JPH06232081A - Icp plasma processing device - Google Patents

Icp plasma processing device

Info

Publication number
JPH06232081A
JPH06232081A JP5020064A JP2006493A JPH06232081A JP H06232081 A JPH06232081 A JP H06232081A JP 5020064 A JP5020064 A JP 5020064A JP 2006493 A JP2006493 A JP 2006493A JP H06232081 A JPH06232081 A JP H06232081A
Authority
JP
Japan
Prior art keywords
conductor
plasma
antenna
sample
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5020064A
Other languages
Japanese (ja)
Inventor
Yasuhiro Horiike
靖浩 堀池
Satoru Narai
哲 奈良井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5020064A priority Critical patent/JPH06232081A/en
Publication of JPH06232081A publication Critical patent/JPH06232081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide an ICP plasma processing device which does not contaminate a sample and can cope with a large aperture of a future sample. CONSTITUTION:By applying a high-frequency bias to a sample 1 and introducing electromagnetic waves generated by an antenna 4 to a vacuum container 2 via a dielectric 3, a dielectric 5 with a transmission function of electromagnetic wave is provided between the antenna 4 of a device A' generating plasma for performing plasma processing of the sample 1 and the dielectric 3 is provided in the container and it is electrically connected to the vacuum container 2, thus preventing the sample from being contaminated and coping with the large aperture of a future sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はICPプラズマ処理装置
に係り,例えば半導体製造に使用されるICPプラズマ
処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ICP plasma processing apparatus, and more particularly to an ICP plasma processing apparatus used in semiconductor manufacturing.

【0002】[0002]

【従来の技術】近年,半導体集積回路製造におけるエッ
チング等のプラズマ処理の過程は,単位面積当りの素子
の数を多くし,且つ集積回路全体のチップ面積を増加さ
せることにより集積度を向上させ,素子の経済性を向上
させる傾向にある。その結果,集積回路の素子の最小加
工幅は年々小さくなり,同時に処理を行う半導体基板は
大口径化している。従って,プラズマ処理装置として
は,大口径で高密度,かつ均一なプラズマを得ることが
要求されている。ここに,電磁誘導のみを用いたプラズ
マ処理装置の1つであるICP(Inductively Coupled
Plasma) プラズマ処理装置は,高周波電力を用いて,し
かも固定磁場を必要とせずにプラズマを発生できる。こ
のため,プラズマを磁化せずに均一なプラズマを得易
く,それまで無磁場では達成出来なかった高密度な大面
積プラズマ(Φ200mm以上で,数mTorr の圧力下で1
立法センチメートル当り10の12剩以上)が得られ
る。このように,ICPプラズマ処理装置は集積回路製
造に要求されている大面積プラズマを実現できることか
ら注目されるようになった。もともと,電磁誘導を用い
たプラズマ処理装置は初期段階においては,円筒形状の
石英管にアンテナとなるコイルをソレノイド状に巻きつ
けて,電磁誘導によりプラズマを発生させていた。しか
しながら,基本的にアンテナ付近でプラズマが発生する
ために,円筒の直径を大きくした場合にはプラズマの円
筒の筒軸に直角の断面方向の面分布の均一性を確保する
ことができない。従って,処理基板が大口径になるに伴
い使用されなくなった。ICPプラズマ処理装置はソレ
ノイド状のコイルの代わりに,平面状のコイルを用いる
ことにより大面積プラズマを得ることができるため,近
年再び注目されるに至ったのである。図5はこのような
従来のICPプラズマ処理装置Aの一例における概略構
成を示す模式図である。図5に示す如く,従来のICP
プラズマ処理装置Aは,処理基板等の試料1を収納する
金属等の導電性の真空容器2と,真空容器2の一部を構
成しこの容器内に電磁波を導入する石英窓等の誘電体3
と,誘電体3の外側に設けられて高周波電流を流すこと
により電磁波を発生させるアンテナ4等を備え,試料1
に高周波バイアスをかけつつ,アンテナ4により発生さ
せた電磁波を誘電体3を介して真空容器2内に導入する
ことによりこの容器内に試料1をプラズマ処理するプラ
ズマを発生させるように構成されている。
2. Description of the Related Art In recent years, in the process of plasma treatment such as etching in the manufacture of semiconductor integrated circuits, the number of elements per unit area is increased and the chip area of the entire integrated circuit is increased to improve the degree of integration. It tends to improve the economical efficiency of the device. As a result, the minimum processing width of the integrated circuit element is becoming smaller year by year, and the diameter of the semiconductor substrate that is simultaneously processed is increasing. Therefore, it is required for the plasma processing apparatus to obtain uniform plasma with a large diameter and high density. Here, ICP (Inductively Coupled), which is one of the plasma processing devices using only electromagnetic induction, is used.
Plasma) Plasma processing equipment can generate plasma using high frequency power and without the need for a fixed magnetic field. For this reason, it is easy to obtain a uniform plasma without magnetizing the plasma, and a high-density large-area plasma (Φ200 mm or more, under a pressure of several mTorr, which could not be achieved until now without a magnetic field).
10 cubic meters per cubic centimeter or more) is obtained. As described above, the ICP plasma processing apparatus has been attracting attention because it can realize a large-area plasma required for manufacturing integrated circuits. Originally, in the initial stage of a plasma processing apparatus using electromagnetic induction, a coil serving as an antenna was wound around a cylindrical quartz tube in a solenoid shape, and plasma was generated by electromagnetic induction. However, since plasma is basically generated near the antenna, when the diameter of the cylinder is increased, it is not possible to ensure the uniformity of the surface distribution in the cross-sectional direction perpendicular to the cylinder axis of the plasma cylinder. Therefore, as the diameter of the processed substrate became larger, it was no longer used. In the ICP plasma processing apparatus, a large area plasma can be obtained by using a plane coil instead of a solenoid coil, and thus it has been regained attention in recent years. FIG. 5 is a schematic diagram showing a schematic configuration in an example of such a conventional ICP plasma processing apparatus A. As shown in FIG. 5, the conventional ICP
The plasma processing apparatus A includes a conductive vacuum container 2 made of metal or the like for accommodating a sample 1 such as a processed substrate, and a dielectric 3 such as a quartz window which constitutes a part of the vacuum container 2 and introduces electromagnetic waves into the container.
And the antenna 4 and the like which are provided outside the dielectric 3 and generate electromagnetic waves by flowing a high frequency current.
While applying a high frequency bias to the inside of the vacuum vessel 2, the electromagnetic wave generated by the antenna 4 is introduced into the vacuum vessel 2 through the dielectric 3 to generate plasma for plasma-treating the sample 1. .

