EP1063626B1 - Procédé pour la régulation de la distance entre véhicules - Google Patents

Procédé pour la régulation de la distance entre véhicules Download PDF

Info

Publication number
EP1063626B1
EP1063626B1 EP00305297A EP00305297A EP1063626B1 EP 1063626 B1 EP1063626 B1 EP 1063626B1 EP 00305297 A EP00305297 A EP 00305297A EP 00305297 A EP00305297 A EP 00305297A EP 1063626 B1 EP1063626 B1 EP 1063626B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
interval
spacing
value
time gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00305297A
Other languages
German (de)
English (en)
Other versions
EP1063626A1 (fr
Inventor
Tetsuya Asada
Kenichi Egawa
Akira Higashimata
Satoshi Tange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of EP1063626A1 publication Critical patent/EP1063626A1/fr
Application granted granted Critical
Publication of EP1063626B1 publication Critical patent/EP1063626B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance

Definitions

  • the present invention pertains to technique for controlling a headway vehicle spacing (or vehicle-to-vehicle distance) to a preceding vehicle to a desired vehicle spacing.
  • Japanese Patent Kokai Publication H11(1999)-42957 published on February 16, 1999, discloses a system for sensing a vehicle spacing to a preceding vehicle with a laser radar, and controlling the engine output and transmission ratio so as to reduce a deviation of a vehicle-to-vehicle time gap, calculated from the sensed vehicle spacing and vehicle speed, from a desired time gap preset with a selector switch.
  • the desired time gap is changed with the selector switch, and a step change in the desired time gap can cause unwanted and uncomfortable acceleration or deceleration of the vehicle.
  • FR-A- 2 761 174 discloses vehicle spacing control apparatus and a vehicle spacing control process according to the preambles of claims 1 and 13.
  • the present invention provides vehicle spacing control apparatus as set forth in claim 1 and a vehicle spacing control process as set forth in claim 13.
  • the vehicle spacing control apparatus comprises:
  • the vehicle spacing control apparatus comprises: a vehicle interval sensor, such as a vehicle spacing sensor, for measuring a spatial or temporal interval from a controlled vehicle to a preceding vehicle ahead; a selector, such as a selector switch, changing a selected vehicle-to-vehicle interval among a plurality of discrete values; and a controller determining a desired vehicle-to-vehicle interval so that the desired vehicle-to-vehicle interval varies at a predetermined rate when the selected interval is changed, and controlling a longitudinal force of a controlled vehicle so as to bring the actual vehicle-to-vehicle interval closer to the desired vehicle-to-vehicle interval.
  • a vehicle interval sensor such as a vehicle spacing sensor
  • a selector such as a selector switch
  • the vehicle spacing control process comprises: ascertaining a sensed actual vehicle-to-vehicle interval from a controlled vehicle to a preceding vehicle; ascertaining a selected vehicle-to-vehicle interval selected among a plurality of discrete values; determining a desired vehicle-to-vehicle interval so that the desired vehicle-to-vehicle interval varies at a predetermined rate when the selected interval is changed; and controlling a longitudinal force of a controlled vehicle so as to bring the actual vehicle-to-vehicle interval closer to the desired vehicle-to-vehicle interval.
  • Fig. 1 shows a vehicle spacing control system according to a first embodiment of the present invention.
  • a vehicle equipped with this control system is referred to as a controlled vehicle hereinafter.
  • a vehicle spacing sensor 1 is a device for sensing a vehicle spacing (or vehicle-to-vehicle distance or separation) L [m] between the controlled vehicle (or subject vehicle) and a preceding vehicle ahead.
  • the vehicle spacing sensor 1 measures the vehicle spacing L by scanning a laser beam left and right ahead and receiving a beam reflected from a preceding vehicle ahead.
  • radio frequency waves and ultrasonic waves are adequate for use in the system for distance measurement.
  • a vehicle speed sensor 2 is arranged to sense the rotation of the output shaft of a transmission and to produce a vehicle speed signal in the form of a pulse signal having a period corresponding to the rational speed of the output shaft.
  • a vehicle speed (running speed or velocity) V of the controlled vehicle is determined by measuring the period or the number of pulses of the vehicle speed pulse signal.
  • a throttle sensor 3 senses a throttle opening ⁇ which is an opening degree of a throttle valve for an engine of the controlled vehicle.
  • a brake pressure sensor 4 senses a brake fluid pressure P of a brake system of the controlled vehicle.
  • a vehicle interval select switch of this example is a time gap select switch 5.
  • the time gap select switch 5 is a switch for varying a preset (selected) vehicle-to-vehicle time gap To stepwise. By each pressing operation, the selected time gap To is changed in a cyclic order of FAR (2.4 s) ⁇ MEDIUM (2.0 s) ⁇ NEAR (1.8 s) ⁇ FAR (2.4 s).
  • a desired vehicle spacing L* is determined in accordance with the time gap To preset with the select switch 5 and the vehicle speed V. Accordingly, the values of the time gap To are denoted as FAR , MEDIUM, and NEAR to facilitate intuitive recognition in association with the desired vehicle spacing L*.
  • a main switch 6 is a switch for supplying power to a controller 11 and other components of the vehicle spacing control system, to set the system in a standby state ready for vehicle spacing control and vehicle speed control.
  • a set/coast switch 7 is a switch to start the vehicle spacing control and the vehicle speed control, and to set and increase a desired vehicle speed V*.
  • a resume/accelerate switch 8 is a switch to resume the spacing control and speed control and to decrease the desired vehicle speed V*.
