 degrees. Therefore, the perforation 165 is an oblique hole of the non-vertical surface 160. In an embodiment, the axis L of the perforation 165 is substantially parallel to a side wall 170 of the triangular prism, and the side wall 170 of the triangular prism is adjacent to the edge of the perforation 165. In addition, the airflow will follow the path of least resistance. If the aforementioned perforation 165 is adjacent to and parallel to the side wall 170 of the triangular prism (inclined hole), the arc 300 is guided to the tip portion 145 and can be straightly advanced along the side wall 170 and ejected along the perforation 165. Conversely, if the perforation 165 is perpendicular to the surface 160 (straight hole), the arc 300 flows down the side wall 170 and enters the perforation 165 and will first hit the side wall in the perforation 165. Therefore, the direction of the path needs to be changed to eject from the perforation 165. In other words, the resistance of the arc 300 flowing through the inclined hole is smaller than that of the straight hole, and it has the function of guiding the air flow.

第5圖繪示一種電弧導引電極150具有三角稜柱之尖端設計及矩形斜孔。在某些實施方式中,穿孔165為矩形狹縫(矩形斜孔),且矩形狹縫的一側壁與三角稜柱的側壁170共平面。在某些實施方式中,三角稜柱的側壁170鄰接前述矩形狹縫之穿孔165的邊緣。相較於第4圖所述的圓形斜孔,由於矩形狹縫其中一側壁與側壁170連成一連續完整的平面,使得電弧300流經矩形斜孔所受的阻力較圓形斜孔小,具有較佳的流動性。 FIG. 5 illustrates an arc guiding electrode 150 having a triangular prism tip design and a rectangular oblique hole. In some embodiments, the perforation 165 is a rectangular slit (rectangular oblique hole), and one side wall of the rectangular slit is coplanar with the side wall 170 of the triangular prism. In some embodiments, the side wall 170 of the triangular prism abuts the edge of the perforation 165 of the aforementioned rectangular slit. Compared with the circular oblique hole described in FIG. 4, because one side wall and the side wall 170 of the rectangular slit are connected to form a continuous and complete plane, the resistance of the arc 300 flowing through the rectangular oblique hole is smaller than that of the circular oblique hole. Has better fluidity.

繼續參照第6圖至第8圖,為各種不同實施方式之電弧導引電極150的立體示意圖。第6圖繪示一種電弧導引電極150具有錐體之尖端設計及圓形直孔。在一些實施方式中,尖端部145包含一錐體,且穿孔165實質上垂直表面160。穿孔165為實質上垂直表面160的圓形直孔。錐體具有側壁170鄰接穿孔165之邊緣。在一些實施方式中,尖端部145可包含但不限於三角錐體、四角錐體、五角椎體或其他任何形狀的椎體。與前述三角稜柱不同的是,當尖端部145的設計為錐體時,其尖端僅交於一點,故尖端放電效應較稜線155明顯。電弧300可藉由尖端部145的導引沿側壁170向下自穿孔165噴出電漿400。 Continuing to refer to FIG. 6 to FIG. 8, it is a three-dimensional schematic diagram of the arc guiding electrode 150 in various embodiments. FIG. 6 illustrates an arc guiding electrode 150 having a pointed design of a cone and a circular straight hole. In some embodiments, the tip portion 145 includes a cone, and the perforation 165 is substantially perpendicular to the surface 160. The perforations 165 are circular straight holes that are substantially perpendicular to the surface 160. The cone has an edge of the sidewall 170 abutting the perforation 165. In some embodiments, the tip 145 may include, but is not limited to, a triangular pyramid, a quadrangular pyramid, a pentagonal vertebra, or any other shape of vertebra. Different from the aforementioned triangular prism, when the tip portion 145 is designed as a cone, its tip only intersects at one point, so the tip discharge effect is more obvious than the edge line 155. The electric arc 300 can eject the plasma 400 along the side wall 170 downward from the perforation 165 by the guide of the tip portion 145.