【0003】以下,従来装置Aによるプラズマ発生の機
構等を説明する。プラズマ発生の機構は,基本的には旧
来の電磁誘導を用いたプラズマ処理装置と同じである。
まず,アンテナ用高周波電源4a からマッチボックス4
b を介してアンテナ4に高周波電流を流すことにより誘
起された電磁波を,誘電体3を通じて真空容器2内部に
伝達し,この容器内部に高周波電場を誘起する。この高
周波電場によって,自然放射線等により,真空容器2内
部に発生した電子を加速する。加速により得られた電子
の運動エネルギは,電子が外部から供給される処理ガス
中に含まれる中性原子と衝突することにより中性原子に
与えられ,中性原子をイオン化してイオンと電子とを生
成する。新たに生成した電子は高周波電場により加速さ
れる。これらの過程を繰り返してプラズマの発生,維持
を行っている。次に,プラズマ密度がある程度上昇する
と,プラズマ中の電子の密度が上昇してプラズマ中の電
子の応答周波数を上昇させる。このために,プラズマが
あたかも導電体であるかの様に作用して高周波電界を遮
断するように電流が流れて,電磁波を遮断し始める。こ
のとき,プラズマ固有の特殊なモード(周波数)以外は
プラズマ内部に電磁波が入らないため,表面のプラズマ
のみがアンテナ4により放射される電磁波のエネルギを
得てプラズマ密度をさらに上昇させ,プラズマ内部に拡
散する。従って,アンテナ4付近ではプラズマ密度が高
いが,アンテナ4より遠ざかるにつれてプラズマ密度が
減少する傾向がある。このため,処理を行う試料1はプ
ラズマ発生位置からあまり離すことができない。その結
果,試料1の口径が大きくなった場合には,プラズマか
ら試料1までのギャップを一定に維持しながら,扁平な
プラズマを発生させることになる。このように発生させ
た扁平なプラズマ中のイオンを試料1に照射して,例え
ばエッチングを行う場合,イオンを試料1に対して理想
的な角度で入射させることが困難である。このために,
試料1を載置し真空容器2と電気的に絶縁された電極1
a に,バイアス用高周波電源1b からマッチボックス1
c を介して高周波電流を流すことにより,試料1に高周
波バイアスをかける。これにより,試料1にイオンを引
きつけて処理を行い,エッチング形状等について一定の
処理性能を確保していた。
The mechanism of plasma generation by the conventional apparatus A will be described below. The mechanism of plasma generation is basically the same as that of a conventional plasma processing apparatus using electromagnetic induction.
First, match box 4 from the antenna for high-frequency power supply 4 a
An electromagnetic wave induced by passing a high-frequency current through the antenna 4 via b is transmitted to the inside of the vacuum container 2 through the dielectric 3, and a high-frequency electric field is induced inside this container. The high-frequency electric field accelerates the electrons generated inside the vacuum container 2 by natural radiation or the like. The kinetic energy of the electron obtained by the acceleration is given to the neutral atom when the electron collides with the neutral atom contained in the processing gas supplied from the outside, and the neutral atom is ionized to form the ion and the electron. To generate. The newly generated electrons are accelerated by the high frequency electric field. These processes are repeated to generate and maintain plasma. Next, when the plasma density rises to some extent, the electron density in the plasma rises and the response frequency of the electrons in the plasma rises. For this reason, the plasma acts as if it were a conductor, and a current flows so as to block the high-frequency electric field, thus starting to block the electromagnetic waves. At this time, since electromagnetic waves do not enter inside the plasma except for a special mode (frequency) peculiar to the plasma, only the plasma on the surface obtains energy of the electromagnetic waves radiated by the antenna 4 to further increase the plasma density and to the inside of the plasma. Spread. Therefore, although the plasma density is high near the antenna 4, the plasma density tends to decrease as the distance from the antenna 4 increases. Therefore, the sample 1 to be processed cannot be separated from the plasma generation position so much. As a result, when the diameter of the sample 1 becomes large, a flat plasma is generated while maintaining a constant gap from the plasma to the sample 1. When irradiating the sample 1 with the ions in the flat plasma generated in this way to perform etching, for example, it is difficult to make the ions enter the sample 1 at an ideal angle. For this,
Electrode 1 on which sample 1 is placed and electrically insulated from vacuum container 2
a , high frequency bias power supply 1b to match box 1
A high frequency bias is applied to sample 1 by passing a high frequency current through c . As a result, ions were attracted to the sample 1 to perform processing, and a certain processing performance was secured with respect to the etching shape and the like.

【0004】[0004]

