JP5055893B2 - Atmospheric pressure plasma generator - Google Patents

Atmospheric pressure plasma generator Download PDF

Info

Publication number
JP5055893B2
JP5055893B2 JP2006222748A JP2006222748A JP5055893B2 JP 5055893 B2 JP5055893 B2 JP 5055893B2 JP 2006222748 A JP2006222748 A JP 2006222748A JP 2006222748 A JP2006222748 A JP 2006222748A JP 5055893 B2 JP5055893 B2 JP 5055893B2
Authority
JP
Japan
Prior art keywords
plasma
atmospheric pressure
inert gas
mixed gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006222748A
Other languages
Japanese (ja)
Other versions
JP2008047446A (en
Inventor
裕之 辻
正史 松森
和弘 井上
茂樹 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006222748A priority Critical patent/JP5055893B2/en
Publication of JP2008047446A publication Critical patent/JP2008047446A/en
Application granted granted Critical
Publication of JP5055893B2 publication Critical patent/JP5055893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Description

本発明は、大気圧近傍でプラズマを発生させる大気圧プラズマ発生装置に関し、特に簡単かつコンパクトな構成にて放熱性を確保して安定してかつ効率的にプラズマを発生することができる大気圧プラズマ発生装置に関するものである。   The present invention relates to an atmospheric pressure plasma generator for generating plasma in the vicinity of atmospheric pressure, and in particular, atmospheric pressure plasma that can stably and efficiently generate plasma while ensuring heat dissipation with a simple and compact configuration. It relates to a generator.

大気圧近傍(圧力では、500〜1500mmHgの範囲)でプラズマを発生させる大気圧プラズマ発生装置として、プラズマトーチの中にガスを流し、プラズマトーチの周囲に配設した高周波誘導コイルに高周波電源より高周波電圧を印加し、発生したプラズマをプラズマトーチから吹き出させる高周波誘導結合プラズマ発生装置が知られている。この高周波誘導結合プラズマ発生装置においては、高周波誘導コイルが高温になるため、高周波誘導コイルを中空パイプで構成してその内部に冷却水を流すようにし、さらにプラズマが点火する前に冷却水を流した場合高周波誘導コイルに結露が発生するので、電磁開閉弁にてプラズマ点火に合わせて冷却水を流すようにしたものが知られている(例えば、特許文献1参照)。   As an atmospheric pressure plasma generator for generating plasma in the vicinity of atmospheric pressure (in the pressure range of 500 to 1500 mmHg), a gas is passed through the plasma torch, and a high frequency induction coil disposed around the plasma torch has a higher frequency than a high frequency power source. A high-frequency inductively coupled plasma generator that applies a voltage and blows out generated plasma from a plasma torch is known. In this high frequency inductively coupled plasma generator, since the high frequency induction coil becomes hot, the high frequency induction coil is constituted by a hollow pipe so that the cooling water flows inside it, and the cooling water is supplied before the plasma is ignited. In such a case, condensation occurs in the high-frequency induction coil, and therefore, an electromagnetic on-off valve is known in which cooling water is allowed to flow in accordance with plasma ignition (see, for example, Patent Document 1).

上記特許文献1に記載された大気圧プラズマ発生装置の構成を、図11を参照して説明する。プラズマトーチ61の周囲にバイプ材からなる高周波誘導コイル62が配設され、高周波誘導コイル62に高周波電源63にて高周波電圧が印加されている。高周波誘導コイル62の両端には冷却水を供給する配管64aと排出する配管64bが接続されるとともに配管64aに電磁開閉弁65が配設され、プラズマ点火時のみ冷却水を流すように構成されている。   The configuration of the atmospheric pressure plasma generator described in Patent Document 1 will be described with reference to FIG. A high frequency induction coil 62 made of a vip material is disposed around the plasma torch 61, and a high frequency voltage is applied to the high frequency induction coil 62 by a high frequency power source 63. A pipe 64a for supplying cooling water and a pipe 64b for discharging are connected to both ends of the high-frequency induction coil 62, and an electromagnetic on-off valve 65 is provided in the pipe 64a so that the cooling water flows only during plasma ignition. Yes.

また、図12に示すように、筒状の反応管71と、その周囲に配設した一対の電極72a、72bを備え、反応管71にガス73を流し、一対の電極72a、72b間に高周波電源74にて1KHz〜200MHzの交流電界(印加する電圧については、サイン波形、矩形波形、パルス波形等の何れであっても良い)を印加してプラズマを発生させるようにしたものも知られている(例えば、特許文献2参照)。また、この特許文献2には、交流電界の周波数が高くなると電極72a、72bが熱を発生するため、冷媒75を供給管76から電極72a、72b内に供給して排出管77から排出することで冷却することが記載されている。   Further, as shown in FIG. 12, a cylindrical reaction tube 71 and a pair of electrodes 72a and 72b arranged around the tube are provided, a gas 73 is allowed to flow through the reaction tube 71, and a high frequency is generated between the pair of electrodes 72a and 72b. It is also known that a plasma is generated by applying an AC electric field of 1 KHz to 200 MHz with a power source 74 (the applied voltage may be a sine waveform, rectangular waveform, pulse waveform, etc.). (For example, refer to Patent Document 2). Further, in Patent Document 2, since the electrodes 72a and 72b generate heat when the frequency of the AC electric field increases, the refrigerant 75 is supplied from the supply pipe 76 into the electrodes 72a and 72b and discharged from the discharge pipe 77. It is described that it is cooled at the same time.

また、本出願人は、先に特願2006−149084号において、第1の不活性ガスで一次プラズマを発生させるプラズマ発生部と、一次プラズマを第2の不活性ガスと反応性ガスの混合ガスに衝突させて二次プラズマを発生させるプラズマ展開部とを備え、効率的にプラズマを発生するようにした大気圧プラズマ発生装置を先に提案している。
特開平2−135656号公報 特開2001−6897号公報
In addition, the applicant of the present application previously described in Japanese Patent Application No. 2006-149084, a plasma generation unit that generates primary plasma with a first inert gas, and a mixed gas of a second inert gas and a reactive gas as a primary plasma. An atmospheric pressure plasma generator has been proposed which includes a plasma expansion unit that generates a secondary plasma by being collided with each other and efficiently generates plasma.
Japanese Patent Laid-Open No. 2-135656 JP 2001-6897 A

ところが、上記特許文献1では、高周波誘導コイル62を冷却するため、高周波電圧を使用する環境で冷却水を扱う構成であるため、水漏れ等でショートや発火等の原因になる恐れがあり、安全性を高めるために、装置全体の構成が複雑になるという問題がある。また、特許文献2でも、電極72a、72bを冷媒75で冷却するようにしているので、同様の問題がある。   However, in Patent Document 1, since the high frequency induction coil 62 is cooled, the cooling water is handled in an environment where a high frequency voltage is used. Therefore, there is a risk of causing a short circuit or ignition due to water leakage, etc. In order to improve the performance, there is a problem that the configuration of the entire apparatus becomes complicated. Also in Patent Document 2, since the electrodes 72a and 72b are cooled by the refrigerant 75, there is a similar problem.

また、上記のように装置構成が複雑かつ大型化するため、この大気圧プラズマ発生装置をロボット等の移動装置に搭載して各種対象物のプラズマ処理を行うような使用形態に適用するのが困難であり、特に冷媒を使った冷却装置の移動が困難であるため、実質的に移動ができないという問題がある。   In addition, since the apparatus configuration is complicated and large as described above, it is difficult to apply this apparatus to a use form in which this atmospheric pressure plasma generator is mounted on a moving apparatus such as a robot to perform plasma processing of various objects. In particular, since it is difficult to move the cooling device using the refrigerant, there is a problem that it cannot be moved substantially.

そして、先に提案したプラズマ発生部とプラズマ展開部を有する大気圧プラズマ発生装置においても、プラズマ発生部でコイルやアンテナや電極が高温になるのを防止する必要があり、かつプラズマ展開部を備えた構成でありながら、簡単かつコンパクトな構成を実現でき、さらに二次プラズマを効率的に安定して発生できることが望まれる。   And in the atmospheric pressure plasma generator having the plasma generator and the plasma expansion part previously proposed, it is necessary to prevent the coils, antennas and electrodes from becoming high temperature in the plasma generation part, and the plasma expansion part is provided. However, it is desired that a simple and compact configuration can be realized while the secondary plasma can be generated efficiently and stably.

