EP1061904A1 - Nanopartikel, verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Nanopartikel, verfahren zu ihrer herstellung und ihre verwendung

Info

Publication number
EP1061904A1
EP1061904A1 EP99911744A EP99911744A EP1061904A1 EP 1061904 A1 EP1061904 A1 EP 1061904A1 EP 99911744 A EP99911744 A EP 99911744A EP 99911744 A EP99911744 A EP 99911744A EP 1061904 A1 EP1061904 A1 EP 1061904A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
oxy
particles
oxo
hexafluorophosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99911744A
Other languages
English (en)
French (fr)
Inventor
Javier Manero
Jennifer Filbey
Peter Boderke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Research and Technologies GmbH and Co KG
Original Assignee
Aventis Research and Technologies GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Research and Technologies GmbH and Co KG filed Critical Aventis Research and Technologies GmbH and Co KG
Publication of EP1061904A1 publication Critical patent/EP1061904A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Definitions

  • Nanoparticles processes for their production and their use
  • the invention relates to nanoparticles, methods for producing nanoparticles and the use of nanoparticles.
  • formulations and combinations of active substances are becoming increasingly interesting, the form of use of which can not only be applied in a gentle manner, but also have a targeted influence on the distribution, bioavailability or absorption of the drug.
  • particulate systems so-called micro- or nanoparticles, which have a particle size in the range of less than 100 ⁇ m, have proven to be promising forms of application for delivering a wide variety of pharmaceuticals to the body.
  • Particles can be modified in a variety of ways, for example to increase the retention time. It is also mentioned, for example, that the particles can be provided with antigens in order to release the pharmaceuticals which are in the particles in a very targeted manner at their intended site of action. However, it is problematic that the depot effect of the particles is relatively limited, since the release takes place very quickly. Furthermore, the stability of the particles described is relatively low.
  • Particles on the mucous membranes increased so that they are increasingly absorbed into the body.
  • the problem here is that the particles are produced in emulsions. This makes it possible for residues of the solvent to remain on or in the particles. This is caused in particular by adsorption of the hydrophobic solvent onto hydrophobic polymers or bioactive substances, such as proteins. These solvent residues are of particular concern for pharmaceutical applications.
  • the positive charge of the particles which is measured by a positive zeta potential, can furthermore be disadvantageous for the surface modifications described in WO 96/20698.
  • microparticles described are generally too large (1-100 ⁇ m) to ensure efficient absorption through biological membranes. Larger particles (> 5 ⁇ m) can also have a toxic effect because they can get stuck in the fine blood capillaries of the lungs.
  • Patent specification EP 0 454 044 B1 describes the production of pharmaceutical preparations in microparticulate form, which are made up of a polyelectrolyte complex
  • biocompatible and biodegradable polyelectrolyte complex of polycations and polyanions is treated with a crosslinking agent during or after its formation, active ingredients that are present in the nanoparticles are released in a controlled manner
  • Sensitive active substances can be superbly protected against degradation by the nanoparticles according to the invention, since they are well embedded in the nanoparticles
  • the nanoparticles are much more stable than conventional ones without losing their biodegradability
  • the particles according to the invention are particularly easily absorbed
  • the nanoparticles are essentially free of residues of organic solvents, since they can be formed in an aqueous solution
  • the charge of the polyelectrolyte complex can be varied by the crosslinking in order to change the hydrophilicity of the particles. This causes a modification of the binding of plasma proteins to the nanoparticles. Furthermore, the retention time of the particles on the mucous membranes and the residence time of the particles in the body can also be influenced
  • the swelling capacity or the water absorption of the particle can be influenced by this measure.
  • nanoparticles refer to particles with an average size of 10 to 1000 nm, preferably 10 to 500 and particularly preferably 50 to 250 nm, which have a biocompatible and biodegradable polyelectrolyte complex 10.
  • the shape of the particles can be regular or irregular.
  • biocompatible means that the compounds which are preferably used for the preparation of the polyelectrolyte complex are compatible with application, that is to say, for example, are not or only to a reasonable extent toxic and / or have only a very slight allergenic effect. So that there is no accumulation of the polymers in the body, they should be biodegradable or excreted. Depending on their use, the polymers are preferably also biocompatible.
  • the polyelectrolyte complex can result from the bringing together of polyanions and polycations, as is described in the patent specification EP 0 454 044 B1.
  • the surface of the 25 nanoparticles formed can be positively or negatively charged (a positive or negative zeta
  • the polyacids can in particular have 30 charged phosphonate, phosphate, sulfonate, sulfate and / or carboxy groups. Preferred, without being restricted thereby, 6
  • These charged polymers can also be partially substituted or in the form of a salt.
  • the polyanions can also be used in copolymer form.
  • the weight average molecular weight of the polyanions is preferably 1,000 to 2,000,000 daltons, particularly preferably 40,000 to 600,000 daltons. They are generally commercially available. However, the polyanions can also be prepared in any manner known to those skilled in the art
  • the polyanions are preferably used in a concentration of 0.1 to 40 g / l, particularly preferably 1 to 20 g / l
  • Suitable biodegradable or excretable polycations in the context of the invention include, without limitation, collagen and collagen derivatives, gelatin, poly-N-alkylvinylpy ⁇ dine, polyethyleneimine, polyvinylamine, polyallylamine and polyacrylate, poly-L-Lysi ⁇ , poly - ⁇ , ß- (d ⁇ methylam ⁇ noethyl) -D, L-aspartam ⁇ d (PDAA), copolymers of PDAA and hydrophobically esterified poly- ⁇ , ß- (2-hydroxyethyl) -D, L-aspartam ⁇ d (PHEA), chitosan and derivatives, lysinoctadecyl ester , aminated dextrans, aminated cyclodextins, 7
  • aminated cellulose ethers aminated pectins and their partly substituted derivatives and salts.
  • the polycations can also be used in copolymer form. These include copolymers of various monomers that can be used to produce the above-mentioned polycations, as well as copolymers of these monomers with other biodegradable monomers. How they can be used to produce the biodegradable polymers listed below, to understand. Mixtures of these polymers / copolymers are likewise suitable in the context of the present inventions. Chitosan is preferred here, since its particularly high compatibility is recognized
  • the weight average molecular weight of the polycations is preferably 1,000 to 2,000,000 daltons, particularly preferably 40,000 to 600,000 daltons.
  • Their preparation is known to the person skilled in the art. They are generally commercially available
  • the polycations are preferably used in a concentration of 0.1 to 40 g / l, particularly preferably 1 to 20 g / l
  • the nanoparticles can be further biocompatible and / or biodegradable
  • polysaccharides such as dextran and its derivatives
  • polyalkyl cyanoacrylates such as polyalcohols
  • polymethylidene malonates such as polymethylidene malonates
  • polyesters such as PLGA (polylactic-polyglycolic acid copolymer) and polycaprolactone , Polyether, like
  • Polyethylene glycol, polyanhydrides, polyalkylcyanoacrylates, polyacrylamides, polyphosphazenes and biodegradable polyamides and polyurethanes are particularly preferred. These functional groups are not intended to restrict the hydroxyl, amino, the thiol, the
  • biodegradable polymers can also be used in copolymer form. These include copolymers of various monomers, which can be used to produce the biodegradable polymers listed above. Mixtures of these polymers / copolymers are also suitable in the context of the present invention
  • the polymers can serve the surface-modifying agents mentioned below, to bind the bioactive substances to the nanoparticles and / or to stabilize the substances
  • the weight average molecular weight of the polymers is more than 1,000, preferably 30,000 to 2,000,000, particularly preferably 50,000 to 300,000 daltons
  • the biodegradable polymers are preferably used in a concentration of 0 to 100 g / l, particularly preferably 0 to 40 g / l
  • Bioactive substances are substances that influence the properties or the behavior of living systems
  • prophylactic substances include, for example, contrast agents such as oxygen or noble gases, etc. be understood.
  • bioactive substances are, for example, active peptides and proteins, such as insulin, interferons, enzymes, somatropin, erythropoietin, G-CSF, human growth hormone, calcionin, LHRH, factor VIII, tPA, enkephaline, glucagon, TRH, thymopoietin, thymopentin, thymocartin as well as analogs and fragments;
  • active peptides and proteins such as insulin, interferons, enzymes, somatropin, erythropoietin, G-CSF, human growth hormone, calcionin, LHRH, factor VIII, tPA, enkephaline, glucagon, TRH, thymopoietin, thymopentin, thymocartin as well as analogs and fragments;
  • Enzyme inhibitors such as HIV protease inhibitors
  • Antigens and immunogens for example influenza viruses or subunits of antigens;
  • Antibiotics such as ß-lactam antibiotics (penicillins, cephalosporins, monobactams, carbapenems, etc.), aminoglycosides (e.g. streptomycin), tetracyclines,
  • Chloramphenicol macrolide antibiotics (e.g. erythromycin), lincomycine, fosfomycin, fusidic acid, polymyxine, vancomycine and the like. Teicoplanin;
  • Analgesics such as hypnoanalgesics, in particular opium alkaloids, 4-phenylpiperidine derivatives (pethidine), 3,3-diphenylpropylamine derivatives (methadone), fentanyl derivatives, tramadol and nefopam and non-opioid analgesics, antipyretics and
  • Anti-inflammatory drugs especially derivatives of salicylic acid (e.g. acetylsalicylic acid), 10
  • the aniline e.g. paracetamol
  • the anthranilic acid mefenammic acid
  • the pyrazole metalamizole, phenazone, propyphenazone
  • aryless ⁇ g- u -propionsaure ⁇ indomethacm, diclofenac, ibuprofen, phenonobutene
  • sterucocoblene steruco -De ⁇ vate
  • Anti-rheumatic drugs such as oxyphenbutazone, arylacetic acid and propionic acid derivatives, in particular indomethacm, diclofenac, ibuprofen, ketoprofen, oxicams such as piroxicam, gold (l) preparations, D-penicillamine, chloroqum and immunosuppressants,
  • Hormones and antagonists such as peptide hormones, in particular
  • Cytostatics such as alkylating agents, especially mechloroethamm,
  • Cyclophosphamide Ifosfamide, Mephalan, Chlorambucil, Hexamethylmelamm, Thitepa, Busulfan, Carmustm, lomustm, Semustm, Steptozocm and dacarbazin,
  • Antimetabohten especially methotrexate, fluorouracil, Floxu ⁇ dm, Cytarabm, Mercaptopurm, Thioguanm, Pentostatin,
  • RNA DNA
  • DNA such as nucleotides, oligonucleotides, polynucleotides, genes or gene segments, plasmids and / or vectors and their derivatives, which are particularly active in HIV, rheumatoid arthritis, cancer, hormone deficiency diseases, hypertension, atherosclerosis, vascular diseases, viral infections and a lack of endogenous synthesis Peptides and proteins are used 1 1
  • Toxme or Vaccme such as bacterial vaccines, such as tetanus and cholera toxin, such as viral vaccines, such as AIDS antigens or viral hepatitis components,
  • Carbohydrates such as mono- or polysacchand, dextran, agar, agarose-denvate,
  • Protooglycans such as Heparm, Heparan, dermatan sulfates
  • Lipids such as phosphopides, choleste ⁇ n, Tngylce ⁇ de and Lipoproteme u
  • the nanoparticles according to the invention are particularly suitable dosage forms, particularly for unstable preparations, since the particles are particularly stable and thus protect the active ingredients, for example proteins, against decomposition by, for example, gastric acid.