  • a cancel switch 9 is a switch to cancel the spacing control and speed control.
  • a brake switch 10 is a switch for sensing depression of a brake pedal. When the brake pedal is depressed, the brake switch 10 produces a signal to cancel the spacing control and speed control, like the cancel switch 9.
  • the controller 11 has therein a CPU 11a, a memory 11b, and other peripherals, and performs the vehicle spacing control and the vehicle speed control by controlling a throttle actuator 13, a brake actuator 14, and a transmission actuator 15.
  • the throttle actuator 13 of this example has a vacuum pump, a vent valve, and a safety valve, and regulates the throttle opening ⁇ of the throttle valve by driving the pump motor and valve solenoid to control engine torque or driving force of the controlled vehicle.
  • the brake actuator 14 of this example has a negative pressure type booster, and controls the braking force of the controlled vehicle by regulating the brake fluid pressure P in a brake system of the controlled vehicle.
  • the transmission actuator 15 varies the speed ratio (or gear ratio) r of the transmission of the controlled vehicle.
  • the transmission may be a step transmission having a predetermined number of speeds, or a continuously variable transmission.
  • Fig. 2 is a control block diagram showing the vehicle spacing control and the vehicle speed control according to the first embodiment of the present invention.
  • the CPU 11a of the controller 11 forms, in the form of software, a desired vehicle spacing generating section 21, a vehicle spacing control section 22, a vehicle speed control section 23, a throttle control section 24, a brake control section 25, and a transmission control section 26.
  • the desired vehicle spacing generating section 21 receives the selected time gap To preset with the time gap select switch 5 and the actual vehicle speed V sensed by the vehicle speed sensor 2, and determines the desired vehicle spacing L* in accordance with To and V.
  • the time gap select switch 5 of this example is a three step control switch having only three discrete predetermined values ⁇ FAR (2.2 s), MEDIUM (1.8 s), NEAR (1.4 s) ⁇ . Therefore, the desired spacing L* converted from To in accordance with V is changed stepwise in stages, and changes like step changes in the desired spacing L* would cause unwanted acceleration or deceleration and deteriorate riding comfort when the time gap To is changed. To avoid this, the desired vehicle spacing generating section 21 in the control system according to this embodiment varies the desired vehicle spacing L* gently or gradually at a predetermined rate with respect to stepwise changes in the time gap To.
  • Fig. 3 shows a desired time gap T* varied in response to stepwise changes in the selected time gap To, as an example.
  • the preset time gap To is changed at an instant t1 from the FAR level to the MEDIUM level, at an instant t2 from the MEDIUM level to the NEAR level, at an instant t3 from the NEAR level to the FAR level, and at an instant t4 from the FAR level to the NEAR level.
  • the desired time gap T* follows the thus-changed selected time gap To at a gentle rate.
  • the time rate of change of the desired time gap T* is set equal to 0.6 sec/sec both in the increasing direction (to make longer the time gap To) and in the decreasing direction (to make shorter the time gap To).
  • the desired vehicle spacing generating section 21 determines the desired time gap T* varying gently with respect to the time gap To changing in the form of a step change, and convert the desired time gap T*, varying with time, into the desired vehicle spacing L* corresponding to the vehicle speed V.
  • Fig. 4 shows the desired vehicle spacing L* with respect to the desired time gap T* and the vehicle speed V.
  • the desired vehicle spacing generating section 21 determines a value of the desired vehicle spacing L*, corresponding to the desired time gap T* and the vehicle speed V, by table lookup from a preset desired vehicle spacing map as shown in Fig. 4.
  • the desired vehicle spacing L* is determined from the vehicle speed V and the desired time gap T* by the following equation. [Eq.
  • the desired vehicle spacing map is so designed that the desired vehicle spacing L* is held at a predetermined level even when the vehicle speed V is equal to or close to zero.
  • the vehicle spacing control section 22 calculates a desired vehicle speed V* to bring the actual vehicle spacing L,sensed by the spacing sensor 1, closer to the desired vehicle spacing L*.
  • the vehicle speed control section 23 calculates a desired throttle opening ⁇ *, a desired brake fluid pressure P*, and a desired speed ratio r* to bring the actual vehicle speed V, sensed by the vehicle speed sensor 2, closer to the desired vehicle speed V*.
  • the throttle control section 24 controls the throttle actuator 13 to bring the actual throttle opening ⁇ , sensed by the throttle sensor 3, closer to the desired throttle opening ⁇ *.
  • the brake control section 25 controls the brake actuator 14 to bring the actual brake pressure P, sensed by the brake pressure sensor 4, closer to the desired brake pressure P*.
  • the transmission control section 26 controls the transmission actuator 15 to set the actual speed ratio (or gear ratio) r of the transmission, equal to the desired speed ratio r*.
  • this control system determines a value of the desired time gap T* so as to follow at the predetermined speed, further determines a value of the desired vehicle spacing L* corresponding to the value of the desired time gap T* and a current value of the sensed actual vehicle speed V, and controls the driving force and braking force of the controlled vehicle so as to bring the sensed actual vehicle spacing L closer to the desired vehicle spacing L*. Therefore, this control system can prevent an abrupt change in the vehicle speed from being caused by a switching operation of the time gap To, and improve the ride.
  • Fig. 5 shows a variation of the first embodiment.
