EP1066510A1 - Procede de reconnaissance automatique de defauts lors de la recherche de fissures selon le procede d'examen par penetration de colorants - Google Patents

Procede de reconnaissance automatique de defauts lors de la recherche de fissures selon le procede d'examen par penetration de colorants

Info

Publication number
EP1066510A1
EP1066510A1 EP00906158A EP00906158A EP1066510A1 EP 1066510 A1 EP1066510 A1 EP 1066510A1 EP 00906158 A EP00906158 A EP 00906158A EP 00906158 A EP00906158 A EP 00906158A EP 1066510 A1 EP1066510 A1 EP 1066510A1
Authority
EP
European Patent Office
Prior art keywords
recordings
signals
test
workpiece
image recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00906158A
Other languages
German (de)
English (en)
Inventor
Klaus Abend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiede GmbH and Co Risprufanlagen
Original Assignee
Tiede GmbH and Co Risprufanlagen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiede GmbH and Co Risprufanlagen filed Critical Tiede GmbH and Co Risprufanlagen
Publication of EP1066510A1 publication Critical patent/EP1066510A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/91Investigating the presence of flaws or contamination using penetration of dyes, e.g. fluorescent ink
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Definitions

  • the invention relates to a method for automatic error detection in crack testing by the dye penetration method, wherein workpieces for dye penetration testing are treated with dye-containing penetrant with an accumulation of the dyes on surface defects and after a predetermined development period are recorded by means of at least one image recording device and the images are scanned and recognized in an image processing unit from areas with dye enrichment errors are evaluated and corresponding signals are output.
  • test specimens with predetermined test errors can determine whether these were still correctly recognized - however, this method could only determine that the test specimen was not recognized, but not why not. Since no documentation was created, it was also not understandable when the system no longer worked satisfactorily and why.
  • the measurements are carried out with penetrating agent that creeps into depressions and other surface changes such as defects, cavities, pores, depressions due to surface tension phenomena. Creeps - changes in the penetrant over time, such as occur over time due to changes in concentration due to evaporation of the solvent of the penetrant, mixing with components of the workpiece (residual fat content, contamination, etc.), so far a measurement has been carried out within a relatively short period of time the treatment of the workpiece with Penetherstoff / developer - then the error indications change - this is called "blooming" of the error. This means that the sharp accumulation of the penetrant dye on / in the error subsides and the dye migrates out of the error again and so the contrast is getting worse.
  • the error evaluation according to the color powder method is therefore subject to dynamic changes that strongly influence the measurement result. These changes in the error display over time could not be taken into account, even due to the high self-checking properties of the known systems. Due to the dynamics of the error display, errors often occurred because the time between the application of penetrant / developer and the taking of the test object was not exactly observed by an image processing unit. According to the prior art, incorrect evaluations frequently occurred due to the dynamic behavior of the error displays, since some errors were overrated and others were not recognized due to rapid "blooming".
  • the method according to the invention has the advantage that the human errors which unavoidably occur when looking at images that are always similar over a longer period of time can be avoided since cameras cannot show any signs of fatigue.
  • a recording device produces recordings at a predetermined time interval.
  • target data ⁇ A1, A2 As well as data on the time difference ⁇ tn, tn + 1 between the respective periods of time that elapsed between the recordings in the evaluation logic and have the evaluation logic compare whether the measured difference values lie within the specified target values. This makes it possible to select only errors that are displayed within a certain time interval. If no fixed time interval between two measurements is set, this can be replaced by measuring the time difference tn, tn + 1 between two recordings An, An + 1 of the recording device and assigning this time period ⁇ tn, tn-1 to the determined change in contrast during this time . This becomes necessary, for example, if parts cannot be guided past the receiving devices at predetermined times.
  • monitoring units it is advisable to monitor system components in predetermined periods by monitoring units and to have monitoring signals emitted which are checked by the measured value processing unit and signals are correspondingly emitted.
  • These monitoring signals can be used to control the system, for example readjustment units.
  • the monitoring signals and / or the signals of the measured value processing unit be recorded on a medium.
  • the lighting intensity and / or the sensor sensitivity of the lighting monitoring sensors and / or the test agent concentration and amount and / or the cleaning agent concentration and amount and / or the cleaning agent and / or the mordant concentration and amount and / or settings of the image recording unit / s can be determined via the monitoring signals how the geometric arrangement of the focus or the sensitivity can be adjusted.
  • test pieces with reference errors can be automatically passed through and the functionality of the entire system can be checked by measuring them.
  • Fig. 1 is a block diagram of a dye penetration test method
  • Figure 2 is a schematic representation of a crack testing system according to a first embodiment of the invention.
  • Fig. 3 is a schematic representation of a crack testing system according to a further embodiment of the invention with several receiving devices.
  • a - usually non-ferritic - test part is pre-cleaned, if necessary pickled and dried, and then treated with the test agent - also referred to as a dye penetrant - in the crack test method using the dye penetration method.
  • the excess dye penetrant is removed after a certain period of time, the workpiece is cleaned and then treated with a developer solution. After the development time, the workpiece may be dried and inspected at different times, and then, based on the different recordings at different times, a statement is made about the defectiveness of the workpiece, which may also be documented.
  • a developed workpiece 10 is guided as a test specimen into a test station, in which the application of the color penetrant from a color penetrant tank 12 is represented schematically by spray nozzles - the test specimen actually passes through several stations, in which it is provided with cleaning and pickling solutions as well as developer solutions and color solutions, which are not shown here.
  • a test means checking and replenishing system 17 is provided in line, preferably one according to DE-A-4438510.2.
  • test equipment is checked for functionality and if necessary dye or the like can be replenished into the tank 12 if this is necessary.
  • the test specimen is irradiated by means of a UV lamp 11, which in turn is monitored in a manner known per se and the current of which can be readjusted accordingly.
  • test liquid 13a which serves to mark the surface defects, is fed via a supply line by means of spray heads 13 to a spraying system and atomized over the surface of the workpiece 10.
  • the test liquid is now distributed on the workpiece, whereby the dye particles - as is generally known as a physical phenomenon - concentrate on cracks due to the surface tension. An increased particle concentration is then found at these points.
  • the unnecessary test liquid is removed, for example by wiping.
  • the test specimen is then processed with a developer liquid.
  • the surface of the workpiece 10 is then irradiated by a lamp 11, thereby causing the test liquid particles to fluoresce or to absorb and which are located in the area of the surface cracks
  • Enriching dye particles are recorded by a camera 16 and this recording is stored in the image processing system 22.
  • a time interval of approximately 20-150 seconds a second picture is taken, which is also stored in the image processing system 22.
  • These two recordings are then compared with one another by an evaluation logic of the image processing unit and the time interval is assigned to the comparison value. Possibly. other recordings can also be recorded and processed at other times.
  • the calculated comparison values are then compared in the evaluation logic with a stored target value table and it is determined in this way whether the image change values are within a predetermined range or above a predetermined threshold value.
  • an error display can then be output by the evaluation logic, which can lead to the classification or also to the rejection of the measured part.
  • the functional reliability of the system preferably includes a self-checking device for checking or self-checking the associated working parameters, ie compliance with the respective operating parameters within the prescribed value interval. Such a self-inspection system can readjust within certain limits if the inspection values are outside a desired measurement range - this can result in unnecessary waste of material, such as that caused by premature replacement of the marking agent or by routine routine replacement of the lighting, such as a UV lamp or the like.
  • the self-checking device 14 is preferably connected to a documentation device 30, in which it creates test reports by means of which the functionality of the system can be verified.
  • FIG. 3 A further embodiment of a plant for carrying out a method according to the invention is shown schematically in FIG. 3.
  • Measuring unit groups 16, 16 ', 16 can output their images, which are fed to the respective input of an image processing unit 22.
  • at least two images of each workpiece 10 are taken at different times and the differences between the two images are determined, for example by forming a difference,
  • These differences can NEN, for example, can be fed into a display device 20 but also into a downstream sorting device, which automatically separates out parts classified as bad.
  • the data flow based on brightness values can advantageously also be recorded by a diode cell or other suitable means, as are known to the person skilled in the art.
  • the documentation on remote data transmission can also be created and stored remotely from the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

