JP2003300029A - Surface treating apparatus using atmospheric pressure plasma - Google Patents
Surface treating apparatus using atmospheric pressure plasmaInfo
- Publication number
- JP2003300029A JP2003300029A JP2002107978A JP2002107978A JP2003300029A JP 2003300029 A JP2003300029 A JP 2003300029A JP 2002107978 A JP2002107978 A JP 2002107978A JP 2002107978 A JP2002107978 A JP 2002107978A JP 2003300029 A JP2003300029 A JP 2003300029A
- Authority
- JP
- Japan
- Prior art keywords
- atmospheric pressure
- gas flow
- gas
- surface treatment
- pressure plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Plasma Technology (AREA)
- Cleaning In General (AREA)
- Coating Apparatus (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主としてポリエチ
レンやポリプロピレン、PTFE(ポリ四フッ化エチレ
ン)などの樹脂に対して塗料を塗布する場合や印刷を施
す場合にその表面の撥水性を親水性に改質したり、ガラ
ス、セラミックス、金属、半導体等の表面に付着した有
機物を洗浄したりするなどの表面処理を行なう場合に用
いられる大気圧プラズマ表面処理装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly makes the water repellency of a surface of a resin such as polyethylene, polypropylene, PTFE (polytetrafluoroethylene) or the like to be hydrophilic when coating or printing. The present invention relates to an atmospheric pressure plasma surface treatment apparatus used when performing surface treatment such as modification and cleaning of organic substances attached to the surface of glass, ceramics, metal, semiconductor and the like.
【0002】[0002]
【従来の技術】この種の大気圧プラズマ表面処理装置と
して、例えば特開平6−163143号公報等に開示さ
れているように、互いに対向する一対の放電電極間に高
電圧を印加しつつガスを導入することにより、電極間に
アーチ状に膨らんだコロナ放電を生成し、このコロナ放
電の周りにプラズマを生成して該プラズマを含むガス流
を被処理物の表面に照射して改質等の表面処理を行なう
ように構成したものや、特開平10−241827号公
報に開示されているように、円形状のガス流路の中央部
と外周辺部とに内外一対の放電電極を配置してコロナ放
電によりプラズマを生成し、該プラズマを含むガス流を
被処理物の表面に向けて吹き出すように構成したドーナ
ツ形のものが提案されている。2. Description of the Related Art As an atmospheric pressure plasma surface treatment apparatus of this type, as disclosed in, for example, Japanese Patent Application Laid-Open No. 6-163143, gas is applied while a high voltage is applied between a pair of discharge electrodes facing each other. By introducing a corona discharge that swells in an arch shape between the electrodes, plasma is generated around this corona discharge, and a gas stream containing the plasma is applied to the surface of the object to be treated to modify it. One configured to perform a surface treatment, and as disclosed in Japanese Patent Laid-Open No. 10-241827, a pair of inner and outer discharge electrodes are arranged in the central portion and the outer peripheral portion of a circular gas flow passage. There has been proposed a donut shape in which plasma is generated by corona discharge and a gas flow containing the plasma is blown toward the surface of the object to be treated.
【0003】[0003]
【発明が解決しようとする課題】上記したような構成の
従来のコロナ放電方式のプラズマ表面処理装置は、グロ
ー放電方式のプラズマ表面処理装置の場合に必要である
ヘリウムまたは水素など点火用ガスの使用が省け、使用
時の安全性の向上及びガス消費量の節減による処理コス
トの低減を図れるという利点がある。しかし、従来のコ
ロナ放電方式のプラズマ表面処理装置では、この種の装
置に対しての要請事項である小型化と単位処理面積の増
大化、つまりは表面処理効率の向上とを両立させること
が困難である。すなわち、装置全体を小型化すれば、ロ
ボットへの装着が可能で装置の使用形態の多様化、つま
り適用性を広げることができる反面、小型化に比例して
単位処理面積が小さくなり、表面処理効率の低下は避け
られない。また、逆に表面処理効率を高めるために単位
処理面積を大きくすれば、表面処理効率の向上が図れる
反面、装置全体が大型化してロボットへの装着使用等に
よる適用性には自ずと限界があるばかりでなく、装置コ
ストが高価なものになるという問題がある。The conventional corona discharge type plasma surface treatment apparatus having the above-mentioned structure uses the ignition gas such as helium or hydrogen which is necessary in the case of the glow discharge type plasma surface treatment apparatus. There is an advantage that the processing cost can be reduced by improving the safety during use and saving the gas consumption. However, in the conventional corona discharge type plasma surface treatment apparatus, it is difficult to achieve both the requirement for this type of apparatus, that is, miniaturization and increase of the unit treatment area, that is, improvement of the surface treatment efficiency. Is. That is, if the entire device is downsized, it can be attached to a robot and the usage pattern of the device can be diversified, that is, the applicability can be expanded, but the unit processing area becomes smaller in proportion to the downsizing, and the surface treatment A decrease in efficiency is inevitable. On the contrary, if the unit treatment area is increased in order to increase the surface treatment efficiency, the surface treatment efficiency can be improved, but the size of the entire device is increased and the applicability due to mounting and use on the robot is naturally limited. However, there is a problem that the device cost becomes high.