本発明は、上記従来の課題を解決するもので、プラズマ発生部とプラズマ展開部を備えた構成において、プラズマ発生部の過大な温度上昇を確実に防止できるとともにプラズマ展開部で効率的に安定して二次プラズマを発生することができかつ簡単かつコンパクトな構成を実現できる大気圧プラズマ発生装置を提供することを目的とする。   The present invention solves the above-described conventional problems. In the configuration including the plasma generation unit and the plasma expansion unit, an excessive temperature rise of the plasma generation unit can be surely prevented and the plasma expansion unit is efficiently stabilized. It is an object of the present invention to provide an atmospheric pressure plasma generator capable of generating secondary plasma and realizing a simple and compact configuration.

本発明の大気圧プラズマ発生装置は、内部が反応空間を形成する筒状の反応容器と、この反応容器の外周に配設されたアンテナ又は電極反応空間に第1の不活性ガスを供給する第1の不活性ガス供給手段と反応空間に高周波電界を印加する高周波電源とを有し、反応空間からプラズマ化した第1の不活性ガスから成る一次プラズマを吹き出させるプラズマ発生部と、反応空間から吹き出した一次プラズマが衝突するように第2の不活性ガスに適量の反応性ガスが混合された混合ガス領域を形成し、プラズマ化した混合ガスから成る二次プラズマを発生するプラズマ展開部と、プラズマ発生部の反応空間を包囲しかつプラズマ展開部の混合ガス領域を形成するとともに混合ガス領域へのガス供給路を有する放熱部材とを備え、前記放熱部材は、前記反応容器の外周面が嵌合する断面半円状の凹部と、この凹部に前記アンテナ又は前記電極を密接状態で収納する溝を形成されて一体的に接合される一対の分割放熱部材から成るものである。 Atmospheric pressure plasma generating apparatus of the present invention, supply and tubular reactor interior forming the reaction space, the antenna or electrode disposed on the outer periphery of the reaction vessel, a first inert gas into the reaction space A plasma generating unit that has a first inert gas supply means that performs a high frequency electric power source that applies a high frequency electric field to the reaction space, and blows out a primary plasma made of the first inert gas that has been made plasma from the reaction space; A plasma expansion unit that forms a mixed gas region in which an appropriate amount of reactive gas is mixed with the second inert gas so that the primary plasma blown out from the space collides, and generates a secondary plasma composed of the plasma mixed gas When, and a heat radiating member having a gas supply passage to the mixed gas region with surrounding the reaction space of the plasma generating portion and to form a mixed gas region of the plasma expansion portion, the heat dissipation member A pair of split heat radiation members integrally formed by forming a recess having a semicircular cross section into which the outer peripheral surface of the reaction vessel is fitted, and a groove for accommodating the antenna or the electrode in close contact with the recess. It consists of.

この構成によれば、プラズマ発生部の反応空間を放熱部材が包囲しているので、反応空間の周囲のアンテナや電極などの発熱を放熱部材を通して効果的に外部に放熱して熱損傷するのを防止できるとともに、アンテナや電極の抵抗増大により整合回路のバランスが崩れて高周波電力の入力が低下し、プラズマ強度が低下するのを防止でき、それによって一次プラズマを安定して発生することができ、またその一次プラズマが混合ガス領域に衝突して第2の不活性ガスが雪崩れ現象的にプラズマ化し、第2の不活性ガスのラジカルなどにて反応性ガスがプラズマ化されることで、プラズマ展開部で効率的に二次プラズマを発生することができ、さらに冷却手段として冷却水などの冷媒を用いずに放熱部材を用いているのでコンパクトに構成でき、かつその放熱部材にてプラズマ展開部の混合ガス領域とガス供給路を形成しているので、プラズマ展開部を備えた構成でありながら簡単かつコンパクトに構成することができ、さらに放熱のために温度上昇した放熱部材にて混合ガス領域を形成しているので、混合ガス領域が適切な温度に安定的に保持され、混合ガスの供給停止によって二次プラズマの発生停止を行うような場合でも安定して二次プラズマを発生することができる。   According to this configuration, since the heat radiating member surrounds the reaction space of the plasma generation unit, the heat generated by the antennas and electrodes around the reaction space can be effectively radiated to the outside through the heat radiating member and thermally damaged. It is possible to prevent the balance of the matching circuit from being lost due to increased resistance of the antenna and electrode, and the input of the high frequency power is reduced, so that the plasma intensity can be prevented from being lowered, thereby stably generating the primary plasma, In addition, the primary plasma collides with the mixed gas region, the second inert gas is turned into plasma in an avalanche phenomenon, and the reactive gas is turned into plasma by radicals of the second inert gas, etc. Secondary plasma can be generated efficiently at the development part, and since a heat radiating member is used without using a coolant such as cooling water as a cooling means, it can be made compact. In addition, since the mixed gas region and the gas supply path of the plasma expansion part are formed by the heat radiating member, the structure can be easily and compactly configured with the plasma expansion part, and the temperature for heat radiation can be further increased. Since the mixed gas region is formed by the raised heat dissipation member, the mixed gas region is stably maintained at an appropriate temperature and stable even when the generation of secondary plasma is stopped by stopping the supply of the mixed gas. Secondary plasma can be generated.

また、放熱部材が、アルミナ、サファイヤ、アルミナイトライド、シリコンナイトライド、窒化ホウ素、炭化珪素の中から選ばれた材質から成る非導電性放熱部材から成ると、絶縁性及び熱伝導性が高いので、高い放熱性能を得ることができて好適である。   In addition, if the heat dissipation member is made of a non-conductive heat dissipation member made of a material selected from alumina, sapphire, aluminum nitride, silicon nitride, boron nitride, and silicon carbide, insulation and thermal conductivity are high. High heat dissipation performance can be obtained, which is preferable.

また、混合ガス領域に第2の不活性ガスと反応性ガスを予め混合した混合ガスを供給する混合ガス供給手段を設けると、両ガスを別々に供給する場合に比してガス供給構成が簡単になるとともに、第2の不活性ガスと反応性ガスが均等に混合されているので、全体に均一なプラズマ処理を実現することができる。   Further, if a mixed gas supply means for supplying a mixed gas in which the second inert gas and the reactive gas are mixed in advance is provided in the mixed gas region, the gas supply structure is simpler than when both gases are supplied separately. In addition, since the second inert gas and the reactive gas are mixed uniformly, a uniform plasma treatment can be realized as a whole.

また、混合ガス領域に第2の不活性ガスを供給する第2の不活性ガス供給手段と、混合ガス領域に反応性ガスを供給する反応性ガス供給手段とを別に設けると、反応性ガスを任意の濃度に調整して混合することができ、所望のプラズマ処理を行うことができる。   Further, if the second inert gas supply means for supplying the second inert gas to the mixed gas region and the reactive gas supply means for supplying the reactive gas to the mixed gas region are separately provided, the reactive gas is reduced. It can be mixed to an arbitrary concentration, and a desired plasma treatment can be performed.

また、第1の不活性ガスと第2の不活性ガスは、異種のものを使用することもできるが、同種の不活性ガスであると、二次プラズマの展開が安定するとともに、ガス供給構成が簡単になるため好適である。   The first inert gas and the second inert gas may be different, but if the same kind of inert gas is used, the development of the secondary plasma is stabilized and the gas supply structure Is preferable because it becomes simple.

また、第1の不活性ガス及び第2の不活性ガスは、アルゴン、ヘリウム、キセノン、ネオン、窒素、又はこれらの1種又は複数種の混合ガスから選ばれたものであるのが好適である。なお、窒素ガスは、字義通りの不活性ガスではないが、大気圧プラズマの発生においては、本来の不活性ガスに準ずる挙動を示し、ほぼ同様に用いることができるので、本明細書においては不活性ガスに窒素ガスを含むものとする。   In addition, the first inert gas and the second inert gas are preferably selected from argon, helium, xenon, neon, nitrogen, or one or more mixed gases thereof. . Although nitrogen gas is not literally an inert gas, it exhibits a behavior similar to that of the original inert gas in the generation of atmospheric pressure plasma, and can be used in substantially the same manner. It is assumed that the active gas contains nitrogen gas.