  • the time rate of change of the desired time gap T* is set equal to a single common value of 0.6 s/s both in the increasing direction and the decreasing direction.
  • the time rate of change of the desired time gap T* is set equal to a first value in the decreasing direction (in the case of decreasing the time gap To) and set equal to a second value smaller than the first value in the increasing direction (in the case of increasing the time gap To).
  • Fig. 5 shows the desired time gap T* varying in response to changes in the selected time gap To.
  • the selected time gap To is changed at an instant t11 from FAR to MEDIUM, at an instant t12 from MEDIUM to NEAR, at an instant t13 from NEAR to FAR, and at an instant t14 from FAR to NEAR.
  • the desired time gap T* follows the thus-changed selected time gap To at a gentle rate.
  • the time rate of change of the desired time gap T* is set equal to a greater value in the decreasing direction (when the time gap To and hence the vehicle spacing are to be decreased) so as to cause the controlled vehicle to rapidly approach a preceding vehicle, and to a smaller value in the increasing direction (when the time gap To and hence the vehicle spacing are to be increased) so as to increase the vehicle spacing gradually.
  • the use of the greater value for the time rate of change of the desired time gap T* causes the acceleration to become greater in the case of a switching operation to change To.
  • the vehicle speed control section 23 limits the acceleration to a predetermined maximum acceleration amax which, in this example, is equal to 0.06 G.
  • the acceleration is held equal to or lower than 0.06 G.
  • the control operation to decrease the time gap and the vehicle spacing with a greater acceleration increased to a non-excessive extent is agreeable and conformable to driver's intention and expectation.
  • this control system acts to decelerate the vehicle gradually and increase the vehicle spacing gradually.
  • Fig. 6 shows another variation of the first embodiment.
  • the time rate of change of the desired time gap T* may be further increased in the middle of a transition.
  • Fig. 6 shows the desired time gap T* varying in response to a change in the selected time gap To.
  • the time gap To is switched at once from FAR to NEAR at an instant t21.
  • the time rate of change of the desired time gap T* is set equal to a first value during a first period from FAR to MEDIUM (t21 ⁇ t22), and set equal to a second value greater than the first value during a second period from MEDIUM to NEAR (t22 ⁇ t23).
  • the change in the slope of the desired time gap T* at the halfway point t22 acts to increase the acceleration.
  • the vehicle speed control section 23 limits the acceleration to the maximum level of 0.06 G.
  • the control system in the example of Fig. 6 can meet driver's expectation of reducing the vehicle spacing promptly, and at the same time prevent unwanted acceleration which would be caused if the rate of change of T* ware changed to a greater value at the instant t21 immediately when To is changed from FAR to NEAR.
  • Fig. 7 shows a vehicle spacing control system according to a second embodiment of the present invention.
  • the select switch 5 is arranged to select a level of the time interval or time gap To.
  • the interval selected is a spatial interval or vehicle spacing.
  • the control system of Fig. 7 is almost the same as the system of Fig. 1. The different points are as follows.
  • a vehicle spacing select switch 5A is a switch for changing a selected vehicle spacing (or vehicle-to-vehicle distance) stepwise. By each pressing operation, the vehicle spacing is changed in a cyclic order of FAR ⁇ MEDIUM ⁇ NEAR ⁇ FAR.
  • Fig. 8 shows part of the vehicle spacing control and vehicle speed control in the form of a block diagram. Fig. 8 shows only the different points from the block diagram of Fig. 2.
  • the CPU 11a of the controller 11 forms, in the form of software, a vehicle spacing modifying section 31, a desired vehicle spacing generating section 21A, a vehicle spacing control section 22, a vehicle speed control section 23, a throttle control section 24, a brake control section 25, and a transmission control section 26.
  • the vehicle spacing modifying section 31 determines a modified vehicle spacing Lo by modifying the vehicle spacing L selected by the vehicle spacing select switch 5A, with the actual vehicle speed V sensed by the vehicle speed sensor 2.
  • the levels of the vehicle spacing corresponding to FAR, MEDIUM,and NEAR are determined on the basis of a predetermined reference vehicle speed which, in this example, is 120 km/h.
  • the vehicle spacing modifying section 31 is not needed.
  • Fig. 9 shows the vehicle spacing Lo modified with the vehicle speed V, for each of FAR, MEDIUM,and NEAR.
  • the modified vehicle spacing Lo is determined in accordance with the selected level of FAR, MEDIUM, and NEAR of the vehicle spacing and the vehicle speed V, by table look-up from a preset vehicle spacing modifying map as shown in Fig. 9.
  • This map is determined by using a vehicle spacing at a vehicle speed of 80 km/h as a reference.
  • the time gap is 2.2 s and the vehicle spacing Lo is equal to 50 m in the case of FAR.
  • Fig. 9 the modified vehicle spacing Lo is determined in accordance with the selected level of FAR, MEDIUM, and NEAR of the vehicle spacing and the vehicle speed V, by table look-up from a preset vehicle spacing modifying map as shown in Fig. 9.
  • This map is determined by using a vehicle spacing at a vehicle speed of 80 km/h as a reference.
  • the time gap
  • the vehicle spacing Lo is decreased monotonically and smoothly with decrease in the vehicle speed V.
  • the rate of decrease of the vehicle spacing Lo with respect to V is lowered in a low vehicle speed region.
  • the desired vehicle spacing generating section 21A determines the desired vehicle spacing L* from the modified vehicle spacing Lo by varying the modified vehicle spacing at a predetermined rate.