【0004】本発明は上記のような実情に鑑みてなされ
たもので、小型化により装置の適用性の拡大を図りつつ
も、単位処理面積を大きく確保して表面処理効率の向上
が図れ、しかも均一な表面処理を行なうことができる大
気圧プラズマ表面処理装置を提供することを目的として
いる。The present invention has been made in view of the above-mentioned circumstances, and it is possible to improve the surface treatment efficiency by securing a large unit treatment area while increasing the applicability of the apparatus by downsizing. It is an object of the present invention to provide an atmospheric pressure plasma surface treatment apparatus capable of performing uniform surface treatment.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る大気圧プラズマ表面処理装置は、円形
状のガス流路の中央部と外周辺部とに内外一対の放電電
極が配置され、これら内外一対の放電電極の上記ガス流
路の先端吹き出し口またはその直近位置にはコロナ放電
生成用先鋭突起部が対向状態に形成されており、上記ガ
ス流路に大気圧または大気圧近傍圧力下でガスを導入す
るとともに、一対の放電電極に高電圧を印加することに
より、互いに対向する先鋭突起部間にアーチ状のコロナ
放電を生成し、そのコロナ放電により生成されるプラズ
マを含むガス流を被処理物の表面に照射して表面処理を
行なうように構成されている大気圧プラズマ表面処理装
置であって、上記ガス流路の先端吹き出し口に近い箇所
には、導入ガスに拡散用旋回力を付与する旋回手段が設
けられていることを特徴とするものである。In order to achieve the above object, in an atmospheric pressure plasma surface treatment apparatus according to the present invention, a pair of inner and outer discharge electrodes are provided in a central portion and an outer peripheral portion of a circular gas passage. Corona discharge-producing sharp projections are formed in an opposed state at the tip outlets of the gas passage of the pair of inner and outer discharge electrodes or at positions immediately adjacent thereto, and the gas passage has an atmospheric pressure or an atmospheric pressure. By introducing a gas under a near pressure and applying a high voltage to the pair of discharge electrodes, an arc-shaped corona discharge is generated between the sharp projections facing each other, and the plasma generated by the corona discharge is included. An atmospheric pressure plasma surface treatment apparatus configured to perform a surface treatment by irradiating a surface of an object to be treated with a gas flow, wherein a portion of the gas flow path near the tip outlet port is provided with an introduction gas. Pivot means for imparting diffuser for swirling force and is characterized in that is provided.
【0006】ここで、上記旋回手段は、請求項2に記載
のように、アーチ状コロナ放電により生成されたプラズ
マがガス流路の中央部の周りを回転移動することに伴い
ガス流路の先端吹き出し口から吹き出されるガスを該先
端吹き出し口よりも拡径させてほぼ円形状の流れに変換
するように構成されたものである。Here, in the swirling means, as described in claim 2, as the plasma generated by the arch-shaped corona discharge rotates and moves around the central portion of the gas flow passage, the tip of the gas flow passage is formed. The gas blown out from the blowout port is configured to have a diameter larger than that of the tip blowout port and to be converted into a substantially circular flow.
【0007】上記構成の本発明によれば、ガス流路に大
気圧もしくは大気圧近傍圧力下でガスを導入しつつ、内
外一対の放電電極に高電圧を印加することによって、両
電極の先端突起部間にアーチ状に膨らんだコロナ放電を
生成させ、このコロナ放電により生成されるプラズマを
含むガス流がガス流路の先端吹き出し口から被処理物の
表面に照射されて該表面の改質等の所定の表面処理が行
なわれる。このとき、アーチ状コロナ放電により生成さ
れるプラズマはガス流路の中央部の周りを回転移動する
一方、ガス流路内からコロナ放電プラズマ領域に導入さ
れるガスには旋回手段によって拡散用旋回力が付与され
ているので、吹き出し口よりも拡径されてほぼ円形状で
大面積の範囲に及ぶガス流が生成されることになる。こ
れによって、先端吹き出し口径を小さくして装置全体の
小型化を図り、ロボットへの装着使用等による適用性の
拡大を可能としつつも、プラズマを含むガス流の吹き出
し面積が大きくなるために表面処理効率の向上を図るこ
とが可能である。また、プラズマ領域もほぼ円形状に形
成されるために、処理領域の全体に亘ってプラズマを均
一化して、所定の表面処理をむらなく適正かつ均一に行
なうことが可能である。According to the present invention having the above-mentioned structure, the tip projections of both electrodes are applied by applying a high voltage to the pair of inner and outer discharge electrodes while introducing the gas into the gas channel under atmospheric pressure or under a pressure near atmospheric pressure. A corona discharge that bulges like an arch between the parts is generated, and a gas flow containing plasma generated by this corona discharge is irradiated from the tip outlet of the gas flow path to the surface of the object to be processed, etc. Predetermined surface treatment is performed. At this time, the plasma generated by the arched corona discharge rotates around the central portion of the gas flow passage, while the gas introduced into the corona discharge plasma region from the gas flow passage is swung by the swirling means. Therefore, a gas flow having a diameter larger than that of the blowout port and having a substantially circular shape and covering a large area is generated. As a result, the diameter of the tip blow-out port can be reduced to reduce the overall size of the device, and the applicability can be expanded by mounting and using it on a robot, etc. It is possible to improve efficiency. Further, since the plasma region is also formed into a substantially circular shape, it is possible to make the plasma uniform over the entire treatment region and perform the predetermined surface treatment evenly and uniformly.