第7圖繪示一種電弧導引電極150具有錐體之尖端設計及圓形斜孔。軸線L為貫穿穿孔165中心的虛設軸線。夾角θ為軸線L與表面160相交所夾的角度。在某些實 施方式中,穿孔165之軸線L與表面160形成約20度至90度的夾角θ,故穿孔165為非垂直表面160的斜孔。在某些實施方式中,穿孔165之軸線L實質上平行錐體的一側壁170,且錐體的側壁170鄰接穿孔165之邊緣。如前述所提,電弧300流經斜孔所受的阻力較直孔小,具有較佳的導引氣流的功能。 FIG. 7 illustrates an arc guiding electrode 150 having a tapered tip design and a circular oblique hole. The axis L is a dummy axis running through the center of the perforation 165. The included angle θ is the angle at which the axis L intersects the surface 160. In some real In the embodiment, the axis L of the perforation 165 and the surface 160 form an included angle θ of about 20 degrees to 90 degrees. Therefore, the perforation 165 is an oblique hole of the non-vertical surface 160. In some embodiments, the axis L of the perforation 165 is substantially parallel to a side wall 170 of the cone, and the side wall 170 of the cone abuts the edge of the perforation 165. As mentioned above, the resistance of the arc 300 flowing through the inclined hole is smaller than that of the straight hole, and it has a better function of guiding the air flow.

第8圖繪示一種電弧導引電極150具有錐體之尖端設計及矩形斜孔。在一些實施方式中,穿孔165包含圓形入口或矩形入口。在一些實施方式中,穿孔165為矩形狹縫(矩形斜孔),且矩形狹縫的側壁170與錐體的一側壁共平面。當錐體為非圓錐狀時,矩形狹縫其中一側壁會與側壁170連成一連續完整的平面,使得電弧300流經矩形斜孔所受的阻力較圓形斜孔小,具有較佳的流動性。 FIG. 8 illustrates an arc guiding electrode 150 having a tapered tip design and a rectangular oblique hole. In some embodiments, the perforations 165 include a circular or rectangular inlet. In some embodiments, the perforation 165 is a rectangular slit (rectangular oblique hole), and a sidewall 170 of the rectangular slit is coplanar with a sidewall of the cone. When the cone is non-conical, one of the side walls of the rectangular slit and the side wall 170 form a continuous and complete plane, so that the resistance of the arc 300 flowing through the rectangular oblique hole is smaller than that of the circular oblique hole, which has better flow Sex.

第9圖係根據本發明之一些實施方式,繪示另一種大氣電漿產生裝置100沿第1圖中線段AA’的剖面示意圖。電弧導引電極150的柱狀部140具有穿孔165,且此穿孔165為前文所述之斜孔。穿孔165的一軸線與表面160夾角為銳角,且平行並鄰接尖端部145之側壁170。電弧300受到電弧導引電極150之尖端部145的吸引可順著側壁170筆直向下自斜孔(穿孔165)噴出,氣流行進中所受的阻力較直孔小,具有較佳的氣流導引功能,減少電弧溢散的程度。殼體105、入口部110、出口部115、內電極120、進氣元件125、進氣口130、進氣機構135、導線175、電源供應器180、尖端185、氣體200、電漿400、軸線m可與前述第2 圖相同,於此不再重複贊述。 Fig. 9 is a schematic cross-sectional view of another atmospheric plasma generating device 100 along line AA 'in Fig. 1 according to some embodiments of the present invention. The columnar portion 140 of the arc guiding electrode 150 has a perforation 165, and the perforation 165 is an oblique hole as described above. An angle between an axis of the perforation 165 and the surface 160 is an acute angle, and is parallel to and adjacent to the side wall 170 of the tip portion 145. The arc 300 is attracted by the tip 145 of the arc guide electrode 150 and can be ejected straight down from the oblique hole (perforation 165) along the side wall 170. The resistance during the air flow is less than that of the straight hole, and it has better airflow guidance Function to reduce the degree of arc scum. Housing 105, inlet 110, outlet 115, internal electrode 120, air inlet element 125, air inlet 130, air inlet mechanism 135, lead 175, power supply 180, tip 185, gas 200, plasma 400, axis m may be the same as the second The diagrams are the same and will not be repeated here.