  • the desired vehicle spacing L* follows the modified vehicle spacing Lo at a predetermined rate.
  • the vehicle spacing select switch 5A of this example has only three select positions or states for FAR, MEDIUM, and NEAR. Therefore, the modified vehicle spacing Lo is changed in the form of a step change, which would cause undesirable steep increase or decrease in the vehicle speed. In the control system of this example, therefore, the desired vehicle spacing generating section 21A determines the desired vehicle spacing L* varying at a gentle rate in response to the vehicle spacing Lo changing in stages.
  • Fig. 10 shows the desired vehicle spacing L* varying in response to step changes in the modified vehicle spacing Lo.
  • the vehicle spacing L is changed at an instant t1 from FAR to MEDIUM, at an instant t2 from MEDIUM to NEAR, at an instant t3 from NEAR to FAR, and at an instant t4 from FAR to NEAR.
  • the desired vehicle spacing L* follows the thus-changed spacing L at a gentle rate.
  • the rate of change of the desired vehicle spacing L* is set equal to a single common value both in the increasing direction (to make longer the vehicle spacing) and in the decreasing direction (to make shorter the vehicle spacing).
  • the desired vehicle spacing L* is supplied from the desired spacing generating section 21A to the vehicle spacing control section 22 as shown in Fig. 2.
  • the vehicle speed control section 23, the throttle control section 24, the brake control section 25, and the transmission control section 26 function in the same manner as in the system of Fig. 2.
  • this control system determines a value of the desired vehicle spacing so as to follow at the predetermined speed, and controls the driving force and braking force of the controlled vehicle so as to bring the sensed actual vehicle spacing L closer to the desired vehicle spacing L*. Therefore, this control system can prevent an abrupt change in the vehicle speed from being caused by a switching operation of the vehicle spacing, and improve the ride.
  • Fig. 11 shows a variation of the second embodiment.
  • the time rate of change of the desired vehicle spacing L* is set equal to a single common value both in the increasing direction and the decreasing direction.
  • the time rate of change of the desired vehicle spacing L* is set equal to a greater value in the decreasing direction (in the case of decreasing the vehicle spacing), and set equal to a smaller value, smaller than the greater value, in the increasing direction (in the case of increasing the vehicle spacing).
  • Fig. 11 shows the desired vehicle spacing L* varying in response to changes in the vehicle spacing.
  • the vehicle spacing is changed at an instant t11 from FAR to MEDIUM, at an instant t12 from MEDIUM to NEAR, at an instant t13 from NEAR to FAR, and at an instant t14 from FAR to NEAR.
  • the desired vehicle spacing L* follows the thus-changed vehicle spacing at relatively gradual rates.
  • the time rate of change of the desired vehicle spacing L* is increased in the case of the decreasing direction (when the vehicle spacing is to be decreased) so as to cause the controlled vehicle to rapidly approach a preceding vehicle, and decreased in the case of the increasing direction (when the vehicle spacing is to be increased) so as to increase the vehicle spacing gradually.
  • the use of the greater value for the time rate of change of the desired vehicle spacing L* causes the acceleration to become greater in the case of a switching operation.
  • the vehicle speed control section 23 limits the acceleration to a predetermined maximum acceleration ⁇ max of 0.06 G. In this case, the control operation to decrease the vehicle spacing with a greater acceleration is agreeable and conformable to driver's intention and expectation.
  • this control system acts to decelerate the vehicle gradually and increase the vehicle spacing gradually.
  • Fig. 12 shows another variation of the second embodiment.
  • the time rate of change of the desired vehicle spacing L* may be further increased in the middle of a transition.
  • Fig. 12 shows the desired vehicle spacing L* varying in response to a change from FAR to NEAR.
  • the vehicle spacing is switched at once from FAR to NEAR at an instant t21.
  • the time rate of change of the vehicle spacing L* is set equal to a first value during a first period from FAR to MEDIUM (t21 ⁇ t22), and set equal to a second value greater than the first value during a second period from MEDIUM to NEAR (t22 ⁇ t23).
  • the change in the slope of the desired vehicle spacing L* at the halfway point t22 acts to increase the acceleration.
  • the vehicle speed control section 23 limits the acceleration to the maximum level of 0.06 G.
  • the control system in the example of Fig. 12 can meet driver's expectation of reducing the vehicle spacing promptly, and at the same time prevent unwanted acceleration which would be caused if the rate of change of L* were changed to a greater value at the instant t21 immediately after the switching operation from FAR to NEAR.
  • the select switch 5 or 5A may be a collection of three distinct switches for FAR, MEDIUM,and NEAR.
  • the number of select positions or select states of the select switch 5 or 5A is three (FAR, MEDIUM, and NEAR) in the preceding example.
  • the number of select positions is not limited to three.
  • the number of select positions may be 2 or equal to or greater than 4.
  • the above-mentioned numerical values for the time gap of the time gap select switch 5 and the time spacing of the vehicle spacing select switch 5A are not restrictive. The present invention is not limited to these numerical values.
  • control system may be arranged to produce the braking force only with engine braking without resorting to the brake system, or may be arranged to produce engine braking by changing the speed ratio r with the transmission actuator 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Claims (13)