L'invention concerne un procédé de reconnaissance automatique de défauts lors de la recherche de fissures selon le procédé d'examen par pénétration de colorants. Les pièces destinées à subir l'examen par pénétration de colorants sont traitées avec des agents de pénétration contenant des colorants, les colorants étant concentrés sur les défauts superficiels et après une durée de développement prédéterminée des prises de vue sont effectuées au moyen d'une unité de prise de vues et les images obtenues sont évaluées dans une unité de traitement d'images par balayage et reconnaissance de zones présentant des défauts de concentration de colorants, des signaux correspondants étant alors émis. Ce procédé comprend les étapes suivantes: prise de vues de la même pièce (10) à au moins deux moments t1, t2 après le traitement avec l'agent de pénétration et éventuellement développement avec conservation d'au moins deux vues A1, A2; comparaison des vues A1, A2 réalisées à ces deux moments t1, t2 et évaluation de la comparaison par la logique d'évaluation de l'unité de traitement d'images (22); émission de signaux par la logique d'évaluation conformément aux zones des vues présentant des modifications de la concentration d'agents de pénétration pendant la période DELTA t1, t2, dépassant une valeur seuil de modification pour une différence de temps de référence; et évaluation des paramètres mesurés relatifs à la pièce pour l'établissement de grandeurs d'évaluation de la formation de fissures, permettant, par exemple, d'obtenir une information bon/mauvais, ou d'évaluer l'importance du défaut selon un intervalle de grandeur prédéterminé ou bien dans une zone superficielle prédéterminée.
EP00906158A 1999-01-22 2000-01-21 Procede de reconnaissance automatique de defauts lors de la recherche de fissures selon le procede d'examen par penetration de colorants Withdrawn EP1066510A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19902525 1999-01-22
DE19902525A DE19902525C2 (de) 1999-01-22 1999-01-22 Verfahren zur automatischen Fehlererkennung bei der Rißprüfung nach dem Farbeindringverfahren
PCT/DE2000/000183 WO2000043758A1 (fr) 1999-01-22 2000-01-21 Procede de reconnaissance automatique de defauts lors de la recherche de fissures selon le procede d'examen par penetration de colorants