また、放熱部材の温度を検出する温度検出手段と、放熱部材を冷却する強制冷却手段と、強制冷却手段を動作制御する制御部とを備え、制御部は温度検出手段による検出温度が第1の設定値以上になったときに強制冷却手段を動作させ、第1の設定値より低い温度に設定された第2の設定値以下になったときに強制冷却手段の動作を停止させるように構成すると、放熱部材が所定温度以上になると強制冷却されることで高い冷却性能を確実にかつ安定して確保できるとともに、過剰に冷却し過ぎることがなくかつ必要時のみ強制冷却手段を動作させるので、省エネルギーを図ることができる。   In addition, a temperature detection unit that detects the temperature of the heat dissipation member, a forced cooling unit that cools the heat dissipation member, and a control unit that controls the operation of the forced cooling unit, the control unit detects the first temperature detected by the temperature detection unit. When the forced cooling means is operated when the temperature exceeds the set value, and the operation of the forced cooling means is stopped when the temperature is lower than the second set value set at a temperature lower than the first set value. In addition, the forced cooling when the heat-dissipating member exceeds the specified temperature ensures reliable and stable high cooling performance, and does not overcool and operates the forced cooling means only when necessary, saving energy Can be achieved.

また、以上の大気圧プラズマ発生装置はコンパクトな構成であるので、ロボット装置のX、Y、Z方向に移動可能な可動ヘッドに搭載することができ、そうすることにより極めて高い汎用性をもってプラズマ処理を行うことができる。   In addition, since the above atmospheric pressure plasma generator has a compact configuration, it can be mounted on a movable head that can move in the X, Y, and Z directions of the robot apparatus, thereby enabling plasma processing with extremely high versatility. It can be performed.

本発明の大気圧プラズマ発生装置によれば、反応空間の周囲の発熱を放熱部材を通して効果的に外部に放熱することができて一次プラズマを安定して発生することができ、またその一次プラズマを混合ガス領域に衝突させることでプラズマ展開部で効率的に二次プラズマを発生することができ、さらに冷却手段として冷却水などの冷媒を用いずに放熱部材を用いているため、またその放熱部材にてプラズマ展開部の混合ガス領域とガス供給路を形成しているので、プラズマ展開部を備えた構成でありながら簡単かつコンパクトに構成でき、さらに放熱部材にて混合ガス領域が適切な温度に安定的に保持されることで安定して二次プラズマを発生することができる等の効果が得られる。   According to the atmospheric pressure plasma generator of the present invention, the heat generated around the reaction space can be effectively radiated to the outside through the heat radiating member, and the primary plasma can be stably generated. Since the secondary plasma can be efficiently generated in the plasma developing part by colliding with the mixed gas region, and the heat radiating member is used as a cooling means without using a coolant such as cooling water. Since the gas supply path is formed with the mixed gas region of the plasma expansion part, the structure can be easily and compactly configured with the plasma expansion part. By being held stably, effects such as the ability to stably generate secondary plasma can be obtained.

以下、本発明の大気圧プラズマ発生装置の各実施形態について、図1〜図10を参照しながら説明する。   Hereinafter, each embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIGS.

(第1の実施形態)
まず、本発明の大気圧プラズマ発生装置の第1の実施形態について,図1〜図5を参照して説明する。
(First embodiment)
First, a first embodiment of an atmospheric pressure plasma generator of the present invention will be described with reference to FIGS.

本実施形態の大気圧プラズマ発生装置としてのプラズマヘッド1は、図1(a)、(b)に示すように、内部が反応空間2を形成する筒状の反応容器3と、反応容器3の外周に沿ってその近傍に配置されたアンテナ4とを備え、反応容器3がプラズマ発生部を構成している。アンテナ4は、反応容器3の外径とほぼ等しい内径のコイル状に線材5を巻回して構成され、線材5の両端部が互いに反対側に延長され、整合回路(図示せず)を介して高周波電源(図示せず)に接続する配線6a、6bを構成している。線材5としては、比抵抗値の低い金属、例えば銅、銀、金、アルミニウム等が好適であり、中でも銅が最も好適である。高周波電源としては、その出力周波数帯が、数KHz〜数100KHz、又は13.56MHzに代表されるRF周波数帯、又は100MHzに代表されるVHF周波数帯、さらに電子レンジに使用される2.45GHzに代表されるマイクロ波周波数帯のものなどを使用することができるが、60MHz〜500MHzが好適である。   As shown in FIGS. 1A and 1B, a plasma head 1 as an atmospheric pressure plasma generator of the present embodiment includes a cylindrical reaction vessel 3 in which a reaction space 2 is formed, and a reaction vessel 3. An antenna 4 is provided along the outer periphery in the vicinity thereof, and the reaction vessel 3 constitutes a plasma generation unit. The antenna 4 is configured by winding a wire 5 in a coil shape having an inner diameter substantially equal to the outer diameter of the reaction vessel 3, and both ends of the wire 5 are extended to opposite sides, and through a matching circuit (not shown). Wirings 6a and 6b connected to a high frequency power source (not shown) are configured. As the wire 5, a metal having a low specific resistance value, for example, copper, silver, gold, aluminum, or the like is preferable, and copper is most preferable. As a high-frequency power source, the output frequency band is several kHz to several hundred KHz, an RF frequency band typified by 13.56 MHz, a VHF frequency band typified by 100 MHz, or 2.45 GHz used for a microwave oven. Although the thing of the microwave frequency band etc. which are represented can be used, 60 MHz-500 MHz are suitable.

反応容器3及びアンテナ4には、その全周を取り囲むようにブロック状の非導電性放熱部材7が接触させて配設されている。この非導電性放熱部材7は、反応容器3の外周面が嵌合する断面半円状の凹部と、その凹部にアンテナ4を密接状態で収容する螺旋状の溝を形成された一対の分割放熱部材8、9にて構成されている。これら一対の分割放熱部材8、9を、反応容器3及びその外周に配設されたアンテナ4を取り囲むように配置し、ボルト等の締結具や接着剤等で一体的に接合して大気圧プラズマ発生装置1が構成されている。非導電性放熱部材7としては、アルミナ、サファイヤ、アルミナイトライド、シリコンナイトライド、窒化ホウ素、炭化珪素等が、絶縁性及び熱伝導性が高く、高い放熱性能が得られるので好適である。また、好適には、アンテナ4と非導電性放熱部材7の間、及び非導電性放熱部材7を構成する分割放熱部材8、9間に、熱伝導性の高いグリース、シート、接着剤若しくは充填剤など伝熱充填材(図示せず)が介在される。そうすると、アンテナ4から非導電性放熱部材7に一層効率的に放熱することができる。   A block-shaped non-conductive heat radiating member 7 is disposed in contact with the reaction vessel 3 and the antenna 4 so as to surround the entire circumference thereof. The non-conductive heat radiating member 7 is a pair of divided heat radiating members each formed with a semicircular recess having a semicircular cross section into which the outer peripheral surface of the reaction vessel 3 is fitted and a spiral groove in which the antenna 4 is closely accommodated. It is comprised by the members 8 and 9. These pair of divided heat dissipating members 8 and 9 are disposed so as to surround the reaction vessel 3 and the antenna 4 disposed on the outer periphery thereof, and are integrally joined with a fastener such as a bolt or an adhesive, so that atmospheric pressure plasma is obtained. A generator 1 is configured. As the non-conductive heat radiating member 7, alumina, sapphire, aluminum nitride, silicon nitride, boron nitride, silicon carbide or the like is preferable because it has high insulation and thermal conductivity and high heat radiating performance can be obtained. Preferably, grease, sheet, adhesive or filling with high thermal conductivity is provided between the antenna 4 and the non-conductive heat radiating member 7 and between the divided heat radiating members 8 and 9 constituting the non-conductive heat radiating member 7. A heat transfer filler (not shown) such as an agent is interposed. Then, heat can be radiated from the antenna 4 to the non-conductive heat radiating member 7 more efficiently.

反応容器3の上端3aから反応空間2内に第1の不活性ガス10を供給するように構成されている。また、反応空間2内で発生したプラズマが反応容器3の下端の吹き出し口3bから一次プラズマ11として吹き出される。非導電性放熱部材7は、反応容器3の下端の吹き出し口3bより下方に長く延出されており、吹き出し口3bの下部に反応空間2より大径で下端が開放された混合ガス空間12と、この混合ガス空間12内の上部に、第2の不活性ガスと適量の反応性ガスから成る混合ガス13を供給するガス供給路14が形成されている。この非導電性放熱部材7に形成された混合ガス空間12がプラズマ展開部を構成している。   The first inert gas 10 is supplied from the upper end 3 a of the reaction vessel 3 into the reaction space 2. In addition, plasma generated in the reaction space 2 is blown out as primary plasma 11 from the blowout port 3 b at the lower end of the reaction vessel 3. The non-conductive heat radiating member 7 extends long below the outlet 3b at the lower end of the reaction vessel 3, and has a mixed gas space 12 having a diameter larger than the reaction space 2 and opened at the lower end below the outlet 3b. In the upper part of the mixed gas space 12, a gas supply path 14 for supplying a mixed gas 13 composed of a second inert gas and an appropriate amount of reactive gas is formed. The mixed gas space 12 formed in the non-conductive heat radiating member 7 constitutes a plasma developing portion.