  1. Dispositif de régulation de la distance entre des véhicules, comprenant:
    un capteur de l'intervalle entre des véhicules (1) détectant un intervalle effectif entre deux véhicules, un véhicule contrôle et un véhicule le précédant;
    un sélecteur (5, 5A) changeant un intervalle sélectionné entre deux véhicules parmi plusieurs valeurs distinctes; et
    un dispositif de commande (11) contrôlant une force longitudinale agissant sur le véhicule contrôlé en fonction de l'intervalle effectif entre les deux véhicules et de l'intervalle sélectionné entre les deux véhicules;
       caractérisé en ce que:
    le dispositif de commande (11) détermine un intervalle voulu entre deux véhicules (T*, L*), de sorte que l'intervalle voulu change à une vitesse prédéterminée lorsque l'intervalle sélectionné est changé, et contrôle la force longitudinale agissant sur le véhicule contrôlé, de sorte à rapprocher l'intervalle effectif de l'intervalle voulu (T*, L*).
  2. Dispositif de régulation de la distance entre des véhicules selon la revendication 1, dans lequel le dispositif de commande détermine un intervalle modifié entre deux véhicules, de sorte que lorsque l'intervalle sélectionné entre les deux véhicules est changé, d'une première valeur de l'intervalle vers une deuxième valeur de l'intervalle, l'intervalle modifié change à une vitesse de changement prédéterminée, de la première valeur de l'intervalle vers la deuxième valeur de l'intervalle, le dispositif de commande déterminant en outre l'intervalle voulu entre deux véhicules sur la base de l'intervalle modifié.
  3. Dispositif de régulation de la distance entre des véhicules selon la revendication 2, dans lequel la vitesse de changement de l'intervalle modifié est ajustée de sorte à être égale à une valeur de vitesse constante prédéterminée, aussi bien lorsque l'intervalle sélectionné est réduit que lorsque l'intervalle sélectionné est accru.
  4. Dispositif de régulation de la distance entre des véhicules selon la revendication 2, dans lequel la vitesse de changement de l'intervalle modifié est ajustée de sorte à être égale à une valeur de vitesse plus élevée lorsque l'intervalle sélectionné est réduit, et ajustée de sorte à être égale à une valeur de vitesse réduite, inférieure à la valeur de vitesse plus élevée lorsque l'intervalle sélectionné est accru.
  5. Dispositif de régulation de la distance entre des véhicules selon la revendication 2, dans lequel, lors du changement de l'intervalle sélectionné d'une valeur accrue de l'intervalle à une valeur réduite de l'intervalle, inférieure à la valeur accrue de l'intervalle, la vitesse de changement de l'intervalle modifié est ajustée de sorte à être égale à la valeur de vitesse réduite au cours d'une première période, s'écoulant à partir d'un premier instant, l'intervalle sélectionné étant alors changé de la valeur de l'intervalle accrue vers la valeur de l'intervalle réduite, à un deuxième instant, et est ajustée de sorte à être égale à une valeur de vitesse accrue, supérieure à la valeur de vitesse réduite au cours d'une deuxième période, s'écoulant entre le deuxième instant et un troisième instant, l'intervalle modifié étant alors égal à la valeur réduite de l'intervalle.
  6. Dispositif de régulation de la distance entre des véhicules selon la revendication 1, dans lequel l'intervalle effectif correspond à une distance entre le véhicule contrôlé et un véhicule le précédant, l'intervalle sélectionné correspondant à une distance sélectionnée; l'intervalle voulu correspondant à une distance voulue entre le véhicule contrôlé et un véhicule le précédant.
  7. Dispositif de régulation de la distance entre des véhicules selon la revendication 6, dans lequel le dispositif de commande détermine un intervalle modifié en modifiant l'intervalle sélectionné sur la base d'une vitesse effective détectée du véhicule, et détermine en outre l'intervalle voulu de sorte que l'intervalle voulu suit un changement dans l'intervalle modifié à la vitesse prédéterminée.