【0008】上記のような大気圧プラズマ表面処理装置
における旋回手段としては、請求項3に記載のように、
各々螺旋状に屈曲形成されて周方向に等間隔に配置され
た複数枚の羽根板からなり、一対の放電電極とは別にガ
ス流路内に固定設置された旋回羽根から構成されたもの
であっても、請求項4に記載のように、筒体の外周から
突出させた複数の突条を渦巻き状に巻回させて隣接する
渦巻き状突条間に渦巻き状のガスガイド溝を形成させて
なり、ガス流路内の中心部に配置されるソケット状のガ
スガイド部材から構成されたものであってもよい。As the turning means in the above atmospheric pressure plasma surface treatment apparatus, as described in claim 3,
It is composed of a plurality of blade plates each formed in a spiral shape and arranged at equal intervals in the circumferential direction, and is composed of a rotating blade fixedly installed in the gas flow path separately from the pair of discharge electrodes. However, as described in claim 4, a plurality of protrusions protruding from the outer periphery of the cylindrical body are spirally wound to form a spiral gas guide groove between the adjacent spiral protrusions. It may be composed of a socket-shaped gas guide member arranged at the center of the gas flow path.
【0009】また、上記大気圧プラズマ表面処理装置に
おいて、請求項5に記載のように、外側の放電電極の外
周部をセラミック等の電気絶縁材製カバーで被覆するこ
とによって、感電防止を図ることができる。Further, in the above atmospheric pressure plasma surface treatment apparatus, the electric shock is prevented by covering the outer peripheral portion of the outer discharge electrode with a cover made of an electrically insulating material such as ceramic as described in claim 5. You can
【0010】また、上記大気圧プラズマ表面処理装置に
おいて、請求項6に記載のように、内外一対の放電電極
の少なくとも先端部表面に、誘電体をコーティングする
ことにより、コロナ放電を誘電体バリア放電として生成
されるプラズマをマイルド化して放電騒音の低減等を図
ることができる。Further, in the above atmospheric pressure plasma surface treatment apparatus, as described in claim 6, by coating a dielectric on at least the tip end surface of the pair of inner and outer discharge electrodes, corona discharge is converted into a dielectric barrier discharge. It is possible to reduce the discharge noise by making the plasma generated as a mild.
【0011】さらに、上記大気圧プラズマ表面処理装置
において、請求項7に記載のように、ガス流路における
ガス流量を調整可能に構成する、及び/または、請求項
8に記載のように、内外一対の放電電極に印加する電圧
の周波数を調整可能に構成することによって、ガス流量
及び/または電圧を吹き出し口と被処理物表面との距離
や被処理物の性質等の種々の条件に対応してマッチング
させて常に適正かつ均一なプラズマを生成し、所定の表
面処理を的確かつ効率よく実行することができる。Further, in the above atmospheric pressure plasma surface treatment apparatus, as described in claim 7, the gas flow rate in the gas flow path can be adjusted, and / or the inside and outside, as described in claim 8. By configuring the frequency of the voltage applied to the pair of discharge electrodes to be adjustable, the gas flow rate and / or voltage can be adjusted to meet various conditions such as the distance between the outlet and the surface of the object to be processed and the property of the object to be processed. Therefore, appropriate and uniform plasma can always be generated by performing matching to perform a predetermined surface treatment accurately and efficiently.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係る大気圧プラ
ズマ表面処理装置の縦断面図、図2は図1の要部の拡大
縦断面図、図3は図2のA−A’線に沿った横断面図で
ある。この大気圧プラズマ表面処理装置は、円形状のガ
ス流路1の中央部に一方の放電電極2が配置されている
とともに、ガス流路1の外周部に他方の円筒状放電電極
3が配置されており、これら内外一対の放電電極2,3
に、最大30kV,周波数10〜100kHzの高電圧
をパルス周波数10〜300Hz、バルスデューティ0
〜100%で印加する電極棒4,5がねじ込み連結され
ている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 is a vertical cross-sectional view of an atmospheric pressure plasma surface treatment apparatus according to the present invention, FIG. 2 is an enlarged vertical cross-sectional view of a main part of FIG. 1, and FIG. 3 is a horizontal cross-sectional view taken along the line AA ′ of FIG. is there. In this atmospheric pressure plasma surface treatment apparatus, one discharge electrode 2 is arranged in the central portion of a circular gas flow passage 1, and the other cylindrical discharge electrode 3 is arranged in the outer peripheral portion of the gas flow passage 1. And a pair of these inner and outer discharge electrodes 2, 3
In addition, a high voltage with a maximum of 30 kV and a frequency of 10 to 100 kHz, a pulse frequency of 10 to 300 Hz, and a pulse duty of 0
The electrode rods 4 and 5 which apply at 100% are screwed and connected.
【0013】中央部の放電電極2にねじ込み連結された
電極棒4の外周面はフッ素樹脂製熱収縮チューブ等の絶
縁スリーブ6が被覆されているとともに、外側の円筒状
放電電極5の外周部はアルミナ(Al2 O3 )等の
セラミックを切削加工してなる筒形状の電気絶縁材製カ
バー7で被覆されている。上記円形状のガス流路1の基
端部を閉塞するように外側の円筒状放電電極5の基端面
に当接させた蓋部材8に対して上記電気絶縁材7が離脱
可能にねじ接続されている。この蓋部材8には、ガス供
給配管9がコネクタ10により連通接続されたガス収容
空間11を有するカバー部材12がネジ部材13を介し
て固定連結されているとともに、ガス収納空間11と円
形状のガス流路1とを接続するガス流通孔14が貫通形
成されており、上記電極棒4,5は蓋部材8及びカバー
部材12にそれぞれ貫通させて固定保持されている。ま
た、上記カバー部材12の基端側には、コネクタ10、
電極棒4,5の端部等を包囲するカバー15がネジ部材
16を介して固定連結されている。The outer peripheral surface of the electrode rod 4 screwed and connected to the central discharge electrode 2 is covered with an insulating sleeve 6 such as a heat shrinkable tube made of fluororesin, and the outer peripheral portion of the outer cylindrical discharge electrode 5 is It is covered with a cylindrical cover 7 made of an electrically insulating material, which is formed by cutting a ceramic such as alumina (Al 2 O 3 ). The electric insulating material 7 is detachably screwed to the lid member 8 that is brought into contact with the base end surface of the outer cylindrical discharge electrode 5 so as to close the base end portion of the circular gas flow path 1. ing. A cover member 12 having a gas storage space 11 in which a gas supply pipe 9 is connected by a connector 10 is fixedly connected to the lid member 8 via a screw member 13, and is circular with the gas storage space 11. A gas flow hole 14 connecting to the gas flow path 1 is formed so as to penetrate therethrough, and the electrode rods 4 and 5 are fixedly held by penetrating through the lid member 8 and the cover member 12, respectively. In addition, on the base end side of the cover member 12, the connector 10,
A cover 15 that surrounds the ends of the electrode rods 4 and 5 is fixedly connected via a screw member 16.