【発明が解決しようとする課題】上記従来のICPプラ
ズマ処理装置Aでは,現状直径8インチまでの試料1を
処理する程度の均一なプラズマを得ることができるもの
の,以下の問題点があった。 (1)処理の際,アンテナ4とプラズマとの間に形成さ
れる1種のアンテナ回路には高周波の電位を生じ,プラ
ズマ電位に対して負の電位を生じるためにこの負の電位
がプラズマ中のイオンを引きつけて,真空を封止してい
る誘電体3に衝突させて誘電体3をスパッタする。そし
て誘電体3を分解し,プラズマ中に不純物を混入させる
おそれがある。 (2)また,バイアス印加用の高周波電流は,試料1の
載置された電極1a から試料1及びプラズマ中を通って
試料1と対向する側3a に流れる。このため,この対向
側3a の内面の境界条件により,バイアス印加用高周波
の電流が異なることになる。扁平なプラズマでは,対向
側3a の内面の境界条件は,周辺部3a′が金属等の導
電性の真空容器2であるのに対して,中心部分3a ″は
電磁波導入用の誘電体3(絶縁体)であるので,プラズ
マ中心部分を流れるバイアス印加用の高周波電流と周辺
部分を流れるバイアス印加用の高周波電流とでは電流に
差を生じる。従って,この電流の差はバイアス印加用高
周波により発生するイオンの加速電位を異ならせて,処
理の均一性を低下させる場合がある。この処理の均一性
の低下傾向はプラズマが扁平になるに従って増大するの
で,将来の試料1の大口径化に伴い問題が発生するおそ
れがある。 本発明は,このような従来の技術における課題を解決す
るために,ICPプラズマ処理装置を改良し,試料を汚
染するおそれがなく,しかも将来の試料の大口径化にも
対応可能なICPプラズマ処理装置を提供することを目
的とするものである。
The above-mentioned conventional ICP plasma processing apparatus A can obtain a uniform plasma to the extent that the sample 1 having a diameter of up to 8 inches is currently processed, but has the following problems. (1) During processing, a high-frequency potential is generated in one type of antenna circuit formed between the antenna 4 and the plasma, and this negative potential is generated in the plasma because the potential is negative with respect to the plasma potential. Ions are attracted to collide with the dielectric 3 that seals the vacuum, and the dielectric 3 is sputtered. Then, the dielectric 3 may be decomposed and impurities may be mixed into the plasma. (2) Further, the high frequency current for bias application flows from the electrode 1 a on which the sample 1 is placed, through the sample 1 and the plasma to the side 3 a facing the sample 1. Therefore, the high frequency current for bias application differs depending on the boundary condition of the inner surface of the facing side 3 a . In a flat plasma, the boundary condition of the inner surface on the opposite side 3 a is that the peripheral portion 3 a ′ is a conductive vacuum container 2 such as metal, while the central portion 3 a ″ is a dielectric for introducing electromagnetic waves. Since it is 3 (insulator), there is a difference between the high frequency current for bias application flowing in the central part of the plasma and the high frequency current for bias application flowing in the peripheral part. In some cases, the acceleration potential of the generated ions may be different to reduce the uniformity of the treatment.This tendency to decrease the uniformity of the treatment increases as the plasma becomes flatter, so the diameter of future sample 1 will be increased. The present invention improves the ICP plasma processing apparatus in order to solve the problems in the related art, and there is no fear of contaminating the sample, and further, in the future. It is an object to provide a corresponding possible ICP plasma processing apparatus to larger diameter of the fee.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に,第1の発明は試料を収納する導電性の真空容器と,
上記真空容器の一部を構成し該容器内に電磁波を導入す
る誘電体と,上記誘電体の外側に配設されて高周波電流
を流すことにより上記電磁波を発生させるアンテナとを
具備し,上記アンテナにより発生させた電磁波を上記誘
電体を介して上記真空容器内に導入することにより該容
器内に上記試料をプラズマ処理するプラズマを発生させ
るICPプラズマ処理装置において,上記アンテナと上
記誘電体との間に,電磁波の透過機能を備えた導電体を
設け,かつ該導電体を上記真空容器に電気的に接続して
なることを特徴とするICPプラズマ処理装置として構
成されている。また,第2の発明は試料を収納する導電
性の真空容器と,上記真空容器の一部を構成し該容器内
に電磁波を導入する誘電体と,上記誘電体の外側に配設
されて高周波電流を流すことにより上記電磁波を発生さ
せるアンテナとを具備し,上記試料に高周波バイアスを
かけつつ,上記アンテナにより発生させた電磁波を上記
誘電体を介して上記真空容器内に導入することにより該
容器内に上記試料をプラズマ処理するプラズマを発生さ
せるICPプラズマ処理装置において,上記アンテナと
上記プラズマとの間に,電磁波の透過機能を備えた導電
体を設け,かつ該導電体を上記真空容器に電気的に接続
してなることを特徴とするICPプラズマ処理装置とし
て構成されている。更には,試料を収納する導電性の真
空容器と,上記真空容器の一部を構成し該容器内に電磁
波を導入する誘電体と,上記誘電体の外側に配設されて
高周波電流を流すことにより上記電磁波を発生させるア
ンテナとを具備し,上記試料に高周波バイアスをかけつ
つ,上記アンテナにより発生させた電磁波を上記誘電体
を介して上記真空容器内に導入することにより該容器内
に上記試料をプラズマ処理するプラズマを発生させるI
CPプラズマ処理装置において,上記アンテナと上記誘
電体との間に,電磁波の透過機能を備えた第1の導電体
を設けると共に,上記アンテナと上記プラズマとの間に
電磁波の透過機能を備えた第2の導電体を設け,かつ該
第1,第2の導電体を上記真空容器に電気的に接続して
なることを特徴とするICPプラズマ処理装置である。
更には,上記第1の導電体が上記第2の導電体を兼ねる
ICPプラズマ処理装置である。更には,上記導電体の
電磁波透過機能が,上記アンテナ中を流れる高周波電流
と直角方向のスリットを上記導電体に適宜数形成するこ
とによって達成されるICPプラズマ処理装置である。
更には,上記導電体の電磁波透過機能が,上記導電体を
薄肉化することによって達成されるIPCプラズマ処理
装置である。
In order to achieve the above object, the first invention is a conductive vacuum container for containing a sample,
The antenna includes: a dielectric which constitutes a part of the vacuum container and introduces an electromagnetic wave into the container; and an antenna which is disposed outside the dielectric and generates the electromagnetic wave by flowing a high-frequency current. In the ICP plasma processing apparatus, which introduces the electromagnetic wave generated by the above into the vacuum container through the dielectric to generate plasma for plasma-processing the sample in the container, in the ICP plasma processing apparatus, between the antenna and the dielectric. In addition, a conductor having a function of transmitting electromagnetic waves is provided, and the conductor is electrically connected to the vacuum container, which is an ICP plasma processing apparatus. A second invention is a conductive vacuum container for accommodating a sample, a dielectric which constitutes a part of the vacuum container and introduces electromagnetic waves into the container, and a high-frequency wave which is disposed outside the dielectric. An antenna for generating the electromagnetic wave by passing an electric current through the container. By applying a high frequency bias to the sample, the electromagnetic wave generated by the antenna is introduced into the vacuum container through the dielectric. In an ICP plasma processing apparatus for generating plasma for plasma-processing the sample therein, a conductor having a function of transmitting electromagnetic waves is provided between the antenna and the plasma, and the conductor is electrically connected to the vacuum container. It is configured as an ICP plasma processing apparatus, which is characterized in that the ICP plasma processing apparatuses are electrically connected. Further, a conductive vacuum container for containing the sample, a dielectric that constitutes a part of the vacuum container and introduces electromagnetic waves into the container, and a high-frequency current that is provided outside the dielectric and flows a high-frequency current. And an antenna for generating the electromagnetic wave according to claim 1, wherein the electromagnetic wave generated by the antenna is introduced into the vacuum container through the dielectric material while applying a high frequency bias to the sample. I for generating plasma
In the CP plasma processing apparatus, a first conductor having an electromagnetic wave transmitting function is provided between the antenna and the dielectric, and an electromagnetic wave transmitting function is provided between the antenna and the plasma. The ICP plasma processing apparatus is characterized in that two electric conductors are provided and the first and second electric conductors are electrically connected to the vacuum container.
Further, in the ICP plasma processing apparatus, the first conductor also serves as the second conductor. Further, in the ICP plasma processing apparatus, the electromagnetic wave transmitting function of the conductor is achieved by forming an appropriate number of slits in the conductor at right angles to the high frequency current flowing in the antenna.
Furthermore, in the IPC plasma processing apparatus, the electromagnetic wave transmission function of the conductor is achieved by reducing the thickness of the conductor.

【0006】[0006]