前文概述數個實施例之特徵以使得熟習該項技術者可更好地理解本揭露之態樣。熟習該項技術者應瞭解,可容易地將本揭露內容用作設計或修改用於實現相同目的及/或達成本文引入之實施例的相同優點之其他製程及結構之基礎。熟習該項技術者亦應認識到,此類等效物構造不違背本揭露內容之精神及範疇,且可在不違背本揭露內容之精神及範疇之情況下於此作出各種變化、替代以及變更。 The foregoing outlines the features of several embodiments so that those skilled in the art can better understand the aspects of this disclosure. Those skilled in the art should understand that the disclosure can be easily used as a basis for designing or modifying other processes and structures for achieving the same purpose and / or achieving the same advantages of the embodiments introduced herein. Those skilled in the technology should also realize that such equivalent constructions do not violate the spirit and scope of this disclosure, and can make various changes, substitutions and alterations without departing from the spirit and scope of this disclosure. .

Claims (14)

一種大氣電漿產生裝置,包含:一殼體,具有一入口部以及一出口部;一內電極,設置在該殼體內,且鄰近該入口部;一進氣機構,連接該內電極與該入口部,且該進氣機構具有至少一進氣口;以及一電弧導引電極,設置於該出口部並與該內電極相對設置,該電弧導引電極包含一柱狀部以及一尖端部,該尖端部由該柱狀部的一表面朝向該內電極延伸,其中該柱狀部連接該出口部,且該柱狀部具有一穿孔位於該尖端部之一側,其中該尖端部包含一三角稜柱,且該三角稜柱的一稜線實質上平行該柱狀部的該表面。 An atmospheric plasma generating device includes: a casing having an inlet portion and an outlet portion; an internal electrode disposed in the casing and adjacent to the inlet portion; an air intake mechanism connecting the internal electrode and the inlet And the air-intake mechanism has at least one air inlet; and an arc-guiding electrode is disposed at the outlet portion and opposite to the inner electrode, the arc-guiding electrode includes a columnar portion and a tip portion, the The tip portion extends from a surface of the columnar portion toward the internal electrode, wherein the columnar portion is connected to the outlet portion, and the columnar portion has a perforation located on one side of the tip portion, wherein the tip portion includes a triangular prism And a ridge line of the triangular prism is substantially parallel to the surface of the columnar portion. 如申請專利範圍第1項所述之大氣電漿產生裝置,其中該穿孔實質上垂直該表面。 The atmospheric plasma generating device according to item 1 of the patent application scope, wherein the perforation is substantially perpendicular to the surface. 如申請專利範圍第1項所述之大氣電漿產生裝置,其中該穿孔之一軸線與該表面形成約20度至90度的夾角。 The atmospheric plasma generating device according to item 1 of the scope of patent application, wherein an axis of the perforation forms an angle with the surface of about 20 to 90 degrees. 如申請專利範圍第3項所述之大氣電漿產生裝置,其中該穿孔之該軸線實質上平行該三角稜柱的一側壁。 The atmospheric plasma generating device according to item 3 of the scope of patent application, wherein the axis of the perforation is substantially parallel to a side wall of the triangular prism. 如申請專利範圍第1項所述之大氣電漿產生裝置,其中該三角稜柱的一側壁鄰接該穿孔之一邊緣。 The atmospheric plasma generating device according to item 1 of the scope of patent application, wherein a side wall of the triangular prism is adjacent to an edge of the perforation. 如申請專利範圍第1項所述之大氣電漿產生裝置,其中該穿孔包含一圓形入口或一矩形入口。 The atmospheric plasma generating device according to item 1 of the patent application scope, wherein the perforation includes a circular entrance or a rectangular entrance. 如申請專利範圍第1項所述之大氣電漿產生裝置,其中該穿孔為一矩形狹縫,且該矩形狹縫的一側壁與該三角稜柱的一側壁共平面。 The atmospheric plasma generating device according to item 1 of the patent application scope, wherein the perforation is a rectangular slit, and a side wall of the rectangular slit is coplanar with a side wall of the triangular prism. 一種大氣電漿產生裝置,包含:一殼體,具有一入口部以及一出口部;一內電極,設置在該殼體內,且鄰近該入口部;一進氣機構,連接該內電極與該入口部,且該進氣機構具有至少一進氣口;以及一電弧導引電極,設置於該出口部並與該內電極相對設置,該電弧導引電極包含一柱狀部以及一尖端部,該尖端部由該柱狀部的一表面朝向該內電極延伸,其中該柱狀部連接該出口部,且該柱狀部具有一穿孔位於該尖端部之一側,其中該尖端部包含一錐體,其中該錐體的一側壁鄰接該穿孔之一邊緣。 An atmospheric plasma generating device includes: a casing having an inlet portion and an outlet portion; an internal electrode disposed in the casing and adjacent to the inlet portion; an air intake mechanism connecting the internal electrode and the inlet And the air-intake mechanism has at least one air inlet; and an arc-guiding electrode is disposed at the outlet portion and opposite to the inner electrode, the arc-guiding electrode includes a columnar portion and a tip portion, The tip portion extends from a surface of the columnar portion toward the internal electrode, wherein the columnar portion is connected to the outlet portion, and the columnar portion has a perforation located on one side of the tip portion, wherein the tip portion includes a cone Wherein a side wall of the cone abuts an edge of the perforation. 如申請專利範圍第8項所述之大氣電漿 產生裝置,其中該穿孔實質上垂直該表面。 Atmospheric plasma as described in item 8 of the scope of patent application A device is created wherein the perforation is substantially perpendicular to the surface. 如申請專利範圍第8項所述之大氣電漿產生裝置,其中該穿孔之一軸線與該表面形成約20度至90度的夾角。 The atmospheric plasma generating device according to item 8 of the scope of the patent application, wherein an axis of the perforation forms an angle with the surface of about 20 to 90 degrees. 如申請專利範圍第10項所述之大氣電漿產生裝置,其中該穿孔之該軸線實質上平行該錐體的一側壁。 The atmospheric plasma generating device according to item 10 of the patent application scope, wherein the axis of the perforation is substantially parallel to a side wall of the cone. 如申請專利範圍第8項所述之大氣電漿產生裝置,其中該穿孔包含一圓形入口或一矩形入口。 The atmospheric plasma generating device according to item 8 of the patent application scope, wherein the perforation includes a circular entrance or a rectangular entrance. 如申請專利範圍第8項所述之大氣電漿產生裝置,其中該穿孔為一矩形狹縫,且該矩形狹縫的一側壁與該錐體的該側壁共平面。 The atmospheric plasma generating device according to item 8 of the scope of the patent application, wherein the perforation is a rectangular slit, and a sidewall of the rectangular slit is coplanar with the sidewall of the cone. 如申請專利範圍第1或8項所述之大氣電漿產生裝置,其中該尖端部具有一鏡像對稱結構。 The atmospheric plasma generating device according to item 1 or 8 of the patent application scope, wherein the tip portion has a mirror-symmetric structure.
TW106145124A 2017-12-21 2017-12-21 Apparatus for generating atmospheric environment plasma TWI674041B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106145124A TWI674041B (en) 2017-12-21 2017-12-21 Apparatus for generating atmospheric environment plasma
CN201811319280.7A CN109951943A (en) 2017-12-21 2018-11-07 A kind of atmospheric plasma generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106145124A TWI674041B (en) 2017-12-21 2017-12-21 Apparatus for generating atmospheric environment plasma