  • the active ingredient can therefore be released in a particularly targeted manner, so that, for example, after oral administration of the Active ingredient is not released in the stomach or intestine where it was broken down, but only when it has been taken ms blood
  • the active ingredient can be in at least four different ways
  • the bioactive agent / the bioactive agent mixture is preferably used in a concentration of 0.1 to 40 g / l, particularly preferably 1 to 20 g / i
  • the polyelectrolyte complex after its formation is additionally treated with at least one crosslinking agent. These compounds link the polymers of the nanoparticles so that they become more stable and pharmaceutical
  • crosslinking agents include, but are not intended to restrict them.
  • halogenated triazine pvates such as 2,4,6-trichloro-1, 3,5-tricazione, 2,4-dichloro-6-methoxy-1, 3,5-tricacade,
  • Phosphomum salts such as
  • Tris-di-methyl-amino-azido-phosphonium hexafluorophosphate tris-di-methyl-amino-trichloromethyl-phosphonium hexafluorophosphate, tris-di-methylamino-trifluoromethyl-phosphonium hexafluorophosphate, tris-di-methyl-amino-phenoxy- phosphonium hexafluorophosphate, tris-dimethylamino-p-nitrophenoxyphosphonium hexafluorophosphate,
  • Tris-pyrrolidino-chloro-phosphonium-hexafluorophosphate tris-pyrrolidino-bromo-phosphonium-hexafluorophosphate, tris-pyrrolidino-cyano-phosphonium-hexafluorophosphate, tris-pyrrolidino-isothiocyanoto-phosphonium-hexafluorophosphoronophosphate, tris
  • 1,2-dihydro-2-oxo-1-pyridyl-oxy-biscyclohexylidenuronium chloride 1, 2-dihydro-2-oxo-1-pyridyl-oxy-biscyclohexylidenuronium hexafluorophosphate, 1,2-dihydro-2-oxo-1-pyridyl oxy-biscyclohexylidenuronium perchlorate, 1, 2-dihydro-2-oxo-1-pyridyl-oxy-biscyclohexylidenuronium tetrafluoroborate,
  • N-maleinimidyl-oxy-biscyclohexylidenuronium chloride N-malemimidyl-oxy-biscyclohexylidenuronium hexafluorophosphate, N-maleinimidyl-oxy-biscyclohexyhdenuronium perchlorate, N-maleinimidyl-oxy-biscyclohexy-denoronidylonatylonuronium xurobluronium xyluronium oxychloride
  • N-Maleinimidyl-oxy-biscyclopenty denuronium hexafluorophosphate N-Maleinimidyl-oxy-biscyclopentylidenuronium perchlorate, N-Maleinimidyl-oxy-biscyclopentyhdenur ⁇ iumtetrafluoroborat, N-Male ⁇ n ⁇ m ⁇ dyl-oxy-N-N, N, Male N, N ', N'-tetramethyluronum hexafluorophosphate,
  • N-maleimidyl-oxy-NNN'.N'-tetramethyluronium perchlorate N-maleimidyl-oxy-N, N, N ', N'-tetramethyluronium tetrafluoroborate
  • N-succinimidyl-oxy-biscyclohexylidenuronium chloride N-succinimidyl-oxy-biscyclohexyiidenuronium hexafluorophosphate
  • N-succinimidyl-oxy-biscyclopentylidenuronium chloride N-succinimidyl-oxy-biscyclopentylidenuronium hexafluorophosphate
  • N-succinimidyl-oxy-biscyclopentylidenuronium perchlorate N-succinimidyl-oxy-biscyclopentyluronium-ninoxin-n-oxy-n-oxy-n-oxy-n-oxy-n-oxy-n-oxy-n-cyclo
  • N-succinimidyl-oxy-N, N, N ', N'-tetramethyluronium hexafluorophosphate N-succinimidyl-oxy-N, N, N', N'-tetramethyluronium perchlorate
  • N-succinimidyl-oxy-N, N, N ', N 'tetramethyluronium tetrafluoroborate N-phthalimidyl-oxy-biscyclohexylidenuronium chloride, N-phthalimidyl-oxy-biscyclohexylidenuronium hexafluorophosphate,
  • N-phthalimidyl-oxy-biscyclohexylidenuronium perchlorate N-phthalimidyl-oxy-biscyclohexylid ⁇ uronium tetrafluoroborate
  • N-phthalimidyl-oxy-biscyclopentylidenuronium chloride N-phthalimidyl-oxy-biscyclopentylorylidononylylurylidylonylurylidyluronium
  • N-phthalimidyl-oxy-biscyclopentylidenuronium tetrafluoroborate N-phthalimidyl-oxy-N, N, N ', N'-tetramethyluronium chloride, N-phthalimidyl-oxy-N, N, N', N'-tetramethyluronium hexafluorophimidate, N-phthalate N, N, N ', N'-tetramethyluronium perchlorate, N-phthalimidyl-oxy-N, N, N', N'-tetramethyluronium tetrafluoroborate,
  • N-perhydrophthalimidyl-oxy-biscyclohexylidenuronium chloride N-perhydrophthalimidyl-oxy-biscyclohexylidenuronium hexafluorophosphate
  • N-perhydrophthalimidyl-oxy-biscyclohexylidenuronium perchlorate N-perhydrophthalimidyl-oxy-biscyclo-oxychloride-oxychloride
  • N-perhydrophthalimidyl-oxy-biscyclopentylidenuronium perchlorate N-perhydrophthalimidyl-oxy-biscyclopentylidenuronium tetrafluoroborate, N-perhydrophthalimidyl-oxy-N, N, N ', N'-tetramethyluronium chloride, N-perhydrophthalimide, tetramethyluronium hexafluorophosphate, N-perhydrophthalimidyl-oxy-N, N, N ', N'-tetramethyluronium perchlorate,
  • reactive carbonic acid derivatives such as carbodiimides, in particular N- (3-dimethylaminopropyl) -N-ethylcarbodiimide.
  • ester or amide groups are preferred because the resulting ester or amide groups can be biodegraded particularly well.
  • These include all halogenated triazine derivatives, all phosphonium salts, all uronium salts and reactive carbonic acid derivatives.
  • N- (3-Dimethylaminopropyl) -N-ethylcarbodiimide hydrochloride (EDAP) and O- (N-succinimidyl) -N, N, N ' , N ' - tetramethyluronium tetrafluoroborate (TSTU) are particularly preferred.
  • the degree of crosslinking can be influenced by the concentration of the polyelectrolyte complex and the crosslinking agent and the reaction time.
  • the reaction time depends, among other things, on the type, reactivity and concentration of the selected crosslinking agent and the polyelectrolyte complex, as well as the reaction temperature and the pH of the solution. Under certain circumstances, it can be influenced by catalysts. At room temperature, it is preferably 1 minute to 24 hours, particularly preferably 5 to 120 minutes.
  • the surface of the nanoparticles can be modified. This modification is described in the above-mentioned patent applications WO 96/20698, US 5,449,720 and WO 92/17167, which are intended to be included in the disclosure.
  • the properties of the nanoparticles can be influenced in a targeted manner by the modification. For example, antithrombocytic properties can be generated, the absorption of the particles via the intestine can be improved or substances can be transferred to the modification.
  • Particles are bound so that the particles in very defined areas in the 21
  • Body will be enriched.
  • Antigens against cancer cells which can be linked to the particles, are mentioned as an example, so that the drugs are released directly from the drug saturated drug depots in the cancer cells.
  • This modification can be achieved in that at least one of the charged polymers of the polyelectrolyte complex is additionally treated with an agent which modifies the surface before, during or after the formation of the complex.
  • agents include, without being limited by this, various synthetic polymers, biopolymers, low molecular weight
  • Oligomers natural substances and surface-active substances.
  • the synthetic polymers with which the surface of the nanoparticles can be modified include carboxymethyl cellulose, cellulose, cellulose acetate, cellulose phthalate, polyethylene glycol (carbowax), polyvinyl alcohol
  • PVA hydroxypropyl methyl cellulose phthalate, hydroxypropyl cellulose, sodium or potassium salts of carboxymethyl cellulose, polyvinyl pyrolidone, polystyrene and silicates such as bentonite.
  • the biopolymers with which the surface of the nanoparticles can be modified include, in particular, proteins and peptides, such as gelatin, casein, albumins (ovalbumin), myoglobin, hemoglobin, monoclonal and polyclonal antibodies, cytokines, such as growth factors, interferons, lymphokines, monokines, Interleukins and chemokines; as well as polysaccharides and pectins.