【作用】第1の発明によれば,アンテナに高周波電流を
流して発生させた電磁波を誘導体を介して導電性の真空
容器内に導入することによって,該容器内に試料をプラ
ズマ処理するプラズマを発生させる。この際,上記アン
テナとプラズマとの間に形成されるアンテナ回路には高
周波電位によりプラズマ電位に対して負の電位が発生す
るが,該負の電位は上記アンテナと上記誘電体との間に
電磁波の透過機能を備えた導電体を設け,かつ該導電体
を上記真空容器に電気的に接続することによって消滅す
る。上記負の電位はプラズマ中のイオンを引きつけて誘
電体に衝突させるものであり,その消滅により上記誘電
体がスパッタされて分解し,プラズマ中に不純物が混入
するおそれがなくなる。従って,プラズマ処理される試
料を汚染するおそれがなくなる。第2の発明によれば,
試料に高周波バイアスをかけつつ,アンテナに高周波電
流を流して発生させた電磁波を誘電体を介して導電性の
真空容器内に導入することによって,該容器内に試料を
プラズマ処理するプラズマを発生させる。この際,高周
波バイパス印加用の高周波電流はプラズマを通って試料
と対向する側に流れるが,該高周波電流は,上記アンテ
ナと上記プラズマとの間に電磁波の透過機能を備えた導
電体を設け,かつ該導電体を上記真空容器に電気的に接
続することによって,均一に流れる。従って,プラズマ
中のバイアス印加用高周波により生じるイオンの加速電
位が均一となり,処理の均一性が確保されるため,将来
の試料の大口径化にも対応可能となる。更に,上記第1
の発明における導電体を,上記第2の発明における導電
体と兼用することにより別々に設けた場合に比べて装置
のコンパクト化を図ることができる。更に,上記誘電体
の電磁波透過機能が,上記アンテナ中を流れる高周波電
流と直角方向のスリットを上記導電体に適宜数形成する
ことによって,又は上記導電体を薄肉化することによっ
て達成される。このように比較的簡単な方法で上記導電
体を具現化できる。その結果,試料を汚染するおそれが
なく,しかも将来の試料の大口径化にも対応可能なIC
Pプラズマ処理装置を得ることができる。
According to the first aspect of the invention, by introducing an electromagnetic wave generated by flowing a high-frequency current through the antenna into the conductive vacuum container through the dielectric, a plasma for plasma-treating the sample in the container is generated. generate. At this time, a negative potential with respect to the plasma potential is generated in the antenna circuit formed between the antenna and the plasma due to the high frequency potential, and the negative potential is an electromagnetic wave between the antenna and the dielectric. It is extinguished by providing an electric conductor having a transparent function and electrically connecting the electric conductor to the vacuum container. The negative potential attracts the ions in the plasma and causes them to collide with the dielectric, and the disappearance thereof causes the dielectric to be sputtered and decomposed, so that impurities are not mixed in the plasma. Therefore, there is no possibility of contaminating the sample to be plasma-treated. According to the second invention,
While applying a high-frequency bias to the sample, an electromagnetic wave generated by flowing a high-frequency current through the antenna is introduced into the conductive vacuum container through the dielectric to generate plasma for plasma-processing the sample in the container. . At this time, the high-frequency current for applying the high-frequency bypass flows through the plasma to the side facing the sample. The high-frequency current is provided between the antenna and the plasma by providing a conductor having an electromagnetic wave transmitting function, Further, by electrically connecting the electric conductor to the vacuum container, the electric current flows uniformly. Therefore, the acceleration potential of the ions generated by the high frequency for bias application in the plasma becomes uniform, and the uniformity of processing is ensured, and it is possible to cope with future larger sample diameters. Furthermore, the first
By using the conductor of the present invention also as the conductor of the second invention, the device can be made compact as compared with the case where the conductor is separately provided. Further, the electromagnetic wave transmitting function of the dielectric is achieved by forming an appropriate number of slits in the conductor in a direction perpendicular to the high frequency current flowing in the antenna, or by thinning the conductor. Thus, the conductor can be embodied by a relatively simple method. As a result, there is no risk of contaminating the sample, and it is possible to cope with future large diameters of the sample.
A P plasma processing apparatus can be obtained.

【0007】[0007]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚以下
の実施例は,本発明を具体化した一例であって,本発明
の技術的範囲を限定する性格のものではない。ここに,
図1は本発明の一実施例に係るICPプラズマ処理装置
A′の概略構成を示す模式図,図2はアンテナの平面構
造例を示す説明図,図3は導電体の平面構造例を示す説
明図(a),(b),図4は導電体の取り付け状態の変
形例を示す説明図(a),(b)である。尚,前記図5
に示した従来のICPプラズマ処理装置Aの一例におけ
る概略構成を示す模式図と共通する要素には同一の符号
を使用する。図1に示す如く,本発明(第1,第2の発
明)の一実施例に係るICPプラズマ処理装置A′は処
理基板等の試料1を収納する金属等の導電性の真空容器
2と,真空容器2の一部を構成し,この容器内に電磁波
を導入する石英窓等の誘電体3と,誘電体3の外側に設
けられて高周波電流を流すことにより電磁波を発生させ
るアンテナ4等を備え,試料1に高周波バイアスをかけ
つつ,アンテナ4により発生された電磁波を誘電体3を
介して真空容器2に導入することによりこの容器内に試
料1をプラズマ処理するプラズマを発生させるように構
成されている点で従来例と同様である。また,アンテナ
4に流される高周波電流はアンテナ用高周波電源4a
らマッチボックス4b を介して供給され,試料1にかけ
られる高周波バイアス用の高周波電流は試料1を載置し
真空容器2と電気的に絶縁された電極1a にバイアス用
高周波電源1b からマッチボックス1c を介して供給さ
れる点でも従来例と同様である。しかし,第1の発明で
は,アンテナ4と誘電体3との間に電磁波の透過機能を
備えた導電体5を設け,かつ導電体5を真空容器2に電
気的に接続した点で従来例と異なる。また,第2の発明
では,アンテナ4とプラズマとの間に電磁波の透過機能
を備えた誘電体5′を設け,かつ導電体5′を真空容器
3に電気的に接続した点で従来例と異なる。図1は説明
の便宜上,第1の発明に係る導電体5が,第2の発明に
係る導電体5′を兼ねる場合を示しているが,両導電体
5,5′を別々に設けてもよい。その場合は導電体5′
は真空容器2内部に設置される。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. here,
1 is a schematic diagram showing a schematic configuration of an ICP plasma processing apparatus A'according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of a planar structure of an antenna, and FIG. 3 is an explanation showing an example of a planar structure of a conductor. FIGS. 4A, 4B and 4 are explanatory views showing a modified example of the attached state of the conductors. In addition, FIG.
The same reference numerals are used for the elements common to the schematic diagram showing the schematic configuration in the example of the conventional ICP plasma processing apparatus A shown in FIG. As shown in FIG. 1, an ICP plasma processing apparatus A'according to an embodiment of the present invention (first and second inventions) is a conductive vacuum container 2 made of metal or the like for accommodating a sample 1 such as a processing substrate, A dielectric 3 such as a quartz window which constitutes a part of the vacuum container 2 and introduces an electromagnetic wave into the container, and an antenna 4 which is provided outside the dielectric 3 and generates an electromagnetic wave by flowing a high frequency current The sample 1 is configured to generate a plasma for plasma-treating the sample 1 by introducing an electromagnetic wave generated by the antenna 4 into the vacuum container 2 through the dielectric 3 while applying a high frequency bias to the sample 1. This is similar to the conventional example in that it is performed. The high-frequency current flowing through the antenna 4 is supplied from the antenna high-frequency power source 4 a through the match box 4 b, and the high-frequency bias high-frequency current applied to the sample 1 is electrically connected to the vacuum container 2 when the sample 1 is placed on the sample container 1. This is also the same as the conventional example in that it is supplied from the bias high-frequency power source 1 b to the insulated electrode 1 a through the match box 1 c . However, the first invention is different from the conventional example in that the conductor 5 having the electromagnetic wave transmitting function is provided between the antenna 4 and the dielectric 3 and the conductor 5 is electrically connected to the vacuum container 2. different. Further, in the second invention, a dielectric 5'having a function of transmitting an electromagnetic wave is provided between the antenna 4 and the plasma, and the conductor 5'is electrically connected to the vacuum container 3, which is different from the conventional example. different. 1 shows the case where the conductor 5 according to the first invention also serves as the conductor 5'according to the second invention for convenience of description, but both conductors 5 and 5'may be provided separately. Good. In that case, the conductor 5 '
Is installed inside the vacuum container 2.