以上の構成において、反応容器3の上端3aから第1の不活性ガス10を供給しつつアンテナ4に高周波電力を供給することで、アンテナ4に流れる高周波電流により反応空間2内に生じる誘電磁界にて誘導結合方式でイオン及び電子の一部が効率良く捕捉されてプラズマが安定して生成され、そのプラズマが反応容器3の下端の吹き出し口3bから一次プラズマ11として混合ガス空間12内に吹きだす。混合ガス空間12内は、ガス供給路14から混合ガス13が供給されて混合ガス領域15を形成しており、この混合ガス領域15に一次プラズマ11が衝突する。その結果、一次プラズマ11が衝突した第2の不活性ガスが雪崩れ現象的にプラズマ化して混合ガス領域15全体に展開し、プラズマ化した第2の不活性ガスのラジカルなどにて反応性ガスがプラズマ化した状態の二次プラズマ16が形成され、この二次プラズマ16が混合ガス空間12の下端開口から吹き出す。かくして、吹き出した二次プラズマ16を被処理物表面に照射することで効率的にプラズマ処理することができる。   In the above configuration, by supplying high-frequency power to the antenna 4 while supplying the first inert gas 10 from the upper end 3a of the reaction vessel 3, a dielectric magnetic field generated in the reaction space 2 by the high-frequency current flowing through the antenna 4 is generated. Thus, a part of ions and electrons are efficiently trapped by the inductive coupling method, and plasma is stably generated, and the plasma is blown into the mixed gas space 12 as the primary plasma 11 from the outlet 3b at the lower end of the reaction vessel 3. . In the mixed gas space 12, the mixed gas 13 is supplied from the gas supply path 14 to form a mixed gas region 15, and the primary plasma 11 collides with the mixed gas region 15. As a result, the second inert gas collided with the primary plasma 11 is converted into plasma in the avalanche phenomenon and spreads over the mixed gas region 15, and the reactive gas is generated by radicals of the second inert gas converted into plasma. Is formed into a plasma, and this secondary plasma 16 blows out from the lower end opening of the mixed gas space 12. Thus, the plasma processing can be efficiently performed by irradiating the surface of the workpiece with the blown-out secondary plasma 16.

上記一次プラズマ11を発生する間、アンテナ4に高周波電流が流れることによってアンテナ4が発熱して高温になるが、非導電性放熱部材7がアンテナ4に接触し、熱的に結合して配設されているので、アンテナ4に発生した熱が非導電性放熱部材7を通して効果的に放熱され、アンテナ4が異常な高温になるのが効果的に防止される。かくして、アンテナ4が異常な高温になって損傷したり、所定以上の高温になることで抵抗が大きくなって整合回路(図示せず)のバランスが崩れ、反射波が強くなって高周波電力の入力が低下し、プラズマ強度が低下するという事態が発生する恐れをなくすことができる。さらに、放熱のために温度上昇する非導電性放熱部材7にて混合ガス空間12を形成しているので、混合ガス領域15が適切な温度に安定的に保持され、混合ガス13の供給停止によって二次プラズマ16の発生停止を行うような場合でも安定して二次プラズマ16を発生することができる。   While the high-frequency current flows through the antenna 4 while the primary plasma 11 is generated, the antenna 4 generates heat and becomes high temperature. However, the non-conductive heat radiating member 7 is in contact with the antenna 4 and is thermally coupled. Therefore, the heat generated in the antenna 4 is effectively dissipated through the non-conductive heat radiating member 7, and the antenna 4 is effectively prevented from becoming an abnormally high temperature. Thus, the antenna 4 is damaged at an abnormally high temperature, or when the temperature is higher than a predetermined level, the resistance increases, the balance of the matching circuit (not shown) is lost, the reflected wave becomes stronger, and the input of high frequency power Can be eliminated, and the risk of a decrease in plasma intensity can be eliminated. Furthermore, since the mixed gas space 12 is formed by the non-conductive heat radiating member 7 that rises in temperature for heat dissipation, the mixed gas region 15 is stably maintained at an appropriate temperature, and the supply of the mixed gas 13 is stopped. Even when the generation of the secondary plasma 16 is stopped, the secondary plasma 16 can be generated stably.

また、非導電性放熱部材7にて放熱機構を構成し、冷却水などの冷媒を用いていないので、プラズマヘッド1を簡単かつ安価に構成することができ、このプラズマヘッド1を移動装置に搭載することで、各種対象物に対して容易にかつ低コストにてプラズマ処理を行うことができる。   Further, since the heat dissipation mechanism is configured by the non-conductive heat dissipation member 7 and no coolant such as cooling water is used, the plasma head 1 can be configured easily and inexpensively, and the plasma head 1 is mounted on a moving device. By doing so, it is possible to perform plasma processing on various objects easily and at low cost.

本実施形態では、以上のプラズマヘッド1を、図2に示すような大気圧プラズマ処理装置21に搭載している。大気圧プラズマ処理装置21は、3軸方向に移動及び位置決め可能な移動手段としてのロボット装置22を備えている。ロボット装置22は、水平面内で直交する2軸方向(X−Y軸方向)に移動及び位置決め可能な移動体23に垂直方向(Z軸方向)に移動及び位置決め可能に可動ヘッド24を取付けて構成され、その可動ヘッド24にプラズマヘッド1が設置されている。一方、被処理物25は、搬入・搬出部27によってプラズマヘッド1の可動範囲の下部位置に搬入・搬出されるとともに、所定位置に位置決めされて固定される。   In the present embodiment, the above plasma head 1 is mounted on an atmospheric pressure plasma processing apparatus 21 as shown in FIG. The atmospheric pressure plasma processing apparatus 21 includes a robot apparatus 22 as a moving means capable of moving and positioning in three axis directions. The robot device 22 is configured by attaching a movable head 24 so as to be movable and positioned in a vertical direction (Z-axis direction) to a movable body 23 that can be moved and positioned in two axial directions (XY directions) orthogonal to each other in a horizontal plane. The plasma head 1 is installed on the movable head 24. On the other hand, the workpiece 25 is carried in / out by the carry-in / carry-out unit 27 to a position below the movable range of the plasma head 1 and is positioned and fixed at a predetermined position.

被処理物25には、図3(a)、(b)に示すように、プラズマ処理を行うべき処理箇所26が複数箇所に分散して配されている。このような被処理物25としては、例えば図3(a)に示すように電子部品実装用のランド配設領域が処理箇所26である回路基板28の例や、図3(b)に示すように異方導電膜の貼付領域が処理箇所26である液晶パネルやプラズマディスプレイパネルなどのフラットパネルディスプレイ29の例があり、それぞれプラズマ処理にてランド表面の表面改質や貼付面のクリーニングを行うものである。   As shown in FIGS. 3A and 3B, the processing object 26 is provided with a plurality of processing points 26 to be subjected to plasma processing in a plurality of places. As such an object to be processed 25, for example, as shown in FIG. 3A, an example of a circuit board 28 in which a land disposition area for mounting electronic components is a processing location 26, or as shown in FIG. There is an example of a flat panel display 29 such as a liquid crystal panel or a plasma display panel in which the anisotropic conductive film is attached to the processing portion 26, and the surface treatment of the land surface and the cleaning of the attachment surface are performed by plasma processing, respectively. It is.