  • proteins and peptides such as gelatin, casein, albumins (ovalbumin), myoglobin, hemoglobin, monoclonal and polyclonal antibodies
  • cytokines such as growth factors, interferons, lymphokines, monokines, Interleukins and chemokines
  • pectins such as polysaccharides and pectins.
  • the natural substances with which the surface of the nanoparticles can be modified include, in particular, cofactors, such as coenzymes, such as vitamins, in particular vitamin B12, and prosthetic groups, such as the heme group; Lipids, especially phospholipids such as lecithin and cholesterol; and prostaglandins. 22
  • the surface-active substances with which the surface of the nanoparticles can be modified include non-mastic surfactants, in particular sorbitan fatty acid esters, in particular polyoxyethylene sorbitan fatty acid esters, fatty alcohols, such as cetylaic alcohols or stearyl alcohols, and polyether sulfonates, anionic surfactants, in particular sodium, for example, fatty dodecyl sulfates Palmitic acid, stearic acid and oleic acid), Gylce ⁇ nester of fatty acids (for example Glyce ⁇ nmonostearat) and sodium and potassium salts of fatty acids (Natnumoleat, sodium palmitate, Nat ⁇ umstearat, among others), Polyoxylstearat, Polyoxylethylenlaurylether, Sorbitansesanolamine, Methyldimbromidom, Ethylammonyl, Methylammonium Ethyl, Methylammonium Ethyl,
  • agents which can be used to modify the surface of the nanoparticles, preferably include agents which enable active transport (for example absorption) of the particles. These agents are known as car ⁇ ers
  • carners include bile acids, adhesins, invasme,
  • Toxins such as plant or bacterial toxins, cobalamins, viral Hamaglutimne, Lectme, Transfer ⁇ n, Riboflavm and peptides that are transported intestinally (which use Car ⁇ ersysteme for mtestinal peptide transport) derivatives of these substances, which also use the respective Camer systems , can also be used
  • Cobolamines which are suitable as carriers, include, for example, substances such as vitamin B12 or analogues that bind to the int ⁇ nsic factor (IF), a glycoprotem of gastric juice. Through this binding, the nanoparticles are actively absorbed by the mucous membranes from the digestive tract. To the analogues belong, for example, without being restricted thereby, 23
  • these analogues include chlorocobalamin, sulfitocobalamin, nitrocobalamin, nitrocobalamin
  • Benzimidazolecyanocobalamm derivatives such as 5,6-dichlorobenzimidazole, 5-hydroxybenzimidazole, trimethylbenzimidazole, as well as adenosylcyanocobalamm [(Ade) CN-Cbl], cobalt amalgamation, cobalt ammonium lactam and the anilide, ethyl or deoxy amide and dicarboxylate, monocarboxylate, monocarboxyl Corresponding analogues Further analogues of vitamin B12 result from the substitution of the cobalt atom by zinc or nickel
  • these surface-modifying agents can also be used as mixtures in order to combine the various properties of the surface-modifying agents or to achieve synergistic effects
  • the surface-modifying agents are preferably used in a concentration of 0 to 200 g / l, particularly preferably 0 to 20 g / l
  • These surface-modifying agents can be added directly to the aqueous solution. These agents can preferably be bound covalently or ionically to at least one of the hydrophilic polymers, to the crosslinking agent or to the other above-mentioned biocompatible and biodegradable polymers and to the bioactive agent, in order to do so to connect as firmly as possible with the polyelectrolyte complex
  • the surface-modifying agents can be activated with other substances.
  • the hydrophilic polymers, the crosslinking agents or to the other above-mentioned biocompatible and biodegradable 24 are also possible.
  • activators include, for example, without limitation, disuccinimidyl suberate, B ⁇ s (sulfoaucc ⁇ n ⁇ m ⁇ dyl) suberate, ethylene glycol b ⁇ s (succ ⁇ n ⁇ mdylsucccolnate), ethylene glycol (sulfosucc ⁇ n ⁇ mdylsucc ⁇ nat), p-Aminophenylessigsaure, D ⁇ th ⁇ o-b ⁇ s (succ ⁇ n ⁇ m ⁇ dylprop ⁇ onat), 3 3'D ⁇ th ⁇ o- b ⁇ s (sulfosucc ⁇ n ⁇ m ⁇ dylprop ⁇ onat) Disuccmimidyltartrat, Disulfosuccmimidyltartrat, -ethylene b ⁇ s [2- (Succ ⁇ n ⁇ m ⁇ dooxycarbonyloxy) -ethylene] sulfone, b ⁇ s [
  • epoxides can be used as activators. These epoxides include, for example, ethylene oxide, 1, 2-propylene oxide, glycidyl ethers, such as diglycidylbutane diol ether, diglycidylethane diol ether, and erytholic acid anhydride
  • activators which have a thiol group and are particularly readily biodegradable.
  • These activators include, for example, N-succinomidyl-3- (2-pyridyld ⁇ th ⁇ o) propionate, iminothiolane, sulfosuccinidimidyl-6- [3- (2-pyridyld ⁇ th ⁇ o ) prop ⁇ onam ⁇ do] hexanoate, succinomidyl-6- [3- (2- py ⁇ dyld ⁇ th ⁇ o) prop ⁇ onam ⁇ do] hexanoate, sulfosucc ⁇ n ⁇ m ⁇ dyl-6- [-methyl- - (2-pyr ⁇ dyl- d ⁇ th ⁇ o) toluam ⁇ do] hexanoate, 1'-4-d ⁇ (2'py ⁇ dyld ⁇ th ⁇ o) prop ⁇ onam ⁇ do] butane, 4- -Succ ⁇ n ⁇ m ⁇ d
  • the activators are preferably used in a concentration of 0 to 40 g / l, particularly preferably 0 to 2 g / l
  • the nanoparticles can be produced, for example, by polyelectrolyte complexation, emulsion techniques, spray drying, solvent evaporation, solvent extraction, coacervation, extrusion, precipitation and filtration or other processes known to the person skilled in the art.
  • the nanoparticles are preferably produced by polyelectrolyte complexation.
  • the nanoparticles can be brought together by bringing together an aqueous solution of polycations, an aqueous solution of polyanions and at least one bioactive agent and, if appropriate, further substances (further polymers, auxiliaries, etc.) which may be bound to one of the two ionic polymers or which are present in free form can be obtained, and subsequent treatment with a crosslinking agent.
  • the at least two aqueous solutions of the hydrophilic polymers are brought together in such a way that nanoparticles of the desired size and
  • Form size distribution This can be done, for example, by controlled dropping of one of the two solutions into the other of the two solutions.
  • the complex that forms during mixing precipitates as a result of neutralization. It may be necessary to adjust the pH in order to dissolve the substances, such as the polymers, bioactive substances, etc. These pH values depend, among other things, on the particular polyelectrolyte and are known to the person skilled in the art. In preferred embodiments, the person skilled in the art can orientate himself, for example, at the isoelectric point.
  • the particle size can be controlled by the manner in which they are brought together, for example when adding drops, the dilution of the at least two solutions, the speed of the stirrer, the pH and the diameter of the nozzles used for the drops and the dropping speed.
  • the particle size can also be influenced by ultrasound.
  • auxiliaries may be necessary. Excipients may also be indispensable in the treatment with the crosslinking agent
  • emulsion processes can be used depending on the bioactive active substance and the polymer used. This may be necessary, for example, if particularly hydrophobic active substances or additionally hydrophobic polymers are to be incorporated into the nanoparticles. These emulsion processes are described in WO 96/05810
  • one of the hydrophilic polymers is dissolved in water. This solution is added to a non-polar solvent with vigorous stirring by dissolving the hydrophobic active ingredient. Then, for example, the second of the hydrophilic polymers can be added to the resulting emulsion, so that the polyelectrolyte complex is formed.
  • This complex can be crosslinked in situ by adding one of the crosslinking agents mentioned above. It is preferred that this emulsion is stabilized by suitable means, for example dioctylsulphosuccmate
  • a non-polar polymer can also be dissolved in a hydrophobic solvent in order to introduce it into the polyelectrolyte complex. If both a hydrophobic bioactive agent and a non-polar polymer are to be introduced into the polyelectrolyte complex, it is possible to vary the process explained above slightly so that a multiple emulsion (oil-in-water-oil-oil emulsion) is formed
  • the particles can also be formed by spray drying.
  • a suitable solution of at least one polyanion, at least one polycation and at least one bioactive active ingredient and optionally further substances is sprayed through a suitable nozzle, so that particles of the desired size are formed. These particles are then dried 27
  • the resulting particles can be crosslinked in situ by adding crosslinking agents in order to obtain the nanoparticles according to the invention.
  • crosslinking agents for example, one of the above-mentioned crosslinking agents can be added and preferably stirred at room temperature for a further 10 minutes to 24 hours, depending on the desired degree of crosslinking and crosslinking agent. The exact one
  • the regulation for the implementation of the particles depends on the crosslinking agent and can be optimized by a person skilled in the art with a few routine tests.
  • Crosslinking can be determined using methods known from the literature, such as NMR, NIR or exclusion chromatography.
  • the resulting particles which contain a polyelectrolyte complex and at least one bioactive agent, can also be crosslinked later.
  • these particles can be in a suitable solvent, for example water or a dipolar aprotic solvent, such as DMF (dimethylformamide) or
  • DMSO Dimethylsoulfoxid
  • the particles can then be isolated. This separation can take place, for example, by filtration or centrifugation.
  • the particles are then preferably washed with water and dried, for example by lyophilization.
  • nanoparticles thus obtained can be sterilized by radiation, as is well known in the art. However, the nanoparticles can also be produced under sterile conditions. 28
  • the particles can be administered in any manner known to the person skilled in the art. This includes, in particular, without being restricted by this, the oral form of administration. However, they can also be administered parenterally, for example by injection intravenously, intraarterially, intramuscularly, subcutaneously, intrathecally or intralumbally.