【0008】以下,本実施例では主として従来例と異な
る部分について説明し,従来例と同様の部分は既述の通
りであるので,その詳細説明は省略する。まず,この装
置A′の基本原理等について概略説明する。電磁波は,
一般的に絶縁体中(真空中,大気中,誘電体中等)では
直交する電界と磁界が時間的に交互に変化を繰返して空
間中を伝搬する。それに対して,導電体中では多くの自
由電子が存在する為に,誘起された電界の電位差により
自由電子が力を受けて移動して電界を打ち消すように電
流が流れる。このために電磁波は導電体中を伝搬せずに
反射してしまう。従って,例えば前記従来例で問題とな
ったアンテナ4部分に発生する,プラズマ電位に対して
発生する負の電位を無くそうとして単なる導電体をアン
テナ4とプラズマとの間に置き,この導電体を真空容器
2と同電位(接地電位)に接続した場合は電磁波が伝搬
しないために問題を解決できない。しかしながら,電磁
波(電波)により誘起される電界の方向が決まっている
場合は,導電体であっても誘起される電界を打消す方向
の電流のみを遮断し,電磁波(電波)を遮断することな
く電磁波を伝搬できることが知られている。この様な導
電体はファラデーシールドとして知られている。即ち,
アンテナ4近傍での電磁波は,アンテナ4中を流れる高
周波電流に対して直角方向に交播磁界を発生させ,さら
にこの交播磁界に直角な方向に交播電界が発生するた
め,結果的にアンテナ4中を流れる電流と平行な方向の
電流が電磁波を遮断する働きがある。従って,この方向
の電流を流れなくすることにより,発生する交播電界を
打ち消すような電流を遮ることなく,導電体であっても
電磁波を透過させることができるのである。また,導電
体を非常に薄くすることによっても,電磁波を透過させ
ることができることも周知である。この装置A′におけ
る導電体5はこれらの基本原理を応用したものである。
即ち,導電体5にアンテナ4中を流れる方向と直角な方
向のスリットを設けて,アンテナ4中の電流を遮る電流
を阻止するか,もしくは導電体5を薄肉化して電磁波透
過機能を持たせる。
In this embodiment, the parts different from the conventional example will be mainly described below, and the parts similar to the conventional example are as described above, and therefore detailed description thereof will be omitted. First, the basic principle of this device A'will be briefly described. Electromagnetic waves
Generally, in an insulator (in vacuum, in the atmosphere, in a dielectric, etc.), orthogonal electric fields and magnetic fields repeatedly alternate in time and propagate in space. On the other hand, since many free electrons exist in the conductor, the free electrons receive a force due to the potential difference of the induced electric field and move, and a current flows so as to cancel the electric field. Therefore, the electromagnetic wave is reflected without being propagated in the conductor. Therefore, for example, a mere conductor is placed between the antenna 4 and the plasma in order to eliminate the negative potential generated with respect to the plasma potential, which is generated in the antenna 4 portion which has been a problem in the above-mentioned conventional example, and this conductor is When connected to the same potential (ground potential) as the vacuum container 2, the problem cannot be solved because electromagnetic waves do not propagate. However, when the direction of the electric field induced by the electromagnetic wave (radio wave) is fixed, even a conductor cuts off only the current in the direction of canceling the induced electric field and does not block the electromagnetic wave (radio wave). It is known that electromagnetic waves can be propagated. Such a conductor is known as a Faraday shield. That is,
Electromagnetic waves in the vicinity of the antenna 4 generate a crossing magnetic field in a direction perpendicular to the high-frequency current flowing in the antenna 4, and further generate a crossing electric field in a direction perpendicular to this crossing magnetic field. An electric current in a direction parallel to the electric current flowing in 4 has a function of blocking electromagnetic waves. Therefore, by stopping the flow of the electric current in this direction, it is possible to transmit the electromagnetic wave even by the conductor without interrupting the electric current that cancels the generated cross-field. It is also well known that electromagnetic waves can be transmitted by making the conductor very thin. The conductor 5 in this device A'is an application of these basic principles.
That is, the conductor 5 is provided with a slit in a direction perpendicular to the direction in which it flows in the antenna 4 to block the current that interrupts the current in the antenna 4, or to thin the conductor 5 to provide an electromagnetic wave transmission function.