大気圧プラズマ処理装置21の制御構成は、図4に示すように、制御部31にて記憶部32に予め記憶された動作プログラムや制御データに基づいて、プラズマヘッド1の移動手段としてのロボット装置22、高周波電源17、及びガス供給部33からプラズマヘッド1へのガス供給を制御する流量制御部34を動作制御するように構成されている。また、制御部31による流量制御部34の制御は、被処理物25の処理箇所26にプラズマヘッド1が対向位置するタイミング、即ち処理箇所26に対する処理の開始と終了を認識する処理開始認識手段35と処理終了認識手段36から入力された信号に基づき、処理開始信号によって混合ガス空間12への混合ガス13の供給を行って処理箇所26に対するプラズマ処理を行い、処理終了信号によって混合ガス13の供給を停止することで処理箇所26に対するプラズマ処理を終了するように構成されている。なお、本実施形態においては、処理開始認識手段35及び処理終了認識手段36は、記憶部32に記憶された制御データとロボット装置22からの現在位置データの比較によって認識するように構成されているが、別にプラズマヘッド1が処理箇所26の開始点と終了点に対向位置した時に認識する手段を設けても良い。   As shown in FIG. 4, the control configuration of the atmospheric pressure plasma processing apparatus 21 is a robot apparatus as a moving unit of the plasma head 1 based on an operation program and control data stored in the storage unit 32 in advance by the control unit 31. 22, the high-frequency power supply 17 and the flow rate control unit 34 that controls the gas supply from the gas supply unit 33 to the plasma head 1 are configured to control the operation. The control of the flow rate control unit 34 by the control unit 31 is a process start recognition unit 35 that recognizes the timing at which the plasma head 1 faces the processing location 26 of the workpiece 25, that is, the start and end of processing for the processing location 26. Based on the signal input from the processing end recognition means 36, the mixed gas space 12 is supplied to the mixed gas space 12 by the processing start signal to perform plasma processing on the processing location 26, and the mixed gas 13 is supplied by the processing end signal. The plasma processing for the processing location 26 is terminated by stopping the process. In the present embodiment, the process start recognizing unit 35 and the process end recognizing unit 36 are configured to recognize by comparing the control data stored in the storage unit 32 and the current position data from the robot apparatus 22. However, a means for recognizing when the plasma head 1 is opposed to the start point and end point of the processing location 26 may be provided.

ガス供給部33と流量制御部34は具体的には図5に示すように構成されている。すなわち、ガス供給部33は第1の不活性ガス10を供給する第1の不活性ガス供給源37と、第2の不活性ガスと反応性ガスの混合ガス13を供給する混合ガス源38とを備え、それぞれのガス出口には圧力調整弁37a、38aが設けられている。第1の不活性ガス10は、マスフローコントローラなどから成る第1の流量制御装置39を介して反応容器3に供給され、混合ガス13は、マスフローコントローラなどから成る第2の流量制御装置40と開閉制御弁41を介して混合ガス空間12に供給するように構成されている。これら開閉制御弁41と第1と第2の流量制御装置39、40が流量制御部34を構成し、それぞれ制御部31にて制御されている。   Specifically, the gas supply unit 33 and the flow rate control unit 34 are configured as shown in FIG. That is, the gas supply unit 33 includes a first inert gas supply source 37 that supplies the first inert gas 10, and a mixed gas source 38 that supplies the mixed gas 13 of the second inert gas and the reactive gas. And pressure regulating valves 37a and 38a are provided at the respective gas outlets. The first inert gas 10 is supplied to the reaction vessel 3 via a first flow rate control device 39 including a mass flow controller, and the mixed gas 13 is opened and closed with a second flow rate control device 40 including a mass flow controller. It is configured to supply the mixed gas space 12 via the control valve 41. The opening / closing control valve 41 and the first and second flow rate control devices 39 and 40 constitute a flow rate control unit 34 and are controlled by the control unit 31.

なお、第1及び第2の不活性ガスは、アルゴン、ネオン、キセノン、ヘリウム、窒素から選択された単独ガス又は複数の混合ガスが適用される。また、反応性ガスは、プラズマ処理の種類に応じて、酸素、空気、CO2 、N2 Oなどの酸化性ガス、水素、アンモニアなどの還元性ガス、CF4 などのフッ素系ガスなどが適用される。 As the first and second inert gases, a single gas or a plurality of mixed gases selected from argon, neon, xenon, helium, and nitrogen are applied. As the reactive gas, oxygen, air, oxidizing gases such as CO 2 and N 2 O, reducing gases such as hydrogen and ammonia, and fluorine-based gases such as CF 4 are applicable depending on the type of plasma treatment. Is done.

次に、以上の構成の大気圧プラズマ処理装置21による被処理物25の処理箇所26のプラズマ処理過程について説明する。搬入・搬出部27にて被処理物25が搬入されて所定位置に位置決めされると、ロボット装置22が動作を開始し、プラズマヘッド1を被処理物25の最初の処理箇所26の処理開始点に向けて移動させる。また、プラズマヘッド1が動作を開始し、反応容器3の吹き出し口3bから混合ガス空間12に一次プラズマ11を吹き出した状態とされ、以降その状態が連続して維持される。   Next, the plasma processing process of the processing location 26 of the workpiece 25 by the atmospheric pressure plasma processing apparatus 21 having the above configuration will be described. When the workpiece 25 is loaded and positioned at a predetermined position by the loading / unloading section 27, the robot apparatus 22 starts to operate, and the plasma head 1 is moved to the processing start point of the first processing spot 26 of the workpiece 25. Move towards. Further, the plasma head 1 starts to operate, and the primary plasma 11 is blown out from the blowout port 3b of the reaction vessel 3 into the mixed gas space 12, and this state is continuously maintained thereafter.

この状態で、プラズマヘッド1が処理開始点に達すると、処理開始認識手段35の検知信号が発せられ、直ちに開閉制御弁41が開弁され、混合ガス空間12に混合ガス13が供給され、二次プラズマ16が発生して処理箇所26のプラズマ処理が開始され、その後プラズマ処理状態を維持しつつプラズマヘッド1が処理箇所26上を移動することで処理箇所26のプラズマ処理が行われる。プラズマヘッド1が処理終了点に達すると、処理終了認識手段36の検知信号が発せられ、直ちに開閉制御弁41が閉弁され、混合ガス空間12への混合ガス13の供給が停止されて二次プラズマ16の発生が停止し、プラズマ処理が直ちに停止し、最初の処理箇所26のプラズマ処理が終了する。以降、後続する処理箇所26を順次同様にプラズマ処理し、全ての処理箇所26のプラズマ処理が終了すると、搬入・搬出部27にて被処理物25が搬出され、次の被処理物25が搬入され、 同様にプラズマ処理が行われる。   In this state, when the plasma head 1 reaches the processing start point, a detection signal from the processing start recognizing means 35 is issued, the opening / closing control valve 41 is immediately opened, and the mixed gas 13 is supplied to the mixed gas space 12. The next plasma 16 is generated and the plasma processing of the processing location 26 is started. Thereafter, the plasma head 1 moves on the processing location 26 while maintaining the plasma processing state, so that the plasma processing of the processing location 26 is performed. When the plasma head 1 reaches the processing end point, a detection signal from the processing end recognition means 36 is issued, the opening / closing control valve 41 is immediately closed, the supply of the mixed gas 13 to the mixed gas space 12 is stopped, and the secondary operation is completed. The generation of the plasma 16 is stopped, the plasma processing is immediately stopped, and the plasma processing at the first processing portion 26 is completed. Thereafter, the subsequent processing locations 26 are sequentially plasma processed in the same manner, and when the plasma processing of all the processing locations 26 is completed, the workpiece 25 is unloaded at the loading / unloading unit 27 and the next workpiece 25 is loaded. In the same manner, plasma processing is performed.

(第2の実施形態)
次に、本発明の大気圧プラズマ発生装置の第2の実施形態について,図6を参照して説明する。なお、以下の実施形態の説明においては、先行する実施形態と共通の構成要素について同一の参照符号を付して説明を省略し、主として相違点についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIG. In the following description of the embodiments, the same components as those in the preceding embodiment are denoted by the same reference numerals, description thereof will be omitted, and only differences will be mainly described.

上記第1の実施形態では、非導電性放熱部材7に形成した混合ガス空間12が、反応空間2より径の大きい円柱形状のものを例示したが、本実施形態では、図6に示すように、混合ガス空間12の上端は反応空間2の径に近い径で、下方に向けて径が大きくなる接頭円錐形状に形成し、混合ガス13を供給するガス供給路14を斜め下方に向けて傾斜させて形成している。   In the said 1st Embodiment, although the mixed gas space 12 formed in the nonelectroconductive heat radiating member 7 illustrated the cylindrical thing of a diameter larger than the reaction space 2, in this embodiment, as shown in FIG. The upper end of the mixed gas space 12 has a diameter close to the diameter of the reaction space 2 and is formed in a prefix cone shape whose diameter increases downward, and the gas supply passage 14 for supplying the mixed gas 13 is inclined obliquely downward. Let it form.