  • the nanoparticles can also be administered nasally, occularly, rectally, vaginally, buccally, orally, transdermally and by inhalation.
  • the suspension was then ultrafiltered over a 100 kD membrane (PLHK membrane from Millipore) (Amicon 8050 ultrafiltration cell, nitrogen pressure 0.2 bar, purity> 99.9%), the residue being washed with 5 ml of water.
  • the retentate was then transferred to a 100 ml round bottom flask, frozen (with a mixture of isopropanol / dry ice) and freeze-dried overnight (model LDC-1, Christ).
  • the release of the insulin was tested by suspending 5 mg of the dried particles in 10 ml of pH 7.4 phosphate buffer (produced with Sigma phosphate buffer tablets) and heating them at 37 ° C. in a drying cabinet. After 30 minutes, a sample is taken, ultrafiltered (Filter Millipore PLHK) and examined by means of fluorescence spectroscopy for FITC insulin content according to the method known from the literature (excitation wavelength: 494 nm, emission wavelength: 518 nm).
  • Example 1 was repeated. However, the resulting particles were not cross-linked. This means that the resulting suspension was not mixed with glyoxal, but washed, ultrafiltered and dried directly as described above.
  • the release of the FITC insulin was tested as in Example 1. It was found that 59.4% of the FITC insulin was released into the solution.
  • BSA bovine serum albumin
  • BSA-FITC bovine serum albumin
  • the suspension was stirred for 15 mm at room temperature
  • the suspension was cleaned with the aid of an ultrafiltration (Amicon 8050 ultrafiltration cell, nitrogen pressure 1 bar) over a 300 kD membrane (PLMK from Millipore).
  • the residue was washed 3 times with 30 ml of water, 100 ml of permeate being formed
  • the retentate was then transferred to a 250 ml round bottom flask, frozen and freeze-dried overnight
  • the release of the BSA-FITC was tested by suspending 5 mg of the dried particles in 10 ml of phosphate buffer pH 7.4 and incubating at 37 ° C in the drying cabinet. After 4 hours a sample was taken, ultrafiltered (filter
  • Example 3a Inclusion of tetracycline
  • Example 2a 20 mg of tetracycline (Sigma) were used this time and processed according to Example 2a.
  • the release of the tetracycline was measured according to the method known from the literature using UV spectroscopy at 356 nm. Without crosslinking, the release of the tetracycline was 70% after 4 hours. If, as mentioned in Example 2a, the particles were crosslinked with 200 ⁇ l of a 40% glyoxal solution, the release of tetracycline was only 10%

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft Nanopartikel aufweisend einen biokompatiblen, biologisch abbaubaren Polyelektrolytkomplex aus Polykationen und Polyanionen sowie mindestens einen bioaktiven Wirkstoff, wobei die Nanopartikel dadurch erhältlich sind, dass der Polyelektrolytkomplex nach seiner Bildung zusätzlich mit mindestens einem Vernetzungsmittel behandelt wird. Des weiteren wird ein Verfahren zur Herstellung der oben genannten Nanopartikel offenbart, wobei man einen Wirkstoff in gebundener oder ungebundener Form, eine wässrige Lösung von einer sauren polymeren Substanz und einer basischen polymeren Substanz zusammenbringt und anschliessend der Polyelektrolyt in nanopartikulärer Form entsteht oder gegebenenfalls in eine nanopartikuläre Form überführt wird, dadurch gekennzeichnet, dass der nanopartikuläre Polyelektrolytkomplex anschliessend mit einem Vernetzungsmittel behandelt wird. Die Nanopartikel dienen zur Applikation von bioaktiven Wirkstoffen. Vorteilhaft ist insbesondere ihre hohe Stabilität sowie das kontrollierte Freisetzen der Wirkstoffe sowie die Vermeidung des Burst-Effektes. Des weiteren weisen die offenbarten Nanopartikel, bedingt durch das Herstellungsverfahren nur äusserst geringe Reste an organischen Lösungsmitteln auf.

Description

Beschreibung
Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung
Die Erfindung betrifft Nanopartikel, Verfahren zur Herstellung von Nanopartikeln sowie die Verwendung von Nanopartikeln.
In der modernen pharmazeutischen Technologie werden Formulierungen und Wirkstoffkombinationen immer interessanter, deren Anwendungsform sich nicht nur auf eine schonende Weise applizieren läßt, sondern die auch gezielt Einfluß auf die Verteilung, Bioverfügbarkeit oder Resorption des Medikaments nehmen.
Insbesondere partikuläre Systeme, sogenannte Mikro- oder Nanopartikel, die eine Teilchengröße im Bereich kleiner als 100 μm aufweisen, haben sich als aussichtsreiche Applikationsformen erwiesen, um Pharmaka unterschiedlichster Art dem Körper zuzuführen.
Ein Dokument, das die Vorteile der oben genannten Nanopartikel beschreibt ist die WO 96/20698. Hierin wird insbesondere erläutert, daß die Oberfläche dieser
Partikel auf mannigfache Weise modifiziert werden kann, um beispielsweise die Retentionszeit zu erhöhen. Es ist beispielsweise auch erwähnt, daß die Teilchen mit Antigenen versehen werden können, um so die Pharmaka, die sich in den Partikeln befinden sehr gezielt an ihrem vorgesehenen Wirkort freizusetzen. Problematisch ist jedoch, daß die Depotwirkung der Partikel relativ begrenzt ist, da die Freisetzung sehr rasch erfolgt. Die Stabilität der beschriebenen Partikel ist des weiteren relativ gering.
Eine weitere Druckschrift, die den Stand der Technik beschreibt, ist die WO 96/05810. Diese betrifft Mikropartikel, die Chitosan enthalten und positiv geladen sind. Durch eine teilweise Vernetzung der Partikel wird die Aufenthaltszeit der 2
Partikel auf den Schleimhäuten erhöht, so daß diese vermehrt in den Körper aufgenommen werden. Problematisch ist hierbei, daß die Partikel in Emulsionen hergestellt werden. Hierdurch ist es möglich, daß Reste des Lösungsmittels an bzw. in den Partikeln verbleiben. Dies wird insbesondere durch Adsorption des hydrophoben Lösungsmittels an hydrophobe Polymere oder bioaktive Substanzen, wie beispielsweise Proteine, verursacht. Diese Lösungsmittelreste sind insbesondere für pharmazeutische Anwendungen bedenklich. Die positive Ladung der Partikel, sie wird durch ein positives Zeta-Poteπtial gemessen, kann des weiteren für die in der WO 96/20698 beschriebenen Modifikationen der Oberfläche von Nachteil sein.
Zudem sind die beschriebenen Mikropartikel im allgemeinen zu groß (1-100 μm), um eine effiziente Aufnahme durch biologische Membranen zu gewährleisten. Außerdem können größere Partikel (>5 μm) toxisch wirken, da sie in den feinen Blutkapillaren der Lunge stecken bleiben können.
Die Patentschriften US 5,449,720 und WO 92/17167 der BIOTECH AUSTRALIA offenbaren ähnliche Systeme mit denen die Resorption der Mikropartikel wesentlich erhöht werden kann. Diese Systeme verwenden Vitamin B12 oder Analoga, um die Aufnahme der Partikel im Verdauungstrakt zu steigern. Die oben erwähnten
Probleme der raschen Freisetzung der Wirkstoffe, geringer Stabilität und Beladung werden jedoch auch in diesen Dokumenten nicht gelöst.
Die Patentschrift EP 0 454 044 B1 beschreibt die Herstellung von pharmazeutischen Zubereitungen in mikropartikulärer Form, die einen Polyelektrolytkomplex aus
Polykationen und Polyanionen sowie mindestens einen Wirkstoff aufweisen. Hierdurch werden die oben beschriebenen Probleme der organischen Lösungsmittel gelöst. Allerdings weisen diese Partikel trotz ihrer ionischen Vernetzung häufig eine ungenügende Stabilität auf, so daß die Wirkstoffe kurz nach Verabreichung der Partikel schlagartig freigesetzt werden könnten. 3
Angesichts des hierin angegebenen und diskutierten Standes der Technik ist es Aufgabe der vorliegenden Erfindung Partikel anzugeben, welche dazu beitragen, die Nachteile der bekannten Partikeln zu vermeiden oder zu verringern Insbesondere ist es Aufgabe der vorliegenden Erfindung, Nanopartikel zur Verfugung zu stellen, die stabil sind und eine anfängliche schlagartige Freisetzung
(sogenannter „Burst-Effekt") des Wirkstoffes vermeiden sowie ihn kontrolliert freigeben
Des weiteren ist es Aufgabe der vorliegenden Erfindung Nanopartikel anzugeben, die möglichst weitgehend frei von Resten organischer Losungsmittel sind
Noch eine Aufgabe ist in der Bereitstellung eines möglichst einfachen und vorteilhaften Verfahren zur Herstellung von Nanopartikeln zu sehen
Schließlich ist auch die Angabe der Verwendung von Nanopartikeln Aufgabe der
Erfindung
Gelost werden diese Aufgaben sowie weitere nicht explizit genannte Aufgaben, die aus den hierin diskutierten Zusammenhangen ableitbar oder erschließbar sind, durch die im Anspruch 1 beschriebenen Maßnahmen Zweckmäßige Abwandlungen der erfindungsgemaßen Nanopartikel, Verfahren zu deren Herstellung sowie deren Verwendung werden in eventuell nebengeordneten und in den auf Anspruch 1 ruckbezogenen Unteranspruchen unter Schutz gestellt
Dadurch, daß der biokompatible und biologisch abbaubare Polyelektrolytkomplex aus Polykationen und Polyanionen wahrend oder nach seiner Bildung zusätzlich mit einem Vernetzungsmittel behandelt wird, werden Wirkstoffe, die in den Nanopartikeln vorhanden sind kontrolliert freigesetzt
Durch die erfindungsgemaßen Maßnahme werden zusätzlich folgende Vorteile erzielt 4
Vermeidung einer schnellen Freigabe des Wirkstoffs kurz nach Verabreichung der Partikel („Burst-Effekt")
Empfindliche Wirkstoffe können durch die erfindungsgemaßen Nanopartikel hervorragend gegen Abbau geschützt werden, da sie gut in die Nanopartikel eingebettet sind
Hochwirksame Wirkstoffe können kontrolliert und sehr gezielt an ihrem Bestimmungsort freigesetzt werden, so daß eine geringere Arzneistoffdosis erforderlich ist und die unerwünschten Nebenwirkungen minimiert werden
Die Nanopartikel sind wesentlich stabiler als herkömmliche, ohne daß sie ihre biologische Abbaubarkeit verlieren
Die erfindungsgemaßen Partikel werden infolge ihrer geringen Große besonders leicht resorbiert
Die Nanopartikel sind im wesentlichen frei von Resten organischer Losungsmittel, da sie in wäßriger Losung gebildet werden können
Die Ladung des Polyelektrolytkomplexes kann durch die Vernetzung variiert werden, um die Hydrophihe der Partikel zu verandern Dies bewirkt eine Modifikation der Bindung von Plasmaproteinen an die Nanopartikel Des weiteren kann hierdurch auch die Retentionszeit der Partikel an den Schleimhauten sowie die Verweilzeit der Partikel im Korper beeinflußt werden
Weitere Stoffe, die an der Oberflache der Nanopartikeln gebunden sein können, werden durch die Vernetzung fester an die Partikel gebunden Diese Stoffe können beispielsweise die Resorption der Partikel erhohen, indem sie einen aktiven Transport der Partikel bewirken Durch diese Maßnahme kann 5
eine kovalente Bindung dieser Stoffe an den Polyelektrolytkomplex vermieden werden. Hierdurch wird die biologische Abbaubarkeit verbessert.