【0009】第1の発明では,このような導電体5を,
アンテナ4と誘電体3との間に設置し,真空容器2と同
電位(接地電位)に接続することにより,アンテナ4に
発生する,プラズマ電位に対して発生する負の電位を消
滅させる。この負の電位は前述した如くプラズマ中のイ
オンを引きつけて誘電体3に衝突させるものであり,そ
の消滅により誘電体3がスパッタされて分解し,プラズ
マ中に不純物を混入させるおそれがなくなる。従って,
プラズマ処理される試料1を汚染するおそれをなくすこ
とができる。また,第2の発明では,導電体5を試料1
に対して平行に配置することにより,試料1を載置して
いる電極1a と導電体5との距離を均一にして通常処理
時にプラズマ中を流れるバイアス印加用の高周波電流を
均一にする。これにより試料1に印加されるバイアス電
位を均一にして処理の均一性を向上できる。引き続い
て,この装置A′の動作について図2〜図4を参照しつ
つ説明する。まず,図2に示すような渦巻き状のアンテ
ナ4を用いてプラズマ発生用高周波を石英窓(誘導体
3)を通して導入し,プラズマを発生させる。アンテナ
4には大電流が流れるので外径φ6mmの銅製のパイプを
使用し,中心に冷却水を流して冷却した。アンテナ4の
外径はφ150mmで内径はφ40mmとして3回転の渦を
描くようにした。既述の如くアンテナ4の最外部は真空
容器2と同電位になるように接続されている。また,真
空容器2自体も接地電位に接続されている。プラズマ発
生用高周波は13.56MHzの周波数のものを用い,
最大1.2kWの電力を導入できるアンテナ用高周波電
源4a を用いた。試料1を載置できる電極1a は,既述
の如く真空容器2と電気的に絶縁されており,プラズマ
発生用とは別のバイアス印加用高周波が印加できるよう
にバイアス用高周波電源1b に接続されている。バイア
ス印加用高周波の周波数は100kHzを用いた。電力
は,処理を行うプロセスに応じて変化させて最大2kV
のバイアス電位を試料1に印加できる。導電体5は,図
3(a)に示すように材厚0.5mmのSUS304製の
ステンレス板に幅0.5mm長さ3cmのスリットを多数設
けて真空容器2と同電位(接地電位)に接続した。スリ
ットの方向はアンテナ4に流れる電流方向と直角方向と
するためアンテナ4の形状に依存し,アンテナ4を変形
した場合はスリットの方向を変える必要がある。例えば
放射状のアンテナを用いた場合は,図3(b)に示すよ
うなスリットの方向とする必要がある。
In the first invention, such a conductor 5 is
By installing the antenna 4 between the antenna 4 and the dielectric 3 and connecting it to the same potential (ground potential) as the vacuum container 2, the negative potential generated in the antenna 4 with respect to the plasma potential disappears. As described above, this negative potential attracts ions in the plasma and causes them to collide with the dielectric 3, and the disappearance of the dielectric 3 causes the dielectric 3 to be sputtered and decomposed, so that impurities are not mixed into the plasma. Therefore,
It is possible to eliminate the risk of contaminating the sample 1 to be plasma-treated. In the second invention, the conductor 5 is used as the sample 1
By arranging them in parallel with respect to each other, the distance between the electrode 1 a on which the sample 1 is mounted and the conductor 5 is made uniform, and the high frequency current for bias application flowing in the plasma during normal processing is made uniform. As a result, the bias potential applied to the sample 1 can be made uniform and the uniformity of processing can be improved. Subsequently, the operation of the device A'will be described with reference to FIGS. First, a high frequency for plasma generation is introduced through a quartz window (derivative 3) using a spiral antenna 4 as shown in FIG. 2 to generate plasma. Since a large current flows through the antenna 4, a copper pipe with an outer diameter of φ6 mm was used, and cooling water was passed through the center to cool it. The outer diameter of the antenna 4 is φ150 mm and the inner diameter is φ40 mm so as to draw a vortex of three revolutions. As described above, the outermost part of the antenna 4 is connected so as to have the same potential as the vacuum container 2. The vacuum container 2 itself is also connected to the ground potential. The high frequency used for plasma generation has a frequency of 13.56 MHz.
Use of a high-frequency power source 4 a antenna capable of introducing power up to 1.2 kW. The electrode 1 a on which the sample 1 can be placed is electrically insulated from the vacuum container 2 as described above, and is connected to the bias high frequency power source 1 b so that a bias high frequency different from that for plasma generation can be applied. It is connected. The frequency of the high frequency for bias application was 100 kHz. The maximum electric power is 2 kV depending on the process.
The bias potential of 1 can be applied to the sample 1. As shown in FIG. 3 (a), the conductor 5 is provided with a stainless steel plate made of SUS304 having a thickness of 0.5 mm and provided with a number of slits having a width of 0.5 mm and a length of 3 cm to have the same potential (ground potential) as the vacuum container 2. Connected Since the direction of the slit is perpendicular to the direction of the current flowing through the antenna 4, it depends on the shape of the antenna 4, and it is necessary to change the direction of the slit when the antenna 4 is deformed. For example, when a radial antenna is used, it is necessary to set the slit direction as shown in FIG.

【0010】尚,第1の発明では導電体5自体のスパッ
タ防止上,導電体5は真空容器2の外部に置く必要があ
る。これに対して第2の発明ではバイアス電流の均一化
を目的とするため導電体5は真空容器2の外部に置いて
も,真空容器2の内部においても良い。真空容器2の外
部に置いた場合は,誘電体3が介在するためバイアス印
加用の高周波電流の均一性は多少低下するものの,この
場合は第1の発明における導電体と兼用できるため別々
に設けた場合に比べて装置のコンパクト化を図ることが
できる。尚,導電体5にはプラズマ発生用の高周波電流
の一部やバイアス印加用の高周波電流が流れる為に加熱
するので,大気側に接地した場合は空冷により冷却を行
った。ここで,塩素ガス100%,1mTorr,プラ
ズマ発生用高周波(13.56MHz)電力600W,
バイアス印加用高周波(100kHZ)50W,(バイ
アス電位−150V)の条件下でポリシリコンをエッチ
ングした場合のエッチング速度の均一性についての実験
結果を以下に示す。 (1)導電体5無し;エッチング速度のばらつき7% (エッチング速度350nm/min) (2)導電体5あり;エッチング速度のばらつき5% (エッチング速度300nm/min) (導電体5は真空容器2の外部に設置) (3)導電体5あり;エッチング速度のばらつき3% (エッチング速度300nm/min) (導電体5は真空容器2の内部に設置) また,同条件でアルミニウム板をエッチングしたとこ
ろ,導電体5無しでは,酸素原子混入のためエッチング
できなかったが,導電体5を真空容器2の外部に設置す
ることによりエッチングが行えた。この時のエッチング
速度のばらつきは5%(エッチング速度400nm/min)
であった。このように導電体5を設けた場合,エッチン
グ速度のばらつきが比較的小さくなり,エッチング形状
を改善することができた。このことは,将来の試料1の
大口径化に充分対応可能であることを意味する。また,
同様の実験で導電体5無しの場合には誘電体3にアンテ
ナ4と同形状のスパッタ跡が観察されたが,導電体5を
真空容器2外部に設置した場合にはスパッタがなくなる
ことが確認できた。以上のように,本発明によればプラ
ズマ処理される試料1を汚染するおそれがなく,しかも
将来の試料1の大口径化にも対応可能なICPプラズマ
処理装置を得ることができる。尚,上記実施例では,導
電体5を誘電体3とアンテナ4との間に単に設置すると
したが,実使用に際しては図4(a),(b)に示すよ
うに誘電体3と導電体5とを貼り合せてもよい。その場
合は導電体5により誘電体3の機械的な補強を図ること
ができる。尚,上記実施例では導電体5を,接地された
真空容器2に電気的に接続したが,実使用に際しては導
電体5を直接接地しても何ら支障はない。
In the first aspect of the invention, the conductor 5 must be placed outside the vacuum container 2 in order to prevent the conductor 5 from spattering. On the other hand, in the second invention, the conductor 5 may be placed outside the vacuum container 2 or inside the vacuum container 2 for the purpose of making the bias current uniform. When placed outside the vacuum container 2, the dielectric 3 intervenes, so that the uniformity of the high-frequency current for bias application is somewhat reduced, but in this case it can be used also as the conductor in the first invention, so it is provided separately. The device can be made more compact than in the case of the above. Since the conductor 5 is heated because a part of the high frequency current for plasma generation and the high frequency current for bias application flows, it is cooled by air cooling when it is grounded to the atmosphere side. Here, chlorine gas 100%, 1 mTorr, high frequency (13.56 MHz) power 600 W for plasma generation,
The experimental results on the uniformity of the etching rate when the polysilicon is etched under the condition of bias application high frequency (100 kHz) 50 W, (bias potential −150 V) are shown below. (1) without conductor 5; variation in etching rate 7% (etching rate 350 nm / min) (2) with conductor 5; variation in etching rate 5% (etching rate 300 nm / min) (conductor 5 is vacuum container 2 (3) With conductor 5; variation in etching rate 3% (etching rate 300 nm / min) (conductor 5 is installed inside vacuum vessel 2) Also, when an aluminum plate is etched under the same conditions Although the conductor 5 was not used, etching could not be performed due to the mixing of oxygen atoms. However, by setting the conductor 5 outside the vacuum container 2, etching could be performed. Variation in etching rate at this time is 5% (etching rate 400 nm / min)
Met. When the conductor 5 is provided in this way, the variation in etching rate is relatively small, and the etching shape can be improved. This means that it is possible to sufficiently cope with the future increase in the diameter of Sample 1. Also,
In the same experiment, a sputter trace of the same shape as the antenna 4 was observed on the dielectric 3 without the conductor 5, but it was confirmed that spatter disappeared when the conductor 5 was installed outside the vacuum container 2. did it. As described above, according to the present invention, it is possible to obtain an ICP plasma processing apparatus which is free from the possibility of contaminating the sample 1 to be plasma-processed and which can cope with the future increase in the diameter of the sample 1. In the above embodiment, the conductor 5 is simply installed between the dielectric 3 and the antenna 4, but in actual use, as shown in FIGS. 5 may be bonded together. In that case, the conductor 5 can mechanically reinforce the dielectric 3. Although the conductor 5 is electrically connected to the grounded vacuum container 2 in the above embodiment, the conductor 5 may be directly grounded in actual use without any problem.