  8. Dispositif de régulation de la vitesse entre des véhicules selon la revendication 7, dans lequel le dispositif de commande comporte un plan prédéterminé pour déterminer l'intervalle modifié sur la base de l'intervalle sélectionné et de la vitesse effective du véhicule, et détermine une valeur de l'intervalle modifié correspondant aux valeurs de l'intervalle sélectionné et de la vitesse effective du véhicule par consultation du plan.
  9. Dispositif de régulation de la distance entre des véhicules selon la revendication 2, comprenant en outre un capteur de la vitesse du véhicule (2), détectant une vitesse de véhicule effective (V) du véhicule contrôlé, le capteur de l'intervalle entre les véhicules (I) détectant l'intervalle effectif entre les deux véhicules (L) correspondant à une distance effective entre le véhicule contrôlé et un véhicule le précédant, le sélecteur (5) changeant l'intervalle sélectionné entre les deux véhicules, qui correspond à un laps de temps sélectionné entre les deux véhicules (To), le dispositif de régulation (11) déterminant l'intervalle modifié entre les deux véhicules, qui correspond à un laps de temps voulu entre les deux véhicules (T*), de sorte que le laps de temps voulu change à la vitesse prédéterminée en réponse à un changement du laps de temps sélectionné (To), détermine l'intervalle voulu entre les deux véhicules, qui correspond à une distance voulue entre les véhicules (L*) en fonction du laps de temps voulu (T*) et de la vitesse effective du véhicule (V), et contrôle au moins une des forces parmi une force motrice et une force de freinage du véhicule contrôlé, de sorte à rapprocher la distance effective entre les véhicules de la distance voulue entre les véhicules (L*).
  10. Dispositif de régulation de la distance entre des véhicules selon la revendication 9, dans lequel le dispositif de commande détermine le laps de temps voulu, de sorte qu'une vitesse de changement du laps de temps voulu est plus élevée lorsque le laps de temps voulu doit être réduit que lorsque le laps de temps voulu doit être accru.
  11. Dispositif de régulation de la distance entre des véhicules selon la revendication 9, dans lequel, lorsque le laps de temps voulu est réduit d'une valeur plus élevée vers une valeur réduite, le dispositif de commande change la vitesse de changement du laps de temps voulu à mi-chemin au cours d'une transition du laps de temps voulu de la valeur plus élevée vers la valeur réduite.
  12. Dispositif de régulation de la distance entre des véhicules selon la revendication 9, dans lequel le dispositif de commande comporte un plan déterminé pour déterminer la distance voulue entre les véhicules sur la base du laps de temps et de la vitesse du véhicule, et détermine une valeur de la distance voulue entre les véhicules correspondant aux valeurs du laps de temps voulu et de la vitesse effective du véhicule par consultation du plan.
  13. Procédé de régulation de la distance entre des véhicules, comprenant les étapes ci-dessous:
    détermination d'un intervalle effectif entre deux véhicules, un véhicule contrôlé et un véhicule le précédant;
    détermination d'un intervalle sélectionné entre deux véhicules, choisi parmi plusieurs valeurs distinctes; et
    contrôle d'une force longitudinale agissant sur le véhicule contrôlé en fonction de l'intervalle effectif entre les deux véhicules et l'intervalle sélectionné entre les deux véhicules;
       caractérisé par l'étape ci-dessous:
    détermination d'un intervalle voulu entre les deux véhicules (T*, L*) de sorte que l'intervalle voulu change à une vitesse prédéterminée lorsque l'intervalle sélectionné est changé;
    la force longitudinale étant contrôlée de sorte à rapprocher l'intervalle effectif de l'intervalle voulu (T*, L*).
EP00305297A 1999-06-23 2000-06-23 Procédé pour la régulation de la distance entre véhicules Expired - Lifetime EP1063626B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17689699A JP3518424B2 (ja) 1999-06-23 1999-06-23 車間距離制御装置
JP17689699 1999-06-23