Zusätzlich kann durch diese Maßnahme das Quellvermögen bzw. die 5 Wasseraufnahme des Partikels beeinflußt werden.
Im Sinne der Erfindung bezeichnet Nanopartikel Teilchen einer mittleren Größe von 10 bis 1000 nm, vorzugsweise 10 bis 500 und besonders bevorzugt 50 bis 250 nm, die einen biokompatiblen und biologisch abbaubaren Polyelektrolytkomplex l o aufweisen.
Die Form der Partikel kann regelmäßig oder unregelmäßig sein.
Der Begriff biokompatibel bedeutet hierin, daß die zur Herstellung des 15 Polyelektrolytkomplexes vorzugsweise verwendeten Verbindungen bei Applikation verträglich, also beispielsweise nicht oder nur in vertretbarem Maße giftig sind und/oder nur eine sehr geringe allergene Wirkung entfalten. Damit keine Akkumulation der Polymere im Körper eintritt, sollen diese biologisch abbaubar oder ausscheidbar sein. Vorzugsweise sind die Polymere in Abhängigkeit ihres Einsatzes 20 auch biokompatibel.
Der Polyelektrolytkomplex kann durch das Zusammenbringen von Polyanionen und Polykationen entstehen, wie dies in der Patentschrift EP 0 454 044 B1 beschrieben ist. Je nach Verhältnis der polymeren Ionen kann die Oberfläche der gebildeten 25 Nanopartikel positiv oder negativ geladen (ein positives oder negatives Zeta-
Potential besitzen) oder ungeladen sein.
Als Polyanionen eignen sich hierfür alle negativ geladenen, biologisch abbaubaren oder ausscheidbaren Polymere. Hierzu können die Polysäuren insbesondere 30 geladene Phosphonat-, Phosphat-, Sulfonat-, Sulfat- und/oder Carboxygruppen aufweisen. Bevorzugt sind, ohne daß hierdurch eine Einschränkung erfolgen soll, 6
Hepaπn, Sumarin, Protaminsulfat, Polyvinyle, Polyallyle, Polystyrene und Polyacrylate, Derivate von Polyzuckerπ, wie beispielsweise Starkehydrolysate, Inulin, Hydroxyethylstarke, Dextrane, Cellulosedeπvate, Alginate und Xylan, die Sulfatgruppen oder Carbonatgruppen aufweisen, wie Pektinat und Xylanpolysulfat sowie Polyamide, die Carbonatgruppen aufweisen, insbesondere Polyaminosauren, wie Polyasparaginsaure und Polyglutaminsaure Diese geladenen Polymere können auch teilweise substituiert sein oder als Salz vorliegen Die Polyanionen können auch in copolymerer Form verwendet werden Hierunter sind Copolymere von verschiedenen Monomeren, die zur Herstellung der oben aufgeführten Polyanionen dienen können, als auch Copolymere dieser Monomeren mit anderen biologisch abbaubaren Monomereπ, wie sie zur Herstellung der weiter unten aufgeführten biologisch abbaubaren Polymeren verwendet werden können, zu verstehen Mischungen dieser Polymere/Copolymere sind im Rahmen der vorliegenden Erfindungen ebenfalls geeignet Bevorzugt ist hierbei Xylanpolysulfat sowie teilweise substituiertes Xylanpolysulfat
Das Gewichtsmittel des Molekulargewichts der Polyanionen betragt vorzugsweise 1 000 bis 2 000 000 Dalton, besonders bevorzugt 40 000 bis 600 000 Dalton Sie sind im allgemeinen kommerziell erhältlich Die Polyanionen können aber auch auf jede dem Fachmann bekannte Art und Weise hergestellt werden
Zur Herstellung der Nanopartikel werden die Polyanionen vorzugsweise in einer Konzentration von 0,1 bis 40 g/l, besonders bevorzugt 1 bis 20 g/l eingesetzt
Als biologisch abbaubare oder ausscheidbare Polykationen eignen sich im Rahmen der Erfindung unter anderem, ohne daß hierdurch eine Einschränkung erfolgen soll, Collagen und Collagenderivate, Gelatine, Poly-N-alkylvinylpyπdine, Polyethylenimine, Polyvinylamine, Polyallylamine und Polyacrylate, Poly-L-Lysiπ, Poly-α,ß-(dιmethylamιnoethyl)-D,L-aspartamιd (PDAA), Copolymere aus PDAA und hydrophob verestertem Poly-α,ß-(2-hydroxyethyl)-D,L-aspartamιd (PHEA), Chitosan und Derivate, Lysinoctadecylester, ammierte Dextrane, ammierte Cyclodextπne, 7
ammierte Celluloseether, ammierte Pektine sowie deren jeweils teilweise substituierte Derivate und Salze Die Polykationen können auch in copolymerer Form verwendete werden Hierunter sind Copolymere von verschiedenen Monomeren, die zur Herstellung der oben aufgeführten Polykationen dienen können, als auch Copolymere dieser Monomeren mit anderen biologisch abbaubaren Monomeren, wie sie zur Herstellung der weiter unten aufgeführten biologisch abbaubaren Polymeren verwendet werden können, zu verstehen Mischungen dieser Polymere/Copolymere sind im Rahmen der vorliegenden Erfindungen ebenfalls geeignet Bevorzugt ist hierbei Chitosan, da dessen besonders hohe Verträglichkeit anerkannt ist
Das Gewichtsmittel des Molekulargewichts der Polykationen betragt vorzugsweise 1 000 bis 2 000 000 Dalton, besonders bevorzugt 40 000 bis 600 000 Dalton Ihre Herstellung ist dem Fachmann bekannt Sie sind im allgemeinen kommerziell erhältlich
Zur Herstellung der Nanopartikel werden die Polykationen vorzugsweise in einer Konzentration von 0,1 bis 40 g/l, besonders bevorzugt 1 bis 20 g/l eingesetzt
Die Nanopartikel können weitere biokompatible und/oder biologisch abbaubare
Polymere enthalten, die dem Fachmann bekannt sind Beispielhaft, ohne daß hierdurch eine Einschränkung erfolgen soll, seien folgende Polymere genannt Polysaachaπde, wie beispielsweise Dextran und dessen Derivate, Polyalkylcyanoacrylate, Polyalkohole, Polymethylidenmalonate, Polyester, wie PLGA (polylactic-polyglycolic acid copolymer)und Polycaprolacton, Polyether, wie
Polyethylenglycol, Polyanhydπde, Polyalkylcyanoacrylate, Polyacrylamide, Polyphosphazene sowie biologisch abbaubare Polyamide und Polyurethane Besonders bevorzugt sind hierbei Derivate der Polymere, die zusätzliche funktionelle Gruppen aufweisen Zu diesen funktionelle Gruppen gehören, ohne daß hierdurch eine Einschränkung erfolgen soll, die Hydroxyl-, die Amino-, die Thiol, die
Carbonyl-, die Thiocarbonyl-, die Imino-, die Carboxyl-, die Alkoxycarbonyl-, die 8
Carboxyamid-, die Phosphonat-, die Phosphat-, die Sulfonat-, die Sulfat- und die Epoxidgruppe
Diese biologisch abbaubaren Polymere können auch in copolymerer Form eingesetzt werden Hierunter sind Copolymere von verschiedenen Monomeren, die zur Herstellung der oben aufgeführten biologisch abbaubaren Polymeren dienen können, zu verstehen Mischungen dieser Polymere/Copolymere sind im Rahmen der vorliegenden Erfindungen ebenfalls geeignet
Diese Polymere können dazu dienen die Stabilität der Nanopartikel zu variieren
Des weiteren können die Polymere dazu dienen die weiter unten genannten oberflachenmodifizierenden Mittel, die bioaktiven Wirkstoffe an die Nanopartikel zu binden und/oder die Wirkstoffe zu stabilisieren
Das Gewichtsmittel des Molekulargewichts der Polymere betragt mehr als 1 000, vorzugsweise 30 000 bis 2 000 000, besonders bevorzugt 50 000 bis 300 000 Dalton
Zur Herstellung der Nanopartikel werden die biologisch abbaubaren Polymere vorzugsweise in einer Konzentration von 0 bis 100 g/l, besonders bevorzugt 0 bis 40 g/l eingesetzt
Die Herstellung dieser Polymere sowie der Polysauren bzw Polybasen ist literaturbekannt Ein Großteil dieser Polymere ist auch kommerziell erhaltlich Zusätzlich können noch weitere Zusatzstoffe in die Nanopartikel eingebaut werden, falls dies erwünscht ist So können zum Beispiel Absorptionsverbesserer wie Phospholipide mit eingearbeitet werden
Bioaktive Wirkstoffe sind Substanzen, die Eigenschaften oder das Verhalten von lebenden Systemen beeinflussen Hierzu gehören, ohne daß hierdurch eine
Einschränkung erfolgen soll Therapeutika, Diagnostika, Kosmetika sowie 9
prophylaktisch wirkende Stoffe. Es soll hierbei darauf verwiesen werden, daß in besonderen Fällen der Stoff selbst nicht aktiv werden muß. Im Fall von Diagnostika sollen hierunter beispielsweise auch Kontrastmittel wie Sauerstoff oder Edelgase u.a. verstanden werden.