【0014】上記内外一対の放電電極2,3のうち、ガ
ス流路1の先端吹き出し口1Aに対応する箇所には、快
削加工によってコロナ放電生成用の突起部2A,3Aが
径方向内外で対向状態に形成されており、ガス流路1に
大気圧または大気圧近傍圧力下でガス(後述する)を導
入しつつ、電極棒4,5を通じて一対の放電電極2,3
に上述した高電圧を印加することにより、互いに径方向
内外で対向する突起部2A,3A間にアーチ状に膨らん
だコロナ放電を生成し、このコロナ放電により生成され
るプラズマを含むガス流が先端吹き出し口1Aから被処
理物Wの表面に向けて照射するように構成されている。Protrusions 2A and 3A for generating corona discharge are formed in the radial direction inside and outside by free cutting at a portion of the pair of inner and outer discharge electrodes 2 and 3 corresponding to the tip outlet 1A of the gas passage 1. The pair of discharge electrodes 2, 3 are formed so as to face each other and introduce gas (described later) into the gas flow path 1 under atmospheric pressure or a pressure near atmospheric pressure through the electrode rods 4, 5.
By applying the above-mentioned high voltage to the above, a corona discharge that bulges in an arch shape is generated between the protrusions 2A and 3A that face each other inside and outside in the radial direction, and a gas flow containing plasma generated by this corona discharge is generated at the tip. It is configured to irradiate the surface of the object to be processed W from the air outlet 1A.
【0015】上記のような基本構成を有するコロナ放電
式の大気圧プラズマ表面処理装置において、上記円形状
ガス流路1の先端吹き出し口1Aに近い流路内部には、
図2及び図3に明示するように、各々螺旋状に屈曲形成
されて周方向に等間隔に配置された複数枚(3〜8枚程
度)の羽根板17Aからなり、導入ガスに径外方への拡
散用旋回力を付与する旋回羽根17が電極棒4外周面の
絶縁スリーブ6に固定して設置されている。また、内外
一対の放電電極2,3の先端で円弧状に屈曲形成されて
いる表面には、セラミック等の誘電体31,32が薄膜
状にコーティングされている。In the corona discharge type atmospheric pressure plasma surface treatment apparatus having the above-mentioned basic structure, the inside of the circular gas channel 1 near the tip outlet 1A is
As clearly shown in FIG. 2 and FIG. 3, it is composed of a plurality of blade plates 17A (about 3 to 8) each bent in a spiral shape and arranged at equal intervals in the circumferential direction. A swirl vane 17 for imparting a swirling force for diffusion to is fixedly installed on the insulating sleeve 6 on the outer peripheral surface of the electrode rod 4. In addition, dielectrics 31 and 32 such as ceramics are coated in a thin film shape on the surfaces of the pair of inner and outer discharge electrodes 2 and 3 which are bent and formed in an arc shape.
【0016】図4は、ガス流路1に供給されるガスの系
統図であり、コンプレッサー18、減圧弁19に接続さ
れたエアー供給経路20、アルゴン、窒素等の不活性ガ
スや酸素、炭酸ガス等の反応ガス供給経路21,22を
それぞれ電磁弁23,24,25及びニードル弁26,
27,28を経て混合器29に接続し、この混合器29
で混合された混合ガスを電磁弁30により流量調整可能
とし、その流量調整された混合ガスを上記ガス供給配管
9、コネクタ10を経てガス収容空間11に供給し、か
つ、このガス収納空間11からガス流通孔14を通じて
ガス流路1に大気圧または大気圧近傍圧力下で導入すべ
く構成されている。FIG. 4 is a system diagram of the gas supplied to the gas flow path 1, which includes an air supply path 20 connected to the compressor 18 and the pressure reducing valve 19, an inert gas such as argon and nitrogen, and oxygen and carbon dioxide. Of the reaction gas supply paths 21 and 22 of the solenoid valves 23, 24 and 25 and the needle valve 26, respectively.
The mixer 29 is connected via 27 and 28, and this mixer 29
The flow rate of the mixed gas mixed in 1. can be adjusted by the electromagnetic valve 30, and the mixed gas whose flow rate is adjusted is supplied to the gas storage space 11 via the gas supply pipe 9 and the connector 10, and from the gas storage space 11 It is configured to be introduced into the gas flow path 1 through the gas flow hole 14 at or near atmospheric pressure.