【0011】[0011]

【発明の効果】第1の発明は上記したように構成されて
いるため,アンテナ部分に発生する,プラズマ電化に対
して発生する負の電位を消滅させることができる。この
負の電位はプラズマ中のイオンを引きつけて誘電体に衝
突させるものであるから,その消滅により上記誘電体が
スパッタされて分解し,プラズマ中に不純物が混入する
おそれがなくなる。従って,プラズマ処理される試料を
汚染するおそれがなくなる。また,第2の発明は上記し
たように構成されているため,プラズマ中のイオンの加
速電位が均一となり処理の均一性が確保される。従って
将来の試料の大口径化に対応可能となる。更に,上記第
1,第2の発明における誘電体を兼用することにより別
々に設けた場合に比べて装置のコンパクト化を図ること
ができる。更に,上記誘電体の電磁波透過機能を該誘電
体にスリットを形成もしくは該誘電体の薄肉化により達
成することができるため,比較的簡単な方法で上記誘電
体を具現化できる。その結果,プラズマ処理される試料
を汚染するおそれがなく,しかも将来の試料の大口径化
にも対応可能なICPプラズマ処理装置を得ることがで
きる。
Since the first aspect of the present invention is configured as described above, it is possible to eliminate the negative potential generated in the antenna portion due to plasma electrification. Since this negative potential attracts the ions in the plasma and causes them to collide with the dielectric, the disappearance thereof causes the dielectric to be sputtered and decomposed, and there is no possibility that impurities are mixed into the plasma. Therefore, there is no possibility of contaminating the sample to be plasma-treated. Moreover, since the second invention is configured as described above, the acceleration potential of the ions in the plasma becomes uniform, and the uniformity of processing is ensured. Therefore, it becomes possible to cope with the future increase in the diameter of the sample. Furthermore, by using the dielectrics in the first and second inventions in common, the device can be made more compact than in the case where they are provided separately. Furthermore, since the electromagnetic wave transmitting function of the dielectric can be achieved by forming a slit in the dielectric or thinning the dielectric, the dielectric can be realized by a relatively simple method. As a result, it is possible to obtain an ICP plasma processing apparatus which is free from the possibility of contaminating the sample to be plasma-processed and which can cope with future increase in the diameter of the sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るICPプラズマ処理
装置A′の概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of an ICP plasma processing apparatus A ′ according to an embodiment of the present invention.

【図2】 アンテナの平面構造例を示す説明図。FIG. 2 is an explanatory diagram showing a planar structure example of an antenna.

【図3】 導電体の平面構造例を示す説明図(a),
(b)。
FIG. 3 is an explanatory diagram (a) showing an example of a planar structure of a conductor,
(B).

【図4】 導電体の取り付け状態の変形例を示す説明図
(a),(b)。
FIG. 4 is an explanatory view (a), (b) showing a modified example of a mounting state of a conductor.

【図5】 従来のICPプラズマ処理装置Aの一例にお
ける概略構成を示す模式図。
FIG. 5 is a schematic diagram showing a schematic configuration of an example of a conventional ICP plasma processing apparatus A.

【符号の説明】[Explanation of symbols]