Publications (1)

Publication Number Publication Date
EP1066510A1 true EP1066510A1 (fr) 2001-01-10

Family

ID=7895111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00906158A Withdrawn EP1066510A1 (fr) 1999-01-22 2000-01-21 Procede de reconnaissance automatique de defauts lors de la recherche de fissures selon le procede d'examen par penetration de colorants

Country Status (5)

Country Link
EP (1) EP1066510A1 (fr)
KR (1) KR20010092248A (fr)
CN (1) CN1187603C (fr)
DE (1) DE19902525C2 (fr)
WO (1) WO2000043758A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150566B4 (de) * 2001-10-15 2004-08-12 Mr-Chemie Gmbh Verfahren zum Prüfen von Kunststoffen
DE10353042B4 (de) * 2003-11-13 2006-05-18 Siemens Ag Verfahren zur Verifizierung von Haarrissen in einer Lötstelle, die ein Bauteil mit einer Leiterplatte verbindet
DE10357924B3 (de) * 2003-12-11 2005-07-21 Daimlerchrysler Ag Verfahren zur Rissprüfung eines Formwerkzeuges
DE102007024059B4 (de) 2007-05-22 2017-11-09 Illinois Tool Works Inc. Vorrichtung und Verfahren zur Beurteilung eines Kontrollkörpers bei einem Farb-Eindring-Verfahren
DE102007032439A1 (de) * 2007-07-10 2009-01-22 Volker Dr.-Ing. Grießbach Verfahren zur Bestimmung von Eigenschaften dreidimensionaler Objekte
DE102012200767B4 (de) * 2012-01-19 2014-11-13 MTU Aero Engines AG Verfahren zur zerstörungsfreien Prüfung von Werkstückoberflächen
CN102914548A (zh) * 2012-08-27 2013-02-06 沈阳黎明航空发动机(集团)有限责任公司 一种壳体肋板无损检查线形显示缺陷改进方法
DE102013110742B4 (de) * 2013-09-27 2019-06-27 Cavonic GmbH Prüfverfahren und Prüfvorrichtung für Barriereschicht
CN104237255A (zh) * 2014-09-22 2014-12-24 合肥鑫晟光电科技有限公司 玻璃基板的检测方法
CN104475352A (zh) * 2014-12-12 2015-04-01 湖南省新化县长江电子有限责任公司 一种分检烧结后不合格陶瓷产品的方法
CN105021524A (zh) * 2015-08-04 2015-11-04 大族激光科技产业集团股份有限公司 一种机床的花岗岩基础件表面的裂纹检测方法
CN106556494A (zh) * 2015-09-30 2017-04-05 鸿富锦精密工业(武汉)有限公司 漏水检测系统及漏水检测方法
CN107918691B (zh) * 2016-10-07 2023-09-29 福特全球技术公司 用于评估信号的方法和装置
DE102019130701B3 (de) * 2019-11-14 2021-04-01 Lufthansa Technik Aktiengesellschaft Verfahren zur Sichtbarmachung von beschädigten Bereichen der Oberflächenmikrostruktur einer mikrostrukturierten Oberfläche
CN112378925A (zh) * 2020-09-24 2021-02-19 宁波市鄞州世纪耀达市政建设有限公司 一种基于cctv的管道检测方法
CN112881424A (zh) * 2021-01-13 2021-06-01 广东省特种设备检测研究院珠海检测院 Ai+荧光渗透小型管件表面缺陷检测及质量分级方法与系统
CN115950892B (zh) * 2023-03-14 2023-05-26 江阴市华昌不锈钢管有限公司 基于图像识别不锈钢管外表面微裂纹自动化喷淋检测装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762216A (en) * 1971-02-23 1973-10-02 E Mendoza Automated liquid penetrant inspection system
DE3440473A1 (de) * 1984-11-06 1986-05-07 Karl Deutsch Prüf- und Meßgerätebau GmbH + Co KG, 5600 Wuppertal Verfahren und vorrichtung zur feststellung von rissen auf der oberflaeche von werkstuecken
DE3731947A1 (de) * 1987-09-23 1989-04-13 Kurt Dr Sauerwein Verfahren und vorrichtung zum feststellen und auswerten von oberflaechenrissen bei werkstuecken
DE3907732A1 (de) * 1989-03-10 1990-09-13 Isotopenforschung Dr Sauerwein Verfahren zum ueberwachen einer vorrichtung zum automatischen feststellen und auswerten von oberflaechenrissen
DE9416218U1 (de) * 1994-10-09 1995-02-16 Tiede GmbH + Co Rissprüfanlagen, 73457 Essingen Rißprüfanlage mit Selbstüberprüfung
DE19527446A1 (de) * 1995-04-28 1996-10-31 Karl Deutsch Pruef Und Mesgera Verfahren und Vorrichtung zur optischen Oberflächenprüfung von Werkstücken
DE19639020A1 (de) * 1996-09-23 1998-04-02 Tiede Gmbh & Co Risspruefanlagen Rißprüfanlage mit Selbstüberprüfung
DE19645377C2 (de) * 1996-11-04 1998-11-12 Tiede Gmbh & Co Risspruefanlagen Rißprüfanlage für Werkstücke nach dem Farbeindringverfahren und Verfahren zur automatischen Rißerkennung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0043758A1 *