Publications (2)

Publication Number Publication Date
EP1063626A1 EP1063626A1 (fr) 2000-12-27
EP1063626B1 true EP1063626B1 (fr) 2004-11-24

Family

ID=16021655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00305297A Expired - Lifetime EP1063626B1 (fr) 1999-06-23 2000-06-23 Procédé pour la régulation de la distance entre véhicules

Country Status (4)

Country Link
US (1) US6434471B1 (fr)
EP (1) EP1063626B1 (fr)
JP (1) JP3518424B2 (fr)
DE (1) DE60016094T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017559A1 (de) * 2005-04-16 2006-10-19 Daimlerchrysler Ag Betriebsverfahren für ein in einem Fahrzeug befindliches verkehrsadaptives Assistenzsystem

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587778B2 (en) * 1999-12-17 2003-07-01 Itt Manufacturing Enterprises, Inc. Generalized adaptive signal control method and system
DE10308256A1 (de) 2003-02-25 2004-09-09 Daimlerchrysler Ag Verfahren zur Ansteuerung eines in einem Fahrzeug befindlichen verkehrsadaptiven Assistenzsystems
DE10310720A1 (de) * 2003-03-10 2004-09-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Geschwindigkeitsregelung eines Kraftfahrzeugs
DE10335732A1 (de) * 2003-08-05 2005-02-24 Daimlerchrysler Ag Verfahren zum Ändern des Beschleunigungsmodus eines Kraftfahrzeugs
JP4172434B2 (ja) * 2004-07-30 2008-10-29 トヨタ自動車株式会社 車間距離制御装置
DE102005061470B4 (de) * 2005-12-22 2017-09-28 Wabco Gmbh Verfahren zu einer automatischen Regelung eines Abstandes zwischen zwei Fahrzeugen
TWM313548U (en) * 2006-12-04 2007-06-11 Michilin Prosperity Co Ltd Cutting tool set with low friction resistance for paper shredder
JP5552955B2 (ja) * 2010-08-11 2014-07-16 トヨタ自動車株式会社 車両制御装置
JP5533810B2 (ja) * 2011-07-23 2014-06-25 株式会社デンソー 追従走行制御装置
SE537471C2 (sv) 2013-09-09 2015-05-12 Scania Cv Ab Förfarande och system för adaptiv farthållning samt fordon
JP6119621B2 (ja) * 2014-01-24 2017-04-26 トヨタ自動車株式会社 運転支援装置
CN117836182A (zh) * 2021-09-01 2024-04-05 日产自动车株式会社 车辆控制方法及车辆控制装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1251188A (fr) * 1967-12-15 1971-10-27
US3618003A (en) * 1968-03-19 1971-11-02 Arthur N Marshall Vehicle interval detection and signaling system
US3840848A (en) * 1972-08-08 1974-10-08 Traffic Safety Syst Inc Multiple vehicle gap detection and interval sensing system
DE4209047C1 (fr) * 1992-03-20 1993-08-26 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4313568C1 (de) * 1993-04-26 1994-06-16 Daimler Benz Ag Verfahren zur Leithilfe für einen Fahrspurwechsel durch ein Kraftfahrzeug
JPH07156770A (ja) * 1993-12-09 1995-06-20 Aisin Seiki Co Ltd 制動力制御装置
US5627510A (en) * 1994-09-12 1997-05-06 Yuan; Zhiping Vehicular safety distance alarm system
DE19644975B4 (de) * 1995-10-31 2004-07-22 Honda Giken Kogyo K.K. Verfahren zur Beurteilung einer Fahrzeugkollision
DE59705954D1 (de) 1996-09-04 2002-02-14 Volkswagen Ag Verfahren zur Abstandsregelung für ein Fahrzeug und Vorrichtung zur Durchführung des Verfahrens
US6085151A (en) * 1998-01-20 2000-07-04 Automotive Systems Laboratory, Inc. Predictive collision sensing system
US6009368A (en) 1997-03-21 1999-12-28 General Motors Corporation Active vehicle deceleration in an adaptive cruise control system
US6026347A (en) * 1997-05-30 2000-02-15 Raytheon Company Obstacle avoidance processing method for vehicles using an automated highway system
JP3755248B2 (ja) 1997-07-25 2006-03-15 トヨタ自動車株式会社 車載表示装置
US6188950B1 (en) * 1997-10-27 2001-02-13 Nissan Motor Co., Ltd. System and method for controlling inter-vehicle distance to preceding vehicle for automotive vehicle equipped with the system and method
JPH11142957A (ja) 1997-11-10 1999-05-28 Tamagawa Seiki Co Ltd カメラ安定台
DE19804641A1 (de) * 1998-02-06 1999-08-12 Bayerische Motoren Werke Ag Abstandsbezogenes Fahrgeschwindigkeitsregelsystem
JP3651259B2 (ja) 1998-05-01 2005-05-25 日産自動車株式会社 先行車追従制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017559A1 (de) * 2005-04-16 2006-10-19 Daimlerchrysler Ag Betriebsverfahren für ein in einem Fahrzeug befindliches verkehrsadaptives Assistenzsystem