Besonders interessante bioaktive Wirkstoffe sind beispielsweise aktive Peptide und Proteine, wie beispielsweise Insulin, Interferone, Enzyme, Somatropin, Erythropoietin, G-CSF, Humanes Wachstumshormon, Calcionin, LHRH, Faktor VIII, tPA, Enkephaline, Glucagon, TRH, Thymopoietin, Thymopentin, Thymocartin sowie Analoge und Fragmente;
Enzyminhibitoren, wie beispielsweise HlV-Proteaseinhibitoren;
Antigene und Immunogene, zum Beispiel Influenzavironen oder Subeinheiten von Antigenen;
Ganglioside;
Antibiotika, wie ß-Lactam-Antibiotika (Penicilline, Cephalosporine, Monobactame, Carbapeneme u.a.), Aminoglykoside (z.B. Streptomycin), Tetracycline,
Chloramphenicol, Makrolid-Antibiotika (z.B. Erythromycin), Lincomycine, Fosfomycin, Fusidinsäure, Polymyxine, Vancomycine u. Teicoplanin;
Lokalanästhetika;
Kontrazeptiva;
Analgetika, wie Hypnoanalgetika insbesondere Opium-Alkaloide, 4-Phenylpiperidin- Derivate (Pethidin), 3,3-Diphenylpropylamin-Dehvate (Methadon), Fentanyl- Derivate, Tramadol sowie Nefopam und nicht-opioide Analgetika, Antipyretika und
Antiphlogistika, insbesondere Derivate der Salicylsäure (z.B. Acetylsalicylsäure), 10
des Anilins (z B Paracetamol), der Anthranilsaure (Mefenammsaure), des Pyrazols (Metamizol, Phenazon, Propyphenazon) u von (Hetero)arylessιg- u -propionsaureπ (Indometacm, Diclofenac, Ibuprofen, Naproxen), Glucocortιco(stero)ιde und Phenylbutazon-Deπvate,
Antirheumatika, wie Oxyphenbutazon, Arylessig- u -propionsauredeπvate insbesondere Indometacm, Diclofenac, Ibuprofen, Ketoprofen, Oxicame wie Piroxicam, Gold(l)-Praparate, D-Penicillamin, Chloroqum sowie Immunsuppressiva,
Hormone und Antagonisten, wie Peptid-Hormone, insbesondere
Adrenocortiocotropin, Vasopresin, Desmopressm, Parathormon, Somatostatin und Insulin, Steroid-Hormone, insbesondere Progesterone, Ostrogene und Androgene, Prostaglandme und Nebennierenhormone, wie Adrenalin,
Cytostatika, wie beispielsweise Alky erungsmittel, insbesondere Mechlorethamm,
Cyclophosphamid, Ifosfamid, Mephalan, Chlorambucil, Hexamethylmelamm, Thitepa, Busulfan, Carmustm, lomustm, Semustm, Steptozocm und Dacarbazin,
Antimetabohten, insbesondere Methotrexat, Fluoruracil, Floxuπdm, Cytarabm, Mercaptopurm, Thioguanm, Pentostatin,
Alkaloide,
RNA, DNA, wie Nukleotide, Oligonukleotide, Polynukleotide, Gene oder Gensegmeπte, Plasmide und/oder Vektoren sowie deren Derivate, welche beispielsweise insbesondere bei HIV, rheumatoider Arthritis, Krebs, Hormonmaπgelerkrankungen, Bluthochdruck, Atherosklerose, Gefaßkrankheiten, viralen Infektionen sowie mangelnder endogener Synthese aktiver Peptide und Proteine verwendet werden, 1 1
Toxme oder Vaccme, wie bakterielle Vaccine, wie das Tetanus und das Choleratoxin, wie virale Vaccine, wie AIDS-Antigene oder virale Hepatits- Komponenten,
Kohlenhydrate, wie Mono- oder Polysacchande, Dextran, Agar, Agarose-Denvate,
Protooglykane, wie Heparm, Heparan, Dermatansulfate,
Lipide, wie Phospho pide, Cholesteπn, Tngylceπde und Lipoproteme u a
Es können auch Mischungen dieser bioaktiven Wirkstoffe verwendet werden
Insbesondere für instabile Präparate sind die erfindungsgemaßen Nanopartikel hervorragend geeignete Darreichungsformen, da die Partikel besonders stabil sind und somit die Wirkstoffe, beispielsweise Proteine, gegen Zersetzung durch z B Magensaure schützen Der Wirkstoff kann daher besonders gezielt freigesetzt werden, so daß z B nach oraler Verabreichung der Wirkstoff nicht schon im Magen oder Darm freigegeben wird, wo er abgebaut wurde, sondern erst wenn er ms Blut aufgenommen worden ist
Der Wirkstoff kann auf mindestens vier verschiedene Arten in bzw auf die
Nanopartikel gelangen
1 Einschluß des Wirkstoffes bzw des Wirkstoffgemisches, das sich in der Losung befindet, bei Komplexfallung („Einfangen" aus der Losung)
2 Adsorption bzw Absorption eines Wirkstoffes bzw des Wirkstoffgemisches aus einer Losung, mit der die bereits hergestellten Nanopartikel in Kontakt kommen (bei porösen Partikeln oder Gelen mit „Schwamm-Effekt")
3 Ausfallen des Polyelektrolytkomplexes, wobei der Wirkstoff chemisch an einen
Komplexpartner gebunden ist 12
4 Einschluß durch Einsatz des Wirkstoffs/ Wirkstoffgemisches als Polyelektrolytkomplexbildungspartner
Zur Herstellung der Nanopartikel wird der bioaktive Wirkstoff/ das bioaktive Wirkstoffgemisch vorzugsweise in einer Konzentration von 0,1 bis 40 g/l, besonders bevorzugt 1 bis 20 g/i eingesetzt
Erfmdungsgemaß wird der Polyelektrolytkomplex nach seiner Bildung zusatzlich mit mindestens einem Vernetzungsmittel behandelt Diese Verbindungen verknüpfen die Polymere der Nanopartikel, so daß diese stabiler werden und pharmazeutische
Wirkstoffe, die in den Nanopartikeln enthalten sind, langsamer freigesetzt werden
Zu diesen Vernetzungsmittel gehören, ohne daß hierdurch eine Einschränkung erfolgen soll,
Aldehyde und Ketone, wie Formaldehyd, Glyoxal und Glutaraldehyd, Benzochinon
halogenierte Tπazindeπvate, wie 2,4,6-Trιchlor-1 ,3,5-trιazιn, 2,4-Dιchlor-6-methoxy-1 ,3,5-tπazιn,
2,4-Dιchlor-6-ethoxy-1 ,3,5-trιazιn, 2,4-Dιchlor-6-phenoxy-1 ,3,5-trιazιn, 2-Chor-4,6-dιmethoxy-1 ,3,5-trιazιn, 2-Chor-4,6-dιethoxy-1 ,3,5-trιazιn, 2-Chor-4,6-dιphenoxy-1 ,3,5-trιazιn,
Phosphomum-Salze, wie
O-(1 ,2-Dιhydro-2 -oxo-1 -pyπdyl)-trιpyrrolιdιnophosphonιumchlorιd,
O-(1 ,2-Dιhydro-2-oxo-1 -pyπdyl)-tπpyrrolιdιnophosphonιumhexafluorophosphat,
O-(1 ,2-Dιhydro-2 -oxo-1 -pyπdyl)-trιpyrrolιdιnophosphonιumperchlorat, O-(1 ,2-Dιhydro-2-oxo-1 -pyπdyl)-tπpyrrolιdιnophosphonιumtetrafluoroborat,
O-(1 ,2-Dιhydro-2-oxo-1-pyrιdyl)-trιs(dιmethylamιno)phosphonιumchloπd, 1 3
O-(1 ,2-Dιhydro-2-oxo-1 -pyrιdyl)-tπs(dιmethylamιno)phosphonιum- hexafluorophosphat,
O-(1 ,2-Dιhydro-2 -oxo-1 -pyrιdyl)-tπs(dιmethylamιno)phosphonιumperchlorat,
O-(1 ,2-Dιhydro-2-oxo-1-pyrιdyl)-trιs(dιmethylamιno)phosphonιumtetrafluoroborat, O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotrιazιn-3-yl)-trιpyrrolιdιnophosphonιumchloπd,
O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotrιazιn-3-yl)-trιpyrrolιdιophosphonιumhexa- fluorophosphat,
O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotπazιn-3-yl)-trιpyrrolιdιnophosphonιumperchlorat,
O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotrιazιn-3-yl)-trιpyrrolιdιnophosphonιumtetra- fluoroborat,
O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotrιazιn-3-yl)-trιs(dιmethylamιno)phosphonιum- chloπd,
O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotrιazιn-3-yl)-trιs(dιmethylamιno)phosphonιum- hexafluorophosphat, O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotrιazιn-3-yl)-tπs(dιmethylamιno)phosphonιum- perchlorat,