【0017】次に、上記のように構成された大気圧プラ
ズマ表面処理装置による表面処理動作について説明す
る。図4に示すガス供給系において既述したとおりに流
量調整された混合ガスをガス流路1に大気圧もしくは大
気圧近傍圧力下で導入しつつ、電極棒4,5を通じて内
外一対の放電電極2,3に高電圧を印加することによっ
て、両電極2,3の互いに径方向内外で対向する突起部
2A,3A間にアーチ状に膨らんだコロナ放電を生成
し、このコロナ放電により生成されるプラズマを含むガ
ス流をガス流路1の先端吹き出し口1Aから被処理物W
の表面fに照射させて該表面fを改質する等の所定の表
面処理を行なう。Next, the surface treatment operation by the atmospheric pressure plasma surface treatment apparatus configured as described above will be described. While introducing the mixed gas, the flow rate of which has been adjusted as described above in the gas supply system shown in FIG. 4, into the gas flow path 1 at or near atmospheric pressure, the pair of discharge electrodes 2 inside and outside through the electrode rods 4 and 5. , 3 to generate a corona discharge that bulges in an arch shape between the protrusions 2A and 3A of the electrodes 2 and 3 that face each other in the radial direction, and the plasma generated by this corona discharge. The gas flow containing the gas from the tip end outlet 1A of the gas flow path 1 to be processed W
A predetermined surface treatment such as irradiating the surface f to modify the surface f is performed.
【0018】このとき、径方向内外で対向する突起部2
A,3A間にアーチ状に膨らんだコロナ放電により生成
されるプラズマPはガス流路1の中央部の周りを回転移
動すしてほぼ円形状のプラズマ領域を生成する一方、ガ
ス流路1からコロナ放電プラズマ領域に導入される混合
ガスにはガス流路1内に固定設置されている旋回羽根1
7によって拡散用旋回力が付与されているので、ガス流
路1の先端吹き出し口1Aから吹き出されるガスは該先
端吹き出し口1Aよりも拡径されて図5の仮想線で示す
ようなほぼ円形状で大面積の範囲に及ぶガス流gに変換
されることになる。したがって、先端吹き出し口1Aの
口径を小さくして装置全体の小型化を図り、ロボットへ
の装着使用等による適用性の拡大を図りつつも、プラズ
マPがほぼ円形状領域に生成されることと、ガス流gが
大面積化されることとにより表面処理効率の向上を図る
ことが可能であるとともに、プラズマP自体がほぼ円形
状の回転領域を作りだすためにプラズマPの均一化も図
れ、所定の表面処理をむらなく、適正かつ均一に行なう
ことが可能である。At this time, the protrusions 2 facing each other inside and outside in the radial direction.
The plasma P generated by the corona discharge bulging in an arch shape between A and 3A rotationally moves around the central portion of the gas flow passage 1 to generate a substantially circular plasma region, while the plasma P from the gas flow passage 1 is generated. For the mixed gas introduced into the discharge plasma region, the swirl vanes 1 fixedly installed in the gas flow path 1
Since the swirling force for diffusion is given by 7, the gas blown out from the tip outlet 1A of the gas flow path 1 has a diameter larger than that of the tip outlet 1A and is substantially circular as shown by the phantom line in FIG. It will be converted into a gas flow g which has a shape and covers a large area. Therefore, while the diameter of the tip outlet 1A is reduced to reduce the size of the entire apparatus and the applicability of the apparatus to be attached to a robot is expanded, the plasma P is generated in a substantially circular region. By increasing the area of the gas flow g, it is possible to improve the surface treatment efficiency, and since the plasma P itself creates a substantially circular rotation region, the plasma P can be made uniform and a predetermined amount can be achieved. It is possible to perform surface treatment uniformly and appropriately.
【0019】また、内外一対の放電電極2,3先端の円
弧状屈曲表面には、セラミック等の誘電体31,32が
薄膜状にコーティングされているので、コロナ放電が誘
電体バリア放電となって、生成されるプラズマがマイル
ド化され放電騒音の低減等を図ることができる。Further, since the arc-shaped curved surfaces at the tips of the pair of inner and outer discharge electrodes 2 and 3 are coated with dielectrics 31 and 32 such as ceramics in a thin film form, the corona discharge becomes a dielectric barrier discharge. The generated plasma can be mildened and discharge noise can be reduced.
【0020】さらに、図4に示すようなガス供給系を採
用しているので、吹き出し口1Aと被処理物Wの表面f
との距離や被処理物Wの性質等の種々の条件に対応して
ガス流路1におけるガス流量及び/または内外一対の放
電電極2,3に印加する電圧の周波数を任意に調整する
ことによって、種々の条件にマッチングさせて常に適正
かつ均一なプラズマを生成し、所定の表面処理を的確か
つ効率よく実行することができる。Further, since the gas supply system as shown in FIG. 4 is adopted, the outlet 1A and the surface f of the object W to be processed are.
By arbitrarily adjusting the gas flow rate in the gas flow path 1 and / or the frequency of the voltage applied to the pair of inner and outer discharge electrodes 2 and 3 in accordance with various conditions such as the distance from By appropriately matching various conditions, a proper and uniform plasma can always be generated, and a predetermined surface treatment can be performed accurately and efficiently.