本実施形態の構成によれば、混合ガス領域15の上端と反応容器3の下端の吹き出し口3bとがほぼ合致するので、吹き出し口3bから吹き出した一次プラズマ11が混合ガスの上部のほぼ全体に衝突するので、混合ガス領域15の全体のプラズマ化がより円滑に展開し、二次プラズマ16をより効率的に発生することができる。   According to the configuration of the present embodiment, since the upper end of the mixed gas region 15 and the outlet 3b at the lower end of the reaction vessel 3 substantially coincide with each other, the primary plasma 11 blown out from the outlet 3b is almost entirely over the upper part of the mixed gas. Since the collision occurs, the entire plasma of the mixed gas region 15 is more smoothly developed, and the secondary plasma 16 can be generated more efficiently.

(第3の実施形態)
次に、本発明の大気圧プラズマ発生装置の第3の実施形態について,図7、図8を参照して説明する。
(Third embodiment)
Next, a third embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIGS.

上記第1、第2の実施形態では、コイル状のアンテナ4を配設した例を示したが、本実施形態においては、図7(b)に示すように、筒状の反応容器3と、その周囲に一対の電極42、43を所定の間隔をあけて配設し、一対の電極42、43から延出した配線44を整合回路(図示せず)を介して高周波電源17に接続した大気圧プラズマ発生装置において、図7(a)に示すように、電極42、43に接触させて非導電性放熱部材7を配設したものである。   In the first and second embodiments, the example in which the coiled antenna 4 is disposed has been shown. However, in the present embodiment, as shown in FIG. A pair of electrodes 42, 43 are arranged around the periphery with a predetermined interval, and a wiring 44 extending from the pair of electrodes 42, 43 is connected to the high-frequency power supply 17 through a matching circuit (not shown). In the atmospheric pressure plasma generator, as shown in FIG. 7A, the non-conductive heat radiating member 7 is disposed in contact with the electrodes 42 and 43.

本実施形態の非導電性放熱部材7は、図8(a)、(b)に示すように、反応容器3の外周面が嵌合する凹部45を有する一対の分割放熱部材8、9において、その凹部45に電極42、43を収容する円弧溝46が形成され、かつ一対の分割放熱部材8、9の接合面に配線44を導出する線溝47が形成されている。   As shown in FIGS. 8A and 8B, the non-conductive heat radiating member 7 of the present embodiment includes a pair of split heat radiating members 8 and 9 having a recess 45 into which the outer peripheral surface of the reaction vessel 3 is fitted. An arc groove 46 that accommodates the electrodes 42 and 43 is formed in the recess 45, and a line groove 47 that leads out the wiring 44 is formed on the joint surface between the pair of divided heat radiation members 8 and 9.

本実施形態によれば、反応容器3に第1の不活性ガス10を供給しつつ、一対の電極42、43間に高周波電源17にて1KHz〜200MHzの交流電界(印加する電圧については、サイン波形、矩形波形、パルス波形等の何れでも良い)を印加することで、反応容器3内の反応空間2でプラズマが発生して下端の吹き出し口3bから一次プラズマ11として吹き出され、この一次プラズマ11が混合ガス空間12内に混合ガス13を供給して形成されている混合ガス領域15に衝突し、その混合ガス13が雪崩れ現象的にプラズマ化し、二次プラズマ16として混合ガス空間12から吹きだす。その際に、電極42、43に流れる高周波電流で電極42、43に発生した熱は、非導電性放熱部材7を通して外部に効果的に放熱されることで、電極42、43が高温になるのを防止でき、上記実施形態と同様に電極42、43が損傷したり、プラズマ出力が低下するのを防止することができる。また、放熱のために温度上昇する非導電性放熱部材7に混合ガス領域15が適切な温度に安定的に保持され、安定して二次プラズマ16を発生することができる。   According to this embodiment, while supplying the first inert gas 10 to the reaction vessel 3, an AC electric field of 1 KHz to 200 MHz (a sign for the applied voltage is applied) between the pair of electrodes 42 and 43 by the high frequency power source 17. By applying a waveform, a rectangular waveform, a pulse waveform, or the like, plasma is generated in the reaction space 2 in the reaction vessel 3 and blown out as the primary plasma 11 from the blowout port 3b at the lower end. Impinges on the mixed gas region 15 formed by supplying the mixed gas 13 into the mixed gas space 12, and the mixed gas 13 is turned into plasma in the avalanche phenomenon and blown from the mixed gas space 12 as the secondary plasma 16. It's out. At that time, the heat generated in the electrodes 42 and 43 by the high-frequency current flowing in the electrodes 42 and 43 is effectively radiated to the outside through the non-conductive heat radiating member 7, so that the electrodes 42 and 43 become high temperature. It is possible to prevent the electrodes 42 and 43 from being damaged and the plasma output from being lowered as in the above embodiment. Further, the mixed gas region 15 is stably held at an appropriate temperature by the non-conductive heat radiating member 7 whose temperature rises for heat radiation, and the secondary plasma 16 can be stably generated.

(第4の実施形態)
次に、本発明の大気圧プラズマ発生装置の第4の実施形態について,図9、図10を参照して説明する。
(Fourth embodiment)
Next, a fourth embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIG. 9 and FIG.

本実施形態においては、上記各実施形態のプラズマヘッド1において、図9に示すように、非導電性放熱部材7を空冷方式で強制冷却する強制冷却手段51と、非導電性放熱部材7の温度を検出する温度検出手段52と、強制冷却手段51の駆動電源53と、電源を開閉する開閉器54と、温度検出手段52による検出温度によって開閉器54を開閉制御する制御部55とを備えている。   In the present embodiment, in the plasma head 1 of each of the above embodiments, as shown in FIG. 9, forced cooling means 51 for forcibly cooling the nonconductive heat radiating member 7 by the air cooling method, and the temperature of the nonconductive heat radiating member 7. A temperature detecting means 52 for detecting the power supply, a driving power supply 53 for the forced cooling means 51, a switch 54 for opening and closing the power supply, and a control unit 55 for controlling the opening and closing of the switch 54 by the temperature detected by the temperature detecting means 52. Yes.

制御部55は、図10に示すように、温度検出手段52による検出温度が予め設定された上限設定温度Ta以上になったときに開閉器54を閉じて強制冷却手段51を動作させ、予め設定された下限設定温度Tb以下になったときに開閉器54を開いて強制冷却手段51の動作を停止させるように構成されている。   As shown in FIG. 10, the control unit 55 closes the switch 54 and operates the forced cooling unit 51 when the temperature detected by the temperature detecting unit 52 becomes equal to or higher than a preset upper limit set temperature Ta, and is set in advance. When the temperature becomes equal to or lower than the set lower limit temperature Tb, the switch 54 is opened to stop the operation of the forced cooling means 51.

以上の構成において、反応容器3の上端3aから第1の不活性ガス10を導入し、反応容器3の外側近傍に配置されたアンテナ4又は電極42、43に高周波電圧を印加することで、反応容器3内で発生したプラズマが吹き出し口3bから一次プラズマ11として吹き出し、この一次プラズマ11が混合ガス空間12内に混合ガス13を供給して形成されている混合ガス領域15に衝突し、その混合ガス13が雪崩れ現象的にプラズマ化し、二次プラズマ16として混合ガス空間12から吹きだす。その際、アンテナ4又は電極42、43は、高周波電流が流れることで発熱するが、アンテナ4又は電極42、43に密接して配設された非導電性放熱部材7を通して放熱されることで、高温になるのが防止され、さらにその非導電性放熱部材7の温度を検出し、検出温度が上限設定温度Ta以上になったときには強制冷却手段51を動作させて強制的に冷却し、下限設定温度Tb以下になったとき強制冷却手段51の動作を停止させて強制冷却を止める。   In the above configuration, the first inert gas 10 is introduced from the upper end 3 a of the reaction vessel 3, and a high frequency voltage is applied to the antenna 4 or the electrodes 42 and 43 disposed in the vicinity of the outside of the reaction vessel 3, thereby The plasma generated in the container 3 is blown out as the primary plasma 11 from the blowout port 3b, and this primary plasma 11 collides with the mixed gas region 15 formed by supplying the mixed gas 13 into the mixed gas space 12, and the mixing is performed. The gas 13 is converted into plasma in the avalanche phenomenon and blown out from the mixed gas space 12 as the secondary plasma 16. At that time, the antenna 4 or the electrodes 42 and 43 generate heat when a high-frequency current flows, but the heat is dissipated through the non-conductive heat radiating member 7 disposed in close contact with the antenna 4 or the electrodes 42 and 43. When the temperature of the non-conductive heat radiating member 7 is detected and the detected temperature becomes equal to or higher than the upper limit set temperature Ta, the forced cooling means 51 is operated to forcibly cool, and the lower limit is set. When the temperature becomes lower than Tb, the forced cooling means 51 is stopped to stop the forced cooling.