Publications (2)

Publication Number Publication Date
TW201929611A TW201929611A (en) 2019-07-16
TWI674041B true TWI674041B (en) 2019-10-01

Family

ID=67005847

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106145124A TWI674041B (en) 2017-12-21 2017-12-21 Apparatus for generating atmospheric environment plasma

Country Status (2)

Country Link
CN (1) CN109951943A (en)
TW (1) TWI674041B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115020A1 (en) * 2021-06-10 2022-12-15 Plasmatreat Gmbh DEVICE FOR GENERATING AN ATMOSPHERIC PLASMA BEAM FOR TREATMENT OF A SURFACE OF A WORKPIECE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065887A1 (en) * 1999-04-28 2000-11-02 Bardos Ladislav Method and apparatuses for plasma treatment
JP2003300029A (en) * 2002-04-10 2003-10-21 Pearl Kogyo Kk Surface treating apparatus using atmospheric pressure plasma
JP2006277953A (en) * 2005-03-25 2006-10-12 Toyohashi Univ Of Technology Plasma formation device and plasma treatment device as well as plasma formation method and plasma treatment method
US7598473B2 (en) * 2005-05-11 2009-10-06 Hypertherm, Inc. Generating discrete gas jets in plasma arc torch applications
TWI380743B (en) * 2008-12-12 2012-12-21 Ind Tech Res Inst Casing and jet type plasma system
TWI404463B (en) * 2010-06-11 2013-08-01 Creating Nano Technologies Inc Plasma-directing element and array plasma-discharging device
US8994271B2 (en) * 2009-08-03 2015-03-31 Leibniz—Institut fuer Plasmaforschung und Technologie E. V. Device for generating a non-thermal atmospheric pressure plasma