【0021】なお、上記実施の形態では、導入ガスに拡
散用旋回力を付与する旋回手段として、ガス流路1内部
の先端吹き出し口1Aに近い箇所に複数枚(3〜8枚程
度)の螺旋状羽根板17Aからなる旋回羽根17を固定
設置したもので説明したが、これに代えて、図6及び図
7に明示するように、筒体33Aの外周から突出させた
複数の突条33Bを渦巻き状に巻回させて隣接する渦巻
き状突条33B,33B間に渦巻き状のガスガイド溝3
3Cを形成させてなるソケット状のガスガイド部材33
を、ガス流路1内の先端吹き出し口1Aに近い中心部に
配置したものであってもよい。In the above embodiment, a plurality of (about 3 to 8) spirals are provided inside the gas flow path 1 as a swirling means for imparting a swirling force for diffusion to the introduced gas, at a position near the tip outlet 1A. The swirl vane 17 including the circular vane plate 17A has been described as being fixedly installed, but instead of this, as shown in FIGS. 6 and 7, a plurality of ridges 33B protruding from the outer periphery of the cylindrical body 33A are provided. A spiral gas guide groove 3 is wound between spiral spiral protrusions 33B, 33B that are wound spirally and are adjacent to each other.
Socket-shaped gas guide member 33 formed by forming 3C
May be disposed in the central portion of the gas flow path 1 near the tip outlet 1A.
【0022】また、上記実施の形態では、ガス流路1が
真円形状に形成されているものについて説明したが、楕
円形状に形成されたものであっても、上記と同様な作用
及び効果を奏することが可能である。Further, in the above-mentioned embodiment, the gas flow passage 1 is described as being formed in a perfect circular shape. However, even if it is formed in an elliptical shape, the same operation and effect as above can be obtained. It is possible to play.
【0023】[0023]
【発明の効果】以上のように、本発明によれば、導入ガ
スに拡散用旋回力を付与する旋回手段の存在により、ガ
ス流路の先端吹き出し口の径を小さくして処理装置全体
の小型化を図り、ロボットへの装着使用等による適用性
の拡大を可能とし、かつ、装置コストの低減も図りつ
つ、プラズマの生成範囲をほぼ円形状とし、かつ、プラ
ズマを含むガス流をほぼ円形状に拡散させて面積を広げ
ることができるので、表面処理効率の著しい向上を図る
ことができる。しかも、プラズマを含むガス流には旋回
力が付与されているので、ガス流に含まれるプラスマを
広い面積に亘って均一化することができ、所定の表面処
理をむらなく、適正かつ均一に行なうことができるとい
う効果を奏する。As described above, according to the present invention, due to the presence of the swirling means for imparting the swirling force for diffusion to the introduced gas, the diameter of the tip outlet of the gas flow path can be reduced to reduce the size of the entire processing apparatus. The scope of plasma generation is almost circular, and the gas flow containing plasma is almost circular, while increasing the applicability by mounting on a robot and reducing the cost of the equipment. Since the surface area can be increased by diffusing the surface area, the surface treatment efficiency can be significantly improved. Moreover, since the swirling force is applied to the gas flow containing plasma, the plasma contained in the gas flow can be made uniform over a wide area, and the predetermined surface treatment can be performed appropriately and uniformly. There is an effect that can be.
【0024】特に、請求項6に記載のように、内外一対
の放電電極の少なくとも先端部表面に誘電体をコーティ
ングする手段を採用することにより、コロナ放電を誘電
体バリア放電とし、コロナ放電の周りに生成されるプラ
ズマをマイルド化して放電騒音の低減等を図ることがで
きる。In particular, as described in claim 6, by adopting a means for coating at least the tip end surface of the pair of inner and outer discharge electrodes with a dielectric, the corona discharge becomes a dielectric barrier discharge, and the corona discharge surrounds the corona discharge. The plasma generated can be mildened to reduce discharge noise.
【図1】本発明に係る大気圧プラズマ表面処理装置の縦
断面図である。FIG. 1 is a vertical sectional view of an atmospheric pressure plasma surface treatment apparatus according to the present invention.
【図2】図1の要部の拡大縦断面図である。FIG. 2 is an enlarged vertical sectional view of a main part of FIG.
【図3】図2のA−A’線に沿った横断面図である。FIG. 3 is a cross-sectional view taken along the line A-A ′ of FIG.
【図4】同上大気圧プラズマ表面処理装置におけるガス
の供給系統図である。FIG. 4 is a gas supply system diagram in the atmospheric pressure plasma surface treatment apparatus.
【図5】大面積に亘るプラズマを含むガス流の生成状況
の説明図である。FIG. 5 is an explanatory diagram of a generation state of a gas flow containing plasma over a large area.
【図6】別の実施形態を示す要部の拡大縦断面図であ
る。FIG. 6 is an enlarged vertical cross-sectional view of a main part showing another embodiment.
【図7】図6のB−B’線に沿った横断面図である。FIG. 7 is a cross-sectional view taken along the line B-B ′ of FIG.