このように本実施形態によれば、非導電性放熱部材7が所定温度以上になると強制冷却することで高い冷却性能を確実にかつ安定して確保できるとともに、過剰に冷却し過ぎることがなくかつ必要時のみ強制冷却するので、省エネルギーを図ることができる。   As described above, according to the present embodiment, when the non-conductive heat radiating member 7 reaches a predetermined temperature or higher, it is possible to reliably and stably ensure high cooling performance by forcibly cooling, and without excessive cooling. Since forced cooling is performed only when necessary, energy saving can be achieved.

以上の各実施形態の説明では、非導電性放熱部材7による放熱のみで、アンテナ4や電極42、43を冷却する例について説明したが、これらの非導電性放熱部材7を装置ケース(図示せず)に接触させて配置した構成とすると、一層高い放熱性能が得られて好適である。また、非導電性放熱部材7を装置ケース(図示せず)に直接に接触させるのではなく、非導電性放熱部材に別の放熱板(図示せず)を、面接触させて配置し、この放熱板を装置ケース(図示せず)に結合した構成とすることもできる。また、装置ケース(図示せず)にフィンをつけて放熱効果を増すこともできる。   In the description of each of the above embodiments, the example in which the antenna 4 and the electrodes 42 and 43 are cooled only by heat radiation by the non-conductive heat radiating member 7 has been described. 3), it is preferable that a higher heat dissipation performance is obtained. Further, the non-conductive heat radiating member 7 is not directly brought into contact with the device case (not shown), but another heat radiating plate (not shown) is arranged in surface contact with the non-conductive heat radiating member. A structure in which a heat sink is coupled to an apparatus case (not shown) may be employed. Moreover, a fin can be attached to an apparatus case (not shown) to increase the heat dissipation effect.

また、以上の実施形態では、予め第2の不活性ガスと反応性ガスを混合した混合ガスを混合ガス源38から混合ガス空間12に供給するようにした例を説明したが、複数のガス供給路14からそれぞれ第2の不活性ガスと反応性ガスを別々に供給し、混合ガス空間12内で互いに混合されて混合ガス領域15を形成するようにしても良い。また、第2の不活性ガス源と反応性ガス源を別に設け、両者を流量制御弁を介して所望の混合比率で混合した後、図5の第2の流量制御装置40、開閉制御弁41を介して混合ガス空間12に混合ガス13を供給するようにしても良い。このように別々に供給し、又は別々のガス源を設けると、反応性ガスの混合率を任意に変更ないし調整することができる。   In the above embodiment, the example in which the mixed gas obtained by mixing the second inert gas and the reactive gas in advance is supplied from the mixed gas source 38 to the mixed gas space 12 has been described. The second inert gas and the reactive gas may be separately supplied from the passage 14 and mixed with each other in the mixed gas space 12 to form the mixed gas region 15. Further, a second inert gas source and a reactive gas source are separately provided, and both are mixed at a desired mixing ratio via the flow rate control valve, and then the second flow rate control device 40 and the open / close control valve 41 in FIG. Alternatively, the mixed gas 13 may be supplied to the mixed gas space 12. Thus, if it supplies separately or provides a separate gas source, the mixing rate of reactive gas can be changed or adjusted arbitrarily.

本発明の大気圧プラズマ発生装置によれば、反応空間の周囲の発熱を放熱部材を通して効果的に外部に放熱することができて一次プラズマを安定して発生することができ、またその一次プラズマを混合ガス領域に衝突させることでプラズマ展開部で効率的に二次プラズマを発生することができ、さらに冷却手段として冷却水などの冷媒を用いずに放熱部材を用いているため、またその放熱部材にてプラズマ展開部の混合ガス領域とガス供給路を形成しているので、プラズマ展開部を備えた構成でありながら簡単かつコンパクトに構成でき、さらに放熱部材にて混合ガス領域が適切な温度に安定的に保持されることで安定して二次プラズマを発生することができるので、各種被処理物のプラズマ処理に好適に利用することができる。   According to the atmospheric pressure plasma generator of the present invention, the heat generated around the reaction space can be effectively radiated to the outside through the heat radiating member, and the primary plasma can be stably generated. Since the secondary plasma can be efficiently generated in the plasma developing part by colliding with the mixed gas region, and the heat radiating member is used as a cooling means without using a coolant such as cooling water. Since the gas supply path is formed with the mixed gas region of the plasma expansion part, the structure can be easily and compactly configured with the plasma expansion part. Since the secondary plasma can be stably generated by being held stably, it can be suitably used for plasma processing of various objects to be processed.

本発明の大気圧プラズマ発生装置の第1の実施形態の要部構成を示し、(a)は斜視図、(b)は(a)のA−A矢視図。The principal part structure of 1st Embodiment of the atmospheric pressure plasma generator of this invention is shown, (a) is a perspective view, (b) is an AA arrow line view of (a). 同実施形態の大気圧プラズマ発生装置を適用した大気圧プラズマ処理装置の斜視図。The perspective view of the atmospheric pressure plasma processing apparatus to which the atmospheric pressure plasma generator of the embodiment is applied. 被処理物の2つの例を示す平面図。The top view which shows two examples of a to-be-processed object. 同大気圧プラズマ処理装置の制御構成を示すブロック図。The block diagram which shows the control structure of the atmospheric pressure plasma processing apparatus. ガス供給部と流量制御部の構成図。The block diagram of a gas supply part and a flow control part. 本発明の大気圧プラズマ発生装置の第2の実施形態の要部構成を示す部分断面図。The fragmentary sectional view which shows the principal part structure of 2nd Embodiment of the atmospheric pressure plasma generator of this invention. 本発明の大気圧プラズマ発生装置の第3の実施形態の要部構成を示し、(a)は斜視図、(b)は反応管と電極を示す斜視図。The principal part structure of 3rd Embodiment of the atmospheric pressure plasma generator of this invention is shown, (a) is a perspective view, (b) is a perspective view which shows a reaction tube and an electrode. 同実施形態の分割放熱部材を示し、(a)は正面図、(b)は斜視図。The division | segmentation heat radiating member of the embodiment is shown, (a) is a front view, (b) is a perspective view. 本発明の大気圧プラズマ発生装置の第4の実施形態の要部構成を示す斜視図。The perspective view which shows the principal part structure of 4th Embodiment of the atmospheric pressure plasma generator of this invention. 同実施形態の冷却手段の制御方法の説明図。Explanatory drawing of the control method of the cooling means of the embodiment. 従来例の大気圧プラズマ発生装置の構成図。The block diagram of the atmospheric pressure plasma generator of a prior art example. 他の従来例の大気圧プラズマ発生装置の構成図。The block diagram of the atmospheric pressure plasma generator of another prior art example.

符号の説明Explanation of symbols

1 プラズマヘッド(大気圧プラズマ発生装置)
2 反応空間
3 反応容器(プラズマ発生部)
3b 下端の吹き出し口
4 アンテナ
7 非導電性放熱部材
10 第1の不活性ガス
11 一次プラズマ
12 混合ガス空間(プラズマ展開部)
13 混合ガス
14 ガス供給路
15 混合ガス領域
16 二次プラズマ
21 大気圧プラズマ処理装置
22 ロボット装置
24 可動ヘッド
51 強制冷却手段
52 温度検出手段
55 制御部
1 Plasma head (atmospheric pressure plasma generator)
2 Reaction space 3 Reaction vessel (plasma generator)
3b Outlet at the lower end 4 Antenna 7 Non-conductive heat radiating member 10 First inert gas 11 Primary plasma 12 Mixed gas space (plasma developing part)
DESCRIPTION OF SYMBOLS 13 Mixed gas 14 Gas supply path 15 Mixed gas area 16 Secondary plasma 21 Atmospheric pressure plasma processing apparatus 22 Robot apparatus 24 Movable head 51 Forced cooling means 52 Temperature detection means 55 Control part

Claims (8)