Also Published As

Publication number Publication date
DE19902525A1 (de) 2000-08-17
CN1187603C (zh) 2005-02-02
KR20010092248A (ko) 2001-10-24
DE19902525C2 (de) 2001-03-22
WO2000043758A1 (fr) 2000-07-27
CN1293758A (zh) 2001-05-02

Similar Documents

Publication Publication Date Title
DE19902525C2 (de) Verfahren zur automatischen Fehlererkennung bei der Rißprüfung nach dem Farbeindringverfahren
DE102014212246B3 (de) Verfahren und Vorrichtung zur Qualitätssicherung
DE102014208768B4 (de) Verfahren und Vorrichtung zur Qualitätssicherung
DE2602001A1 (de) Pruefverfahren zum getrennten erfassen von unterschiedlichen werkstueckoberflaechenfehlern und anordnung zur durchfuehrung des verfahrens
DE3907732A1 (de) Verfahren zum ueberwachen einer vorrichtung zum automatischen feststellen und auswerten von oberflaechenrissen
DE19645377C2 (de) Rißprüfanlage für Werkstücke nach dem Farbeindringverfahren und Verfahren zur automatischen Rißerkennung
DE102017102338A1 (de) Verfahren und Vorrichtung zum Auffinden oder Untersuchen von Oberflächendefekten in einer mehrschichtigen Oberfläche
DE2209146A1 (de) Verfahren zur pruefung ferromagnetischer koerper wie halbzeug und massenteile nach dem magnetpulververfahren
EP0788599B1 (fr) Installation de detection automatique de defauts dans le controle des fissures
DE29902218U1 (de) Rißprüfanlage, insbesondere nach dem Farbeindringverfahren oder magnetischen Verfahren
DE4438510A1 (de) Anlage zur Überprüfung einer Suspension fluoreszenzfähigen Materials
EP1457286A3 (fr) Procédé, dispositif de surveillance et leur utilisation et dispositif d'usinage laser avec surveillance de défaut d'un composant optique
EP0831321A2 (fr) Appareil de détection de fissures avec autocontrÔle
DE2241143A1 (de) Maschinenabnutzungs-analysator
DE3602395C2 (de) Verfahren zur Selbstkontrolle einer optoelektronischen Rißerkennungsvorrichtung
EP1775032B1 (fr) Dispositif de nettoyage de surfaces
DE69503535T2 (de) Verfahren und Vorrichtung zur Prüfung von wabenartigen Strukturen mit Hilfe von optischen Fasern
DE10039725B4 (de) Verfahren und Vorrichtung zur automatischen Prüfmittel-Kontrolle bei der Magnetpulver-Rißprüfung
DE102016012371A1 (de) Verfahren und Anlage zum Ermitteln der Defektfläche mindestens einer Fehlstelle auf mindestens einer Funktionsoberfläche eines Bauteils oder Prüfkörpers
DE3236416A1 (de) Verfahren zur qualitaetsbeurteilung von stahloberflaechen
DE60117645T2 (de) Verfahren und Vorrichtung zur Vorprüfung eines elektrophotographischen photosensitiven Elements
DE3938471A1 (de) Verfahren zur optischen oberflaechenkontrolle
WO1996013718A1 (fr) Appareil pour le controle d'une suspension d'un materiau susceptible de fluorescence
EP3037804A1 (fr) Procédé de détection quantitative et qualitative de particules dans un liquide
DE10203595A1 (de) Erkennung von Fehlstellen in transparenten Stücken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20001229

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050317