1 円形状ガス流路 1A 先端吹き出し口 2 中央部の放電電極 3 外周部の放電電極 2A,3A コロナ放電生成用突起部 7 電気絶縁材 17A 螺旋状の羽根板 17 旋回羽根 33 ソケット状のガスガイド部材 33A 筒体 33B 渦巻き状突条 33C 渦巻き状のガスガイド溝 W 被処理物 f 被処理物表面 1 circular gas flow path 1A tip outlet 2 Discharge electrode in the center 3 Discharge electrode on the outer periphery 2A, 3A Corona discharge generation protrusion 7 electrical insulation 17A spiral blade 17 swirl blades 33 Socket-shaped gas guide member 33A cylinder 33B spiral ridges 33C spiral gas guide groove W to be processed f Object surface
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01T 19/04 H01T 19/04 H05H 1/24 H05H 1/24 // C08L 101:00 C08L 101:00 Fターム(参考) 3B116 AA46 AB23 BB32 BB36 BB87 BB88 4F042 AA01 BA13 BA21 DA05 4F073 AA01 BA07 BA08 BA16 CA01 CA04 CA07 CA08 CA13 CA21 CA24 CA26 CA27 CA61 HA01─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01T 19/04 H01T 19/04 H05H 1/24 H05H 1/24 // C08L 101: 00 C08L 101: 00 F Term (reference) 3B116 AA46 AB23 BB32 BB36 BB87 BB88 4F042 AA01 BA13 BA21 DA05 4F073 AA01 BA07 BA08 BA16 CA01 CA04 CA07 CA08 CA13 CA21 CA24 CA26 CA27 CA61 HA01
Claims (8)
に内外一対の放電電極が配置され、これら内外一対の放
電電極の上記ガス流路の先端吹き出し口またはその直近
位置にはコロナ放電生成用突起部が対向状態に形成され
ており、上記ガス流路に大気圧または大気圧近傍圧力下
でガスを導入するとともに、一対の放電電極に高電圧を
印加することにより、互いに対向する突起部間にアーチ
状のコロナ放電を生成し、そのコロナ放電により生成さ
れるプラズマを含むガス流を被処理物の表面に照射して
表面処理を行なうように構成されている大気圧プラズマ
表面処理装置であって、 上記ガス流路の先端吹き出し口に近い箇所には、導入ガ
スに拡散用旋回力を付与する旋回手段が設けられている
ことを特徴とする大気圧プラズマ表面処理装置。1. A pair of inner and outer discharge electrodes are disposed at a central portion and an outer peripheral portion of a circular gas flow passage, and the pair of inner and outer discharge electrodes are provided at a tip end outlet of the gas flow passage or at a position immediately adjacent thereto. The corona discharge generating projections are formed to face each other, and the gas is introduced into the gas channel under atmospheric pressure or a pressure close to the atmospheric pressure, and a high voltage is applied to the pair of discharge electrodes to face each other. Atmospheric pressure plasma surface configured to generate an arc-shaped corona discharge between the protruding parts and to irradiate the surface of the object to be processed with a gas flow containing plasma generated by the corona discharge. The atmospheric pressure plasma surface treatment apparatus is a processing apparatus, wherein a swirling means for imparting a swirling force for diffusion to the introduced gas is provided in a portion of the gas flow path near the tip end outlet.
より生成されたプラズマがガス流路の中央部の周りを回
転移動することに伴いガス流路の先端吹き出し口から吹
き出されるガスを該先端吹き出し口よりも拡径させてほ
ぼ円形状の流れに変換するように構成されている請求項
1に記載の大気圧プラズマ表面処理装置。2. The tip of the swirling means ejects gas blown from a tip outlet of the gas passage as the plasma generated by the arched corona discharge rotates around the central portion of the gas passage. The atmospheric pressure plasma surface treatment apparatus according to claim 1, wherein the atmospheric pressure plasma surface treatment apparatus is configured to have a diameter larger than that of the air outlet to convert the flow into a substantially circular flow.
されて周方向に等間隔に配置された複数枚の羽根板から
なり、一対の放電電極とは別にガス流路内に固定設置さ
れた旋回羽根から構成されている請求項1または2に記
載の大気圧プラズマ表面処理装置。3. The swirling means is composed of a plurality of vane plates each bent in a spiral shape and arranged at equal intervals in the circumferential direction, and is fixedly installed in the gas flow path separately from the pair of discharge electrodes. The atmospheric pressure plasma surface treatment apparatus according to claim 1 or 2, which is composed of a swirling blade.
せた複数の突条を渦巻き状に巻回させて隣接する渦巻き
状突条間に渦巻き状のガスガイド溝を形成させてなり、
ガス流路内の中心部に配置されるソケット状のガスガイ
ド部材から構成されている請求項1または2に記載の大
気圧プラズマ表面処理装置。4. The swirling means spirally winds a plurality of protrusions projecting from the outer periphery of the cylindrical body to form a spiral gas guide groove between adjacent spiral protrusions.
The atmospheric pressure plasma surface treatment apparatus according to claim 1 or 2, comprising a socket-shaped gas guide member arranged in the center of the gas flow path.
気絶縁材製カバーで被覆されている請求項1ないし4の
いずれかに記載の大気圧プラズマ表面処理装置。5. The atmospheric pressure plasma surface treatment apparatus according to claim 1, wherein the outer peripheral portion of the outer cylindrical discharge electrode is covered with an electrically insulating cover.
端部表面には、誘電体がコーティングされている請求項
1ないし5のいずれかに記載の大気圧プラズマ表面処理
装置。6. The atmospheric pressure plasma surface treatment apparatus according to claim 1, wherein at least the tip end surfaces of the pair of inner and outer discharge electrodes are coated with a dielectric.
能に構成されている請求項1ないし5のいずれかに記載
の大気圧プラズマ表面処理装置。7. The atmospheric pressure plasma surface treatment apparatus according to claim 1, wherein the gas flow rate in the gas flow path is adjustable.
の周波数が調整可能に構成されている請求項1ないし7
のいずれかに記載の大気圧プラズマ表面処理装置。8. The frequency of the voltage applied to the pair of inner and outer discharge electrodes is adjustable.