A′…ICPプラズマ処理装置 1…試料 2…真空容器 3…誘電体 4…アンテナ 5…導電体 A '... ICP plasma processing apparatus 1 ... Sample 2 ... Vacuum container 3 ... Dielectric 4 ... Antenna 5 ... Conductor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料を収納する導電性の真空容器と,上
記真空容器の一部を構成し該容器内に電磁波を導入する
誘電体と,上記誘電体の外側に配設されて高周波電流を
流すことにより上記電磁波を発生させるアンテナとを具
備し,上記アンテナにより発生させた電磁波を上記誘電
体を介して上記真空容器内に導入することにより該容器
内に上記試料をプラズマ処理するプラズマを発生させる
ICPプラズマ処理装置において,上記アンテナと上記
誘電体との間に,電磁波の透過機能を備えた導電体を設
け,かつ該導電体を上記真空容器に電気的に接続してな
ることを特徴とするICPプラズマ処理装置。
1. A conductive vacuum container for accommodating a sample, a dielectric that constitutes a part of the vacuum container and introduces electromagnetic waves into the container, and a high-frequency current that is disposed outside the dielectric. An antenna for generating the electromagnetic wave by flowing the electromagnetic wave is provided, and the electromagnetic wave generated by the antenna is introduced into the vacuum container through the dielectric to generate plasma for plasma-processing the sample in the container. In the ICP plasma processing apparatus, a conductor having an electromagnetic wave transmitting function is provided between the antenna and the dielectric, and the conductor is electrically connected to the vacuum container. ICP plasma processing apparatus.
【請求項2】 試料を収納する導電性の真空容器と,上
記真空容器の一部を構成し該容器内に電磁波を導入する
誘電体と,上記誘電体の外側に配設されて高周波電流を
流すことにより上記電磁波を発生させるアンテナとを具
備し,上記試料に高周波バイアスをかけつつ,上記アン
テナにより発生させた電磁波を上記誘電体を介して上記
真空容器内に導入することにより該容器内に上記試料を
プラズマ処理するプラズマを発生させるICPプラズマ
処理装置において,上記アンテナと上記プラズマとの間
に,電磁波の透過機能を備えた導電体を設け,かつ該導
電体を上記真空容器に電気的に接続してなることを特徴
とするICPプラズマ処理装置。
2. A conductive vacuum container for accommodating a sample, a dielectric member that constitutes a part of the vacuum container and introduces electromagnetic waves into the container, and a high-frequency current that is disposed outside the dielectric member. An antenna for generating the electromagnetic wave by flowing the electromagnetic wave is provided, and the electromagnetic wave generated by the antenna is introduced into the vacuum container through the dielectric while applying a high frequency bias to the sample. In an ICP plasma processing apparatus for generating plasma for plasma-processing the sample, a conductor having an electromagnetic wave transmission function is provided between the antenna and the plasma, and the conductor is electrically connected to the vacuum container. An ICP plasma processing apparatus characterized by being connected.
【請求項3】 試料を収納する導電性の真空容器と,上
記真空容器の一部を構成し該容器内に電磁波を導入する
誘電体と,上記誘電体の外側に配設されて高周波電流を
流すことにより上記電磁波を発生させるアンテナとを具
備し,上記試料に高周波バイアスをかけつつ,上記アン
テナにより発生させた電磁波を上記誘電体を介して上記
真空容器内に導入することにより該容器内に上記試料を
プラズマ処理するプラズマを発生させるICPプラズマ
処理装置において,上記アンテナと上記誘電体との間
に,電磁波の透過機能を備えた第1の導電体を設けると
共に,上記アンテナと上記プラズマとの間に電磁波の透
過機能を備えた第2の導電体を設け,かつ該第1,第2
の導電体を上記真空容器に電気的に接続してなることを
特徴とするICPプラズマ処理装置。
3. A conductive vacuum container for accommodating a sample, a dielectric member which constitutes a part of the vacuum container and introduces electromagnetic waves into the container, and a high-frequency current which is disposed outside the dielectric member. An antenna for generating the electromagnetic wave by flowing the electromagnetic wave is provided, and the electromagnetic wave generated by the antenna is introduced into the vacuum container through the dielectric while applying a high frequency bias to the sample. In an ICP plasma processing apparatus for generating plasma for plasma-processing the sample, a first conductor having an electromagnetic wave transmitting function is provided between the antenna and the dielectric, and the antenna and the plasma are connected to each other. A second conductor having a function of transmitting electromagnetic waves is provided between the first and second conductors.
An ICP plasma processing apparatus, characterized in that the conductor of (1) is electrically connected to the vacuum container.
【請求項4】 上記第1の導電体が上記第2の導電体を
兼ねる請求項3記載のICPプラズマ処理装置。
4. The ICP plasma processing apparatus according to claim 3, wherein the first conductor also serves as the second conductor.
【請求項5】 上記導電体の電磁波透過機能が,上記ア
ンテナ中を流れる高周波電流と直角方向のスリットを上
記導電体に適宜数形成することによって達成される請求
項1,2,3又は4記載のICPプラズマ処理装置。
5. The electromagnetic wave transmitting function of the conductor is achieved by forming an appropriate number of slits in the conductor in a direction perpendicular to a high frequency current flowing in the antenna. ICP plasma processing device.
【請求項6】 上記導電体の電磁波透過機能が,上記導
電体を薄肉化することによって達成される請求項1,
2,3又は4記載のIPCプラズマ処理装置。
6. The electromagnetic wave transmission function of the conductor is achieved by thinning the conductor.
The IPC plasma processing apparatus according to 2, 3, or 4.
JP5020064A 1993-02-08 1993-02-08 Icp plasma processing device Pending JPH06232081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020064A JPH06232081A (en) 1993-02-08 1993-02-08 Icp plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020064A JPH06232081A (en) 1993-02-08 1993-02-08 Icp plasma processing device

Publications (1)

Publication Number Publication Date
JPH06232081A true JPH06232081A (en) 1994-08-19

Family

ID=12016667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020064A Pending JPH06232081A (en) 1993-02-08 1993-02-08 Icp plasma processing device

Country Status (1)

Country Link
JP (1) JPH06232081A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025834A1 (en) * 1995-02-17 1996-08-22 Hitachi, Ltd. Plasma processing apparatus
US5735993A (en) * 1995-09-28 1998-04-07 Nec Corporation Plasma processing apparatus for dry etching of semiconductor wafers
US5846331A (en) * 1996-04-25 1998-12-08 Nec Corporation Plasma processing apparatus
JP2000511701A (en) * 1996-06-05 2000-09-05 ラム リサーチ コーポレイション Plasma processing chamber temperature control method and apparatus
JP2002500413A (en) * 1997-12-31 2002-01-08 ラム リサーチ コーポレーション Plasma apparatus including non-magnetic metal member supplied with power between plasma AC excitation source and plasma
KR100363820B1 (en) * 1998-06-19 2002-12-06 도쿄 엘렉트론 가부시키가이샤 Plasma processor
JP2006185921A (en) * 2004-12-24 2006-07-13 Samsung Electronics Co Ltd Plasma device
JP2008109155A (en) * 2007-12-19 2008-05-08 Applied Materials Inc Plasma apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025834A1 (en) * 1995-02-17 1996-08-22 Hitachi, Ltd. Plasma processing apparatus
US5735993A (en) * 1995-09-28 1998-04-07 Nec Corporation Plasma processing apparatus for dry etching of semiconductor wafers
CN1078742C (en) * 1995-09-28 2002-01-30 日本电气株式会社 Plasma processing apparatus for dry etching of semiconductor wafers
US5846331A (en) * 1996-04-25 1998-12-08 Nec Corporation Plasma processing apparatus
JP2000511701A (en) * 1996-06-05 2000-09-05 ラム リサーチ コーポレイション Plasma processing chamber temperature control method and apparatus
JP2002500413A (en) * 1997-12-31 2002-01-08 ラム リサーチ コーポレーション Plasma apparatus including non-magnetic metal member supplied with power between plasma AC excitation source and plasma
KR100363820B1 (en) * 1998-06-19 2002-12-06 도쿄 엘렉트론 가부시키가이샤 Plasma processor
JP2006185921A (en) * 2004-12-24 2006-07-13 Samsung Electronics Co Ltd Plasma device
JP4587951B2 (en) * 2004-12-24 2010-11-24 三星電子株式会社 Plasma device
JP2008109155A (en) * 2007-12-19 2008-05-08 Applied Materials Inc Plasma apparatus

Similar Documents

Publication Publication Date Title
US6265031B1 (en) Method for plasma processing by shaping an induced electric field
KR100289239B1 (en) Method and apparatus for plasma processing
JP3114873B2 (en) Plasma processing apparatus and method of vapor deposition or etching
JP3174981B2 (en) Helicon wave plasma processing equipment
US6172321B1 (en) Method and apparatus for plasma processing apparatus
JP2006324551A (en) Plasma generator and plasma processing apparatus
JPH11135438A (en) Semiconductor plasma processing apparatus
TW201309106A (en) Plasma processing device
JPH06342771A (en) Dry etching apparatus
JP7001456B2 (en) Plasma processing equipment
JP5522887B2 (en) Plasma processing equipment
JP3199957B2 (en) Microwave plasma processing method
JP3881307B2 (en) Plasma processing equipment
JP2928577B2 (en) Plasma processing method and apparatus
JP3148177B2 (en) Plasma processing equipment
JPH06232081A (en) Icp plasma processing device
JPH10134995A (en) Plasma processing device and processing method for plasma
JP2581386B2 (en) High frequency magnetic field excitation processing equipment
JP3077009B2 (en) Plasma processing equipment
JP2005079416A (en) Plasma processing device
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JP2003077904A (en) Apparatus and method for plasma processing
JP3736016B2 (en) Plasma processing method and apparatus
JP2004140391A (en) Plasma processing apparatus and method
JP3192352B2 (en) Plasma processing equipment