O-(3,4-Dιhydro-4-oxo-1 ,2,3-benzotrιazιn-3-yl)-tπs(dιmethylamιno)phosphonιum- tetrafluoroborat,
O-(5-Norbomen-2,3-dιcarboxamιdo)-tπpyrrolιdιnophosphonιumchloπd, O-(5-Norbomen-2,3-dιcarboxamιdo)-trιpyrrolιdιnophosphonιum hexafluorophosphat,
O-(5-Norbomen-2,3-dιcarboxamιdo)-trιpyrrolιdιnophosphonιum perchlorat,
O-(5-Norbornen-2,3-dιcarboxamιdo)-trιpyrrolιdιnophosphonιum tetrafluoroborat,
O-(5-Norbomen-2,3-dιcarboxamιdo)-trιs(dιmethylamιno)phosphonιumchlorιd,
O-(5-Norbornen-2,3-dιcarboxamιdo)-trιs(dιmethylamιno)phosphonιumhexafluoro- phosphat,
O-(5-Norbomen-2,3-dιcarboxamιdo)-trιs(dιmethylamιno)phosphonιumperchlorat,
O-(5-Norbornen-2,3-dιcarboxamιdo)-trιs(dιmethylamιno)phosphonιumtetra- fluoroborat,
O-(Benzotrιazol-1-yl)-trιpyrrolιdιnophosphonιumchlorιd, O-(Benzotπazol-1-yl)-tπpyrrolιdιnophosphonιumhexafluorophosphat,
O-(Benzotrιazol-1-yl)-trιpyrrolιdιnophosphonιumperchlorat, 14
0- Benzotrιazol-1 yl)-tπpyrrolιdιnophosphonιumtetrafluoroborat,
O- Benzotrιazol-1 yl)-trιs(dιmethylamιno)phosphonιumchlorιd,
O- Benzotrιazol-1 yl)-trιs(dιmethylamιno)phosphonιumhexafluorophosphat,
O- Benzotrιazol-1 yl)-tπs(dιmethylamιno)phosphonιumperchlorat,
O- Benzotπazol-1 yl)-trιs(dιmethylamιno)phosphonιumtetrafluoroborat,
O- N-Malemimidy l)-trιpyrrolιdιnophosphonιumchloπd,
O- N-Maleinimidy l)-tπpyrrolιdιnophosphonιumhexafluorophosphat,
O- N-Malemimidy l)-tπpyrrolιdιnophosphonιumperchlorat,
O-ι N-Malemimidy l)-trιpyrrolιdιnophosphonιumtetrafluoroborat,
O- N-Malemimidy l)-tπs(dιmethylamιno)phosphonιumchlond,
O- N-Malemimidy l)-tπs(dιmethyiamιno)phosphonιumhexafluorophosphat,
O- N-Malemimidy l)-trιs(dιmethylamιno)phosphonιumperchlorat,
O N-Maleinimidy l)-trιs(dιmethylamιno)phosρhonιumtetrafluoroborat,
O-ι N-Succmimidy l)-tπpyrrolιdιnophosphonιumchlorιd,
O N-Succinimidy l)-tπpyrrolιdιnophosphonιumhexafluorophosphat,
O- N-Succinimidy l)-tπpyrrolιdιnophosphonιumperchlorat,
O N-Succmimidy l)-trιpyrrolιdιnophosphonιumtetrafluoroborat,
O- N-Succinimidy l)-trιs(dιmethylamιno)phosphonιumchlorιd,
O- N-Succmimidy l)-trιs(dιmethylamιno)phosphonιumhexafluorophosphat,
O- N-Succmimidy l)-trιs(dιmethylamιno)phosphonιumperchlorat,
O-ι N-Succinimidy l)-trιs(dιmethylamιno)phosphonιumtetrafluoroborat,
O N-Phtha midy l)-tπpyrrolιdιnophosphonιumchlorιd,
O N-Phthahmidy l)-trιpyrrolιdιnophosphonιumhexafluorophosphat,
OH N-Phthahmidy l)-trιpyrrolιdιnophosphonιumperchlorat,
O N-Phthahmidy l)-trιpyrrolιdιnophosphonιumtetrafluoroborat,
O N-Phthalimidy l)-trιs(dιmethylamιno)phosphonιumchlorιd,
O N-Phthahmidy l)-trιs(dιmethylamιno)phosphonιumhexafluorophosphat,
O N-Phthahmidy l)-trιs(dιmethylamιno)phosphonιumperchlorat,
O- N-Phthalimidy l)-trιs(dιmethylamιno)phosphonιumtetrafluoroborat,
O- N-Perhydroph' thalιmιdyl)-tπpyrrolιdιnophosphonιumchloπd,
O- N-Perhydroph thalιmιdyl)-trιpyrrolιdιnophosphonιumhexafluorophosphat, 15
O-(N-Perhydrophthalimidyl)-tripyrrolidinophosphoπiumperchlorat, O-(N-Perhydrophthalimidyl)-thpyrrolidinophosphoniumtetrafluoroborat, O-(N-Perhydrophthalimidyl)-tris(dimethylamino)phosphoniumchlorid, O-(N-Perhydrophthalimidyl)-tris(dimethylamino)phosphoniumhexafluorophosphat, O-(N-Perhydrophthalimidyl)-tris(dimethylamino)phosphoniumperchlorat,
O-(N-Perhydrophthalimidyl)-tris(dimethylamino)phosphoniumtetrafluoroborat, Tris-di-methyl-amino-chloro-phosphonium-hexafluorophosphat, Tris-di-methyl-amino-bromo-phosphonium-hexafluorophosphat, Tris-di-methyl-amino-cyano-phosphonium-hexafluorophosphat, Tris-di-methyl-amino-isothiocyanoto-phosphonium-hexafluorophosphat,
Tris-di-methyl-amino-azido-phosphonium-hexafluorophosphat, Tris-di-methyl-amino-trichlormethyl-phosphonium-hexafluorophosphat, Tris-di-methylamino-trifluoromethyl-phosphonium-hexafluorphosphat, Tris-di-methyl-amino-phenoxy-phosphonium-hexafluorophosphat, Tris-di-methyl-amino-p-nitrophenoxy-phosphonium-hexafluorophosphat,
Tris-pyrrolidino-chloro-phosphonium-hexafluorophosphat, Tris-pyrrolidino-bromo-phosphonium-hexafluorophosphat, Tris-pyrrolidino-cyano-phosphonium-hexafluorophosphat, Tris-pyrrolidino-isothiocyanoto-phosphonium-hexafluorophosphat, Tris-pyrrolidino-azido-phosphonium-hexafluorophosphat,
Tris-pyrrolidino-trichlormethyl-phosphonium-hexafluorophosphat, Tris-pyrrolidino-trifluoromethyl-phosphonium-hexafluorophosphat, Tris-pyrrolidino-phenoxy-phosphonium-hexafluorophosphat, Tris-pyrrolidino-p-nitrophenoxy-phosphonium-hexafluorophosphat;
Uronium-Salze, wie
1,2-Dihydro-2-oxo-1-pyridyl-oxy-biscyclohexylidenuroniumchlorid, 1 ,2-Dihydro-2-oxo-1-pyridyl-oxy-biscyclohexylidenuroniumhexafluorophosphat, 1 ,2-Dihydro-2-oxo-1-pyridyl-oxy-biscyclohexylidenuroniumperchlorat, 1 ,2-Dihydro-2-oxo-1 -pyridyl-oxy-biscyclohexylidenuroniumtetrafluoroborat,
1 ,2-Dihydro-2-oxo-1 -pyridyl-oxy-biscyclopentylidenuronium- Chlorid, 1 6
1 ,2-Dihydro-2-oxo-1 -pyhdyl-oxy-biscyclopentylidenuroniumhexafluorophosphat, 1 ,2-Dihydro-2-oxo-1 -pyridyl-oxy-biscyclopentylidenuroniumperchlorat, 1 ,2-Dihydro-2-oxo-1-pyridyl-oxy-biscyclopentylidenuroniumtetrafluoroborat, 1 ,2-Dihydro-2-oxo-1 -pyridyl-oxy-N,N,N',N'-tetramethyluroniumchlohd, 1 ,2-Dihydro-2 -oxo-1 -pyridyl-oxy-N,N,N',N'-tetramethyluroniumhexafluorophosphat,
1 ,2-Dihydro-2 -oxo-1 -pyridyl-oxy-N,N,N',N'-tetramethyl-uroniumperchlorat, 1 ,2-Dihydro-2-oxo-1 -pyridyl-oxy-N,N,N',N'-tetramethyl-uroniumtetrafluoroborat, 3,4-Dihydro-4-oxo-1 ,2,3-benzothazin-3-yl-oxy-biscyclohexylidenuroniumchlorid, 3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-biscyclo-hexylidenuroniumhexafluoro- phosphat,
3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-biscyclo-hexylidenuroniumperchlorat, 3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-biscyclo-hexylidenuroniumtetra- fluoroborat, 3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-biscyclo-pentylidenuroniumchlorid, 3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-biscyclopentylidenuroniumhexafluoro- phosphat,
3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-biscyclo-pentylidenuroniumperchlorat, 3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-biscyclo-pentylidenuroniumtetra- fluoroborat, 3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-N,N,N',N'- tetramethyluroniumchlorid,
3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-N,N,N\N'-tetramethyluroniumhexa- fluorophosphat,
S^-Dihydro^-oxo-I ^.S-benzotriazin-S-yl-oxy-N^.N'.N'- tetramethyluronium- perchiorat, 3,4-Dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl-oxy-N,N,N',N'- tetramethyluroniumtetra- fluoroborat,