Also Published As

Publication number Publication date
JP3518424B2 (ja) 2004-04-12
DE60016094D1 (de) 2004-12-30
US6434471B1 (en) 2002-08-13
JP2001001789A (ja) 2001-01-09
DE60016094T2 (de) 2005-11-24
EP1063626A1 (fr) 2000-12-27

Similar Documents

Publication Publication Date Title
US5713428A (en) Apparatus for regulating the speed of a motor vehicle
EP0720928B1 (fr) Système de commande de vitesse de croisière
US6330508B1 (en) Preceding vehicle following control system
US6374174B2 (en) Method for terminating a braking intervention of an adaptive cruise control system of a motor vehicle
US6273204B1 (en) Method and arrangement for controlling the speed of a vehicle
EP0612641B1 (fr) Méthode et dispositif pour contrÔler la vitesse de croisière
US5396426A (en) Constant speed traveling apparatus for vehicle with inter-vehicle distance adjustment function
EP1063626B1 (fr) Procédé pour la régulation de la distance entre véhicules
EP1072458B1 (fr) Dispositif adaptatif de commande de la vitesse d'un véhicule
US6094616A (en) Method for automatically controlling motor vehicle spacing
US6226593B1 (en) Method and appliance for braking a motor vehicle in the immediate vicinity of an obstacle
EP1281561A2 (fr) Régulateur de vitesse avec régulation de la distance entre deux véhicules
EP1127728B1 (fr) Gestion des demandes incompatibles de couple motrices dans un régulateur de vitesse
US6311117B1 (en) Method and arrangement for controlling the speed of a vehicle
EP1070624B1 (fr) Dispositif de suivi d'un véhicule qui le précède
GB2295695A (en) Apparatus and method for cruise control
JP2008514494A (ja) 車両の縦速度を調節する方法および装置
EP2000380A2 (fr) Dispositif et procede de commande de deplacement de vehicule
US6272416B1 (en) Vehicle drive force control device
JP2000118369A (ja) 車両用走行制御装置
JP3636042B2 (ja) 車両用追従走行制御装置
JP3237435B2 (ja) 車両の走行制御装置
JP3885347B2 (ja) 車両用走行制御装置
JP2000313245A (ja) 車両用走行制御装置
JP3233122B2 (ja) 車間距離調整機能を備えた定速走行制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE GB

17Q First examination report despatched

Effective date: 20031125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60016094

Country of ref document: DE

Date of ref document: 20041230

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190612

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190619

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60016094

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200622