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312271A (en) * 1993-04-28 1994-11-08 Aichi Sangyo Kk Plasma arc gouging torch
DE29911974U1 (en) * 1999-07-09 2000-11-23 Agrodyn Hochspannungstechnik G Plasma nozzle
US6114649A (en) * 1999-07-13 2000-09-05 Duran Technologies Inc. Anode electrode for plasmatron structure
CN101754562B (en) * 2008-12-01 2012-05-09 财团法人工业技术研究院 Atmospheric plasma generating device with function of electric arc control
CN101754563B (en) * 2008-12-22 2012-10-10 财团法人工业技术研究院 Shell and injection-type plasma system thereof
JP5364517B2 (en) * 2009-09-10 2013-12-11 本田技研工業株式会社 Plasma torch and plasma arc welding method
TWI531280B (en) * 2014-04-16 2016-04-21 馗鼎奈米科技股份有限公司 Plasma device
CN104640339A (en) * 2015-01-12 2015-05-20 广东韦达尔科技有限公司 Plasma surface treatment device
TW201709775A (en) * 2015-08-25 2017-03-01 馗鼎奈米科技股份有限公司 Arc atmospheric pressure plasma device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065887A1 (en) * 1999-04-28 2000-11-02 Bardos Ladislav Method and apparatuses for plasma treatment
JP2003300029A (en) * 2002-04-10 2003-10-21 Pearl Kogyo Kk Surface treating apparatus using atmospheric pressure plasma
JP2006277953A (en) * 2005-03-25 2006-10-12 Toyohashi Univ Of Technology Plasma formation device and plasma treatment device as well as plasma formation method and plasma treatment method
US7598473B2 (en) * 2005-05-11 2009-10-06 Hypertherm, Inc. Generating discrete gas jets in plasma arc torch applications
TWI380743B (en) * 2008-12-12 2012-12-21 Ind Tech Res Inst Casing and jet type plasma system
US8994271B2 (en) * 2009-08-03 2015-03-31 Leibniz—Institut fuer Plasmaforschung und Technologie E. V. Device for generating a non-thermal atmospheric pressure plasma
TWI404463B (en) * 2010-06-11 2013-08-01 Creating Nano Technologies Inc Plasma-directing element and array plasma-discharging device

Also Published As

Publication number Publication date
CN109951943A (en) 2019-06-28
TW201929611A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
KR101245433B1 (en) Ion generator and electrical device
US8736174B2 (en) Plasma generation device with split-ring resonator and electrode extensions
US20090065177A1 (en) Cooling with microwave excited micro-plasma and ions
US20080302510A1 (en) Plasma-driven cooling heat sink
US8488294B2 (en) Ionic fluid flow accelerator
WO2008153988A1 (en) Plasma cooling heat sink
JP5395225B2 (en) Baffle and substrate processing apparatus including the same
TWI674041B (en) Apparatus for generating atmospheric environment plasma
JP2006308486A (en) Conductive contact holder and conductive contact unit
JP5490529B2 (en) Conductive contact unit
JP2014132570A (en) Plasma chamber and substrate processing apparatus
JP2007299720A (en) Jet-type microwave-excited plasma treatment device
TWI793656B (en) Ion gun and vacuum treatment device
US20100230087A1 (en) Cooling using micro-plasma excited on transmission lines structure
TW202008462A (en) Device for plasma-based process
KR102188410B1 (en) Antenna, plasma processing apparatus and plasma processing method
JP4417945B2 (en) Ion generator
TWI740011B (en) Air purifier
WO2017149804A1 (en) Plasma generation device
JP6153768B2 (en) Ion generator and ion generator
KR20200132702A (en) Plasma processing apparatus
JP2010022975A (en) High-voltage plasma generator
CN113130282A (en) Plasma confinement structure, manufacturing method thereof and plasma processing device
JP4560785B2 (en) Ion source, hole formation method
JP2019192358A (en) Ion wind generation device