5-Norbomen-2,3-dicarboxamido-oxy-biscyclohexylidenuroniumchlorid, 5-Norbomen-2,3-dicarboxamido-oxy-biscyclohexylidenuroniumhexafluorophosphat, 5-Norbornen-2,3-dicarboxamido-oxy-biscyclohexylidenuroπiumperchlorat, 5-Norbornen-2,3-dicarboxamido-oxy-biscyclohexylidenuronium-tetrafluoroborat,
5-Norbornen-2,3-dicarboxamido-oxy-biscyclopentylidenuroniumchlohd, 17
5-Norbomen-2,3-dιcarboxamιdo-oxy-bιscyclopentylιdenuronιumhexafluorophosphat,
5-Norbornen-2,3-dιcarboxamιdo-oxy-bιscyclopentylιdenuronιumperchlorat,
5-Norbornen-2,3-dιcarboxamιdo-oxy-bιscyclopentylιdenuronιumtetrafluoroborat,
5-Norbornen-2,3-dιcarboxamιdo-oxy-N,N,N',N'-tetramethyluronιumchlorιd,
5-Norbomen-2,3-dιcarboxamιdo-oxy-N,N,N',N'-tetramethyluronιumhexafluoro- phosphat,
5-Norbomen-2,3-dιcarboxamιdo-oxy-N,N,N',N'-tetramethyluronιumperchlorat,
5-Norbornen-2,3-dιcarboxamιdo-oxy-N,N,N',N'-tetramethyluronιumtetrafluoroborat
Benzotπazol-' -y /1l-oxy-bιscyclohexylιdenuronιumchlorιd, B B Beeennnzzzoootttrrπιιaaazzzooolll---11' -- -yyylll-oxy-biscyclohexylidenuronium-hexafluorophosphat,
Benzotπazol-' -y tιl\l-oxy-biscyclohexylidenuroniumperchlorat,
Benzotπazol-' l-y tιll-oxy-biscyclohexyhdenuroniumtetrafluoroborat,
Benzotπazol-' -ytl\l-oxy-biscyclopentylidenuroniumchlorid,
Benzotπazol-' l-y tfl\l-oxy-biscyclopentylidenuroniumhexafluorophosphat,
B Beennzzoottππaazzooll--1' l--yylll-oxy-biscyclopentylidenuroniumperchlorat,
Benzotπazol-' l-y tιl\l-oxy-biscyclopentyhdenuroniumtetrafluoroborat,
Benzotπazol-' l-y ^ιl\l-oxy-N,N,N',N'-tetramethyluronιumchlorιd,
Benzotπazol-' 1-y ttl\l-oxy-N,N,N\N'-tetramethyluronιumhexafluorophosphat,
Benzotnazol- l-y tιl\l-- oxy-N,N,N',N'-tetramethyluronιumperchlorat, B B Beeennnzzzoootttrrπιιaaazzzooolll---11' 1---yyylll-oxy-N,N,N\N'-tetramethyluronιumtetrafluoroborat,
N-Maleinimidyl-oxy-biscyclohexylidenuroniumchlond, N-Malemimidyl-oxy-biscyclohexylidenuroniumhexafluorophosphat, N-Maleinimidyl-oxy-biscyclohexyhdenuroniumperchlorat, N-Maleinimidyl-oxy-biscyclohexy denuroniumtetrafluoroborat, N-Maleinimidyl-oxy-biscyclopentylidenuroniumchlond,
N-Maleinimidyl-oxy-biscyclopenty denuroniumhexafluorophosphat, N-Maleinimidyl-oxy-biscyclopentylidenuroniumperchlorat, N-Maleinimidyl-oxy-biscyclopentyhdenuroniumtetrafluoroborat, N-Maleιnιmιdyl-oxy-N,N,N\N'-tetramethyluronιumchlorιd, N-Maleιnιmιdyl-oxy-N,N,N',N'-tetramethyluronιumhexafluorophosphat,
N-Maleinimidyl-oxy-N.N.N'.N'-tetramethyluroniumperchlorat, N-Maleinimidyl-oxy-N,N,N',N'-tetramethyluronium-tetrafluoroborat, N-Succinimidyl-oxy-biscyclohexylidenuroniumchlorid, N-Succinimidyl-oxy-biscyclohexyiidenuroniumhexafluorophosphat, N-Succinimidyl-oxy-biscyclohexylidenuroniumperchlorat, N-Succinimidyl-oxy-biscyclohexylidenuroniumtetrafluoroborat,
N-Succinimidyl-oxy-biscyclopentylidenuroniumchlorid, N-Succinimidyl-oxy-biscyclopentylidenuroniumhexafluorophosphat, N-Succiπimidyl-oxy-biscyclopentylidenuroniumperchlorat, N-Succinimidyl-oxy-biscyclopentylidenuroniumtetrafluoroborat, N-Succinimidyl-oxy-N,N,N',N'-tetramethyluroniumchlorid,
N-Succinimidyl-oxy-N,N,N',N'-tetramethyluroniumhexafluorophosphat, N-Succinimidyl-oxy-N,N,N',N'-tetramethyluroniumperchlorat, N-Succinimidyl-oxy-N,N,N',N'-tetramethyluroniumtetrafluoroborat, N-Phthalimidyl-oxy-biscyclohexylidenuroniumchlorid, N-Phthalimidyl-oxy-biscyclohexylidenuroniumhexafluorophosphat,
N-Phthalimidyl-oxy-biscyclohexylidenuroniumperchlorat, N-Phthalimidyl-oxy-biscyclohexylideπuroniumtetrafluoroborat, N-Phthalimidyl-oxy-biscyclopentylidenuroniumchlorid, N-Phthalimidyl-oxy-biscyclopentylidenuroniumhexafluorophosphat, N-Phthalimidyl-oxy-biscyclopentylidenuroniumperchlorat,
N-Phthalimidyl-oxy-biscyclopentylidenuroniumtetrafluoroborat, N-Phthalimidyl-oxy-N,N,N',N'-tetramethyluroniumchlorid, N-Phthalimidyl-oxy-N,N,N',N'-tetramethyluroniumhexafluorophosphat, N-Phthalimidyl-oxy-N,N,N',N'-tetramethyluroniumperchlorat, N-Phthalimidyl-oxy-N,N,N',N'-tetramethyluroniumtetrafluoroborat,
N-Perhydrophthalimidyl-oxy-biscyclohexylidenuroniumchlorid, N-Perhydrophthalimidyl-oxy-biscyclohexylidenuroniumhexafluorophosphat, N-Perhydrophthalimidyl-oxy-biscyclohexylidenuroniumperchlorat, N-Perhydrophthalimidyl-oxy-biscyclohexylidenuronium tetrafluoroborat, N-Perhydrophthalimidyl-oxy-biscyclopentylidenuroniumchlorid,
N-Perhydrophthalimidyl-oxy-biscyclopentylidenuroniumhexafluorophosphat, 1 9
N-Perhydrophthalimidyl-oxy-biscyclopentylidenuroniumperchlorat, N-Perhydrophthalimidyl-oxy-biscyclopentylidenuroniumtetrafluoroborat, N-Perhydrophthalimidyl-oxy-N,N,N',N'-tetramethyluroniumchlorid, N-Perhydrophthalimidyl-oxy-N,N,N',N'-tetramethyluroniumhexafluorophosphat, N-Perhydrophthalimidyl-oxy-N, N, N', N'-tetramethyluroniumperchlorat,
N-Perhydrophthalimidyl-oxy-N,N,N',N'-tetramethyluroniumtetrafluoroborat;
Derivate des Hydroxylamins, wie
Kohlensäure-bis-(1 ,2-dihydro-2-oxo-1 -pyridyl)ester, Kohlensäure-bis-(3,4-dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl)ester,
Kohlensäure-bis-(5-norbomen-2,3-dicarboxamido)ester,
Kohlensäure-bis-(benzotriazol-1-yl)ester,
Kohlensäure-bis-(N-maleinimidyl)ester,
Kohlensäure-bis-(N-succinimidyl)ester, Kohlensäure-bis-(N-phthalimidyl)ester,
Kohlensäure-bis-(N-perhydrophthalimidyl)ester,
Oxalsäure-bis-(1 ,2-dihydro-2-oxo-1 -pyridyl)ester,
Oxalsäure-bis-(3,4-dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl)ester,
Oxalsäure-bis-(5-norbornen-2,3-dicarboxamido)ester, Oxalsäure-bis-(benzotriazol-1 -yl)ester,
Oxalsäure-bis-(N-maleinimidyl)ester,
Oxalsäure-bis-(N-succinimidyl)ester,
Oxalsäure-bis-(N-phthalimidyl)ester,
Oxalsäure-bis-(N-perhydrophthalimidyl)ester, Pyrokohlensäure-bis-(1 ,2-dihydro-2-oxo-1 -pyridyl)ester,
Pyrokohlensäure-bis-(3,4-dihydro-4-oxo-1 ,2,3-benzotriazin-3-yl)ester,
Pyrokohlensäure-bis-(5-norbomen-2,3-dicarboxamido)ester,
Pyrokohlensäure-bis-(benzotriazol-1 -yl)ester,
Pyrokohlensäure-bis-(N-maleinimidyl)ester, Pyrokohlensäure-bis-(N-succinimidyl)ester, 20
Pyrokohlensäure-bis-(N-phthalimidyl)ester, Pyrokohlensäure-bis-(N-perhydrophthalimidyl)ester; und
reaktive Kohlensäurederivate, wie Carbodiimide insbesondere N-(3- Dimethylaminopropyl)-N-ethylcarbodiimid.
Mittel, die Ester- oder Amidgruppen bilden, sind bevorzugt, da die entstehenden Ester- oder Amidgruppen besonders gut biologisch abgebaut werden können. Hierzu gehören alle halogeπierte Triazinderivate, alle Phosphonium-Salze , alle Uronium-Salze und reaktive Kohlensäurederivate. N-(3-Dimethylaminopropyl)-N- ethylcarbodiimid Hydrochlorid (EDAP) und O-(N-Succinimidyl)-N,N,N',N'- tetramethyluronium Tetrafluoroborat (TSTU) sind hierbei besonders bevorzugt.
Der Vernetzungsgrad kann durch die Konzentration des Polyelektrolytkomplexes und des Vernetzungsmittels sowie die