内部が反応空間を形成する筒状の反応容器と、この反応容器の外周に配設されたアンテナ又は電極反応空間に第1の不活性ガスを供給する第1の不活性ガス供給手段と反応空間に高周波電界を印加する高周波電源とを有し、反応空間からプラズマ化した第1の不活性ガスから成る一次プラズマを吹き出させるプラズマ発生部と、反応空間から吹き出した一次プラズマが衝突するように第2の不活性ガスに適量の反応性ガスが混合された混合ガス領域を形成し、プラズマ化した混合ガスから成る二次プラズマを発生するプラズマ展開部と、プラズマ発生部の反応空間を包囲しかつプラズマ展開部の混合ガス領域を形成するとともに混合ガス領域へのガス供給路を有する放熱部材とを備え
前記放熱部材は、前記反応容器の外周面が嵌合する断面半円状の凹部と、この凹部に前記アンテナ又は前記電極を密接状態で収納する溝を形成されて一体的に接合される一対の分割放熱部材から成ることを特徴とする大気圧プラズマ発生装置。
A cylindrical reaction vessel having an internal reaction space , an antenna or an electrode disposed on the outer periphery of the reaction vessel, and a first inert gas supply means for supplying a first inert gas to the reaction space; A plasma generator having a high-frequency power source for applying a high-frequency electric field to the reaction space and blowing out the primary plasma made of the first inert gas that has been made plasma from the reaction space, and the primary plasma blown out from the reaction space collide with each other. Forming a mixed gas region in which an appropriate amount of reactive gas is mixed with the second inert gas, and enclosing the plasma expansion part for generating the secondary plasma composed of the plasma mixed gas and the reaction space of the plasma generating part And a heat radiating member that forms a mixed gas region of the plasma developing portion and has a gas supply path to the mixed gas region ,
The heat dissipating member is formed of a pair of semicircular recesses into which the outer peripheral surface of the reaction container fits, and a groove for accommodating the antenna or the electrode in close contact with the recesses and integrally joined thereto. An atmospheric pressure plasma generator comprising a divided heat radiation member .
放熱部材が、アルミナ、サファイヤ、アルミナイトライド、シリコンナイトライド、窒化ホウ素、炭化珪素の中から選ばれた材質から成る非導電性放熱部材から成ることを特徴とする請求項1記載の大気圧プラズマ発生装置。   2. The atmospheric pressure plasma according to claim 1, wherein the heat dissipating member comprises a non-conductive heat dissipating member made of a material selected from alumina, sapphire, aluminum nitride, silicon nitride, boron nitride, and silicon carbide. Generator. 混合ガス領域に第2の不活性ガスと反応性ガスを予め混合した混合ガスを供給する混合ガス供給手段を設けたことを特徴とする請求項1記載の大気圧プラズマ発生装置。   2. An atmospheric pressure plasma generator according to claim 1, further comprising a mixed gas supply means for supplying a mixed gas in which a second inert gas and a reactive gas are mixed in advance to the mixed gas region. 混合ガス領域に第2の不活性ガスを供給する第2の不活性ガス供給手段と、混合ガス領域に反応性ガスを供給する反応性ガス供給手段とを別に設けたことを特徴とする請求項1記載の大気圧プラズマ発生装置。   The second inert gas supply means for supplying the second inert gas to the mixed gas region and the reactive gas supply means for supplying the reactive gas to the mixed gas region are provided separately. The atmospheric pressure plasma generator according to 1. 第1の不活性ガスと第2の不活性ガスは、同種の不活性ガスであることを特徴とする請求項1記載の大気圧プラズマ発生装置。   2. The atmospheric pressure plasma generator according to claim 1, wherein the first inert gas and the second inert gas are the same kind of inert gas. 第1の不活性ガス及び第2の不活性ガスは、アルゴン、ヘリウム、キセノン、ネオン、窒素、又はこれらの1種又は複数種の混合ガスから選ばれたものであることを特徴とする請求項1〜5の何れかに記載の大気圧プラズマ発生装置。   The first inert gas and the second inert gas are selected from argon, helium, xenon, neon, nitrogen, or one or more mixed gases thereof. The atmospheric pressure plasma generator according to any one of 1 to 5. 放熱部材の温度を検出する温度検出手段と、放熱部材を冷却する強制冷却手段と、強制冷却手段を動作制御する制御部とを備え、制御部は温度検出手段による検出温度が第1の設定値以上になったときに強制冷却手段を動作させ、第1の設定値より低い温度に設定された第2の設定値以下になったときに強制冷却手段の動作を停止させることを特徴とする請求項1記載の大気圧プラズマ発生装置。   A temperature detecting means for detecting the temperature of the heat radiating member; a forced cooling means for cooling the heat radiating member; and a control part for controlling the operation of the forced cooling means. The control part detects the temperature detected by the temperature detecting means at a first set value. The forced cooling means is operated when the temperature becomes above, and the operation of the forced cooling means is stopped when the temperature becomes equal to or lower than a second set value set at a temperature lower than the first set value. Item 2. The atmospheric pressure plasma generator according to Item 1. 請求項1〜6の何れかに記載の大気圧プラズマ発生装置を、ロボット装置のX、Y、Z方向に移動可能な可動ヘッドに搭載したことを特徴とする大気圧プラズマ処理装置。   An atmospheric pressure plasma processing apparatus, wherein the atmospheric pressure plasma generation apparatus according to any one of claims 1 to 6 is mounted on a movable head movable in the X, Y, and Z directions of a robot apparatus.
JP2006222748A 2006-08-17 2006-08-17 Atmospheric pressure plasma generator Active JP5055893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222748A JP5055893B2 (en) 2006-08-17 2006-08-17 Atmospheric pressure plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222748A JP5055893B2 (en) 2006-08-17 2006-08-17 Atmospheric pressure plasma generator

Publications (2)

Publication Number Publication Date
JP2008047446A JP2008047446A (en) 2008-02-28
JP5055893B2 true JP5055893B2 (en) 2012-10-24

Family

ID=39180970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222748A Active JP5055893B2 (en) 2006-08-17 2006-08-17 Atmospheric pressure plasma generator

Country Status (1)

Country Link
JP (1) JP5055893B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211759B2 (en) * 2008-02-29 2013-06-12 パナソニック株式会社 Atmospheric pressure plasma treatment method
JP4983713B2 (en) * 2008-04-23 2012-07-25 パナソニック株式会社 Atmospheric pressure plasma generator
WO2013105659A1 (en) * 2012-01-13 2013-07-18 国立大学法人大阪大学 Active species irradiation device, active species irradiation method and method for forming object having been irradiated with active species
JP5375985B2 (en) * 2012-01-25 2013-12-25 パナソニック株式会社 Atmospheric pressure plasma processing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
DE29911974U1 (en) * 1999-07-09 2000-11-23 Agrodyn Hochspannungstechnik G Plasma nozzle
US6841201B2 (en) * 2001-12-21 2005-01-11 The Procter & Gamble Company Apparatus and method for treating a workpiece using plasma generated from microwave radiation
JP4687543B2 (en) * 2006-04-14 2011-05-25 パナソニック株式会社 Atmospheric pressure plasma generator and generation method

Also Published As

Publication number Publication date
JP2008047446A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
EP3123840B1 (en) Microwave plasma applicator with improved power uniformity
JP5055893B2 (en) Atmospheric pressure plasma generator
JP2013120686A (en) Plasma processing device and plasma processing method
US20150053645A1 (en) Plasma processing apparatus and plasma processing method
CN101599408A (en) Microwave plasma processing apparatus
KR19990062781A (en) Plasma treatment apparatus and treatment method
JP4687543B2 (en) Atmospheric pressure plasma generator and generation method
US20160155614A1 (en) Support unit and substrate treating apparatus including the same
US20150279626A1 (en) Microwave plasma applicator with improved power uniformity
JP4682946B2 (en) Plasma processing method and apparatus
KR101870668B1 (en) Apparatus for treating substrate
JP4946339B2 (en) Atmospheric pressure plasma generator and plasma processing method and apparatus
CN101641768B (en) Placing table structure and processing apparatus using the same
WO2018135307A1 (en) Antenna, plasma processing device and plasma processing method
JP4558975B2 (en) Plasma processing equipment
JPH06232081A (en) Icp plasma processing device
JP5211759B2 (en) Atmospheric pressure plasma treatment method
JP2913131B2 (en) Microwave plasma device
JP5429124B2 (en) Plasma processing method and apparatus
JP4760609B2 (en) Component mounting method and apparatus on board
KR101856612B1 (en) Microwave applying unit and susbtrate treating apparatus including the unit
JP2003017476A (en) Cooling apparatus for semiconductor-manufacturing apparatus, and plasma etching apparatus having the cooling apparatus
US5334813A (en) Metal inert gas welding system for use in vacuum
KR101772427B1 (en) Apparatus for generating electric field, apparatus for treating substrate comprising the same, and method for controlling the same
JP5375985B2 (en) Atmospheric pressure plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5055893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250