5. The atmospheric pressure plasma surface treatment apparatus according to any one of 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002107978A JP2003300029A (en) | 2002-04-10 | 2002-04-10 | Surface treating apparatus using atmospheric pressure plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002107978A JP2003300029A (en) | 2002-04-10 | 2002-04-10 | Surface treating apparatus using atmospheric pressure plasma |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003300029A true JP2003300029A (en) | 2003-10-21 |
Family
ID=29391866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002107978A Pending JP2003300029A (en) | 2002-04-10 | 2002-04-10 | Surface treating apparatus using atmospheric pressure plasma |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003300029A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100699415B1 (en) * | 2004-10-25 | 2007-03-27 | 한국기계연구원 | Electrostatic spray cleaning apparatus |
WO2010122862A1 (en) * | 2009-04-21 | 2010-10-28 | シャープ株式会社 | Ion generator and air conditioner |
JP2012079429A (en) * | 2010-09-30 | 2012-04-19 | Ngk Insulators Ltd | Plasma processing apparatus |
JP2014179329A (en) * | 2010-07-07 | 2014-09-25 | National Institute Of Advanced Industrial & Technology | Operation method of plasma irradiation treatment device |
CN104128077A (en) * | 2014-07-14 | 2014-11-05 | 西安交通大学 | Double-layer sleeve type corona plasma generating device |
EP2923824A1 (en) | 2014-03-27 | 2015-09-30 | Seiko Epson Corporation | Method for producing object |
TWI674041B (en) * | 2017-12-21 | 2019-10-01 | 雷立強光電科技股份有限公司 | Apparatus for generating atmospheric environment plasma |
CN110932450A (en) * | 2019-12-27 | 2020-03-27 | 国家电网有限公司 | High-voltage conductor corona effect generator mounting structure |
CN110997127A (en) * | 2017-08-09 | 2020-04-10 | 春日电机株式会社 | Surface modification device |
US10933662B2 (en) | 2018-07-31 | 2021-03-02 | Ricoh Company, Ltd. | Image forming method, image forming apparatus, and image-formed matter |
-
2002
- 2002-04-10 JP JP2002107978A patent/JP2003300029A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100699415B1 (en) * | 2004-10-25 | 2007-03-27 | 한국기계연구원 | Electrostatic spray cleaning apparatus |
WO2010122862A1 (en) * | 2009-04-21 | 2010-10-28 | シャープ株式会社 | Ion generator and air conditioner |
JP2010257612A (en) * | 2009-04-21 | 2010-11-11 | Sharp Corp | Ion generator, and air conditioner provided with the same |
JP4644744B2 (en) * | 2009-04-21 | 2011-03-02 | シャープ株式会社 | Ion generator and air conditioner equipped with the same |
JP2014179329A (en) * | 2010-07-07 | 2014-09-25 | National Institute Of Advanced Industrial & Technology | Operation method of plasma irradiation treatment device |
JP2012079429A (en) * | 2010-09-30 | 2012-04-19 | Ngk Insulators Ltd | Plasma processing apparatus |
US9802363B2 (en) | 2014-03-27 | 2017-10-31 | Seiko Epson Corporation | Method for producing object |
EP2923824A1 (en) | 2014-03-27 | 2015-09-30 | Seiko Epson Corporation | Method for producing object |
CN104128077A (en) * | 2014-07-14 | 2014-11-05 | 西安交通大学 | Double-layer sleeve type corona plasma generating device |
CN110997127A (en) * | 2017-08-09 | 2020-04-10 | 春日电机株式会社 | Surface modification device |
TWI674041B (en) * | 2017-12-21 | 2019-10-01 | 雷立強光電科技股份有限公司 | Apparatus for generating atmospheric environment plasma |
US10933662B2 (en) | 2018-07-31 | 2021-03-02 | Ricoh Company, Ltd. | Image forming method, image forming apparatus, and image-formed matter |
CN110932450A (en) * | 2019-12-27 | 2020-03-27 | 国家电网有限公司 | High-voltage conductor corona effect generator mounting structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003300029A (en) | Surface treating apparatus using atmospheric pressure plasma | |
US9288886B2 (en) | Plasma-based chemical source device and method of use thereof | |
KR101056097B1 (en) | Atmospheric Pressure Plasma Generator | |
US8475451B2 (en) | Medical plasma generator and endoscope using the same | |
US20070235417A1 (en) | Plasma Jet Electrode Device and System thereof | |
US11051389B2 (en) | Atmospheric plasma device | |
JP2002018276A (en) | Atmospheric pressure plasma treatment apparatus | |
KR102014892B1 (en) | Plasma generating device used for water treatment apparatus or the like | |
TWI392403B (en) | Plasma jet electrode device and system thereof | |
JP2006216468A (en) | Plasma surface treatment method, plasma generation apparatus, and plasma surface treatment apparatus | |
JPH10199697A (en) | Surface treatment device by atmospheric pressure plasma | |
US9767995B2 (en) | Plasma treatment device and method for plasma treatment | |
KR101962904B1 (en) | Thunder bolt discharge device producing a large quantity of commercially available plasma including high concentration of nitric oxide plasma | |
EP1699274A1 (en) | Plasma discharger | |
KR20120041475A (en) | Atmospheric pressure plasma torch generating apparatus by nozzle design for large area | |
KR102162219B1 (en) | Plasma generating device having double structure of dielectric pipe | |
JP2004031145A (en) | Negative ion generator | |
JP3951557B2 (en) | Plasma processing apparatus and plasma processing method | |
KR101236202B1 (en) | Underwater plasma generation apparatus | |
JP2006269095A (en) | Plasma generation device | |
KR20030044220A (en) | Dielectric barrier discharge plasma torch and its application method in surface treatment | |
JP4032625B2 (en) | Plasma processing apparatus and plasma lighting method | |
CN113330824A (en) | Thermal plasma processing apparatus | |
KR101371521B1 (en) | Plasma powder treating apparatus having rotating cylinder structure comprising tubular plasma structure | |
KR20200095906A (en) | Plasma generating device and coating device using plasma jet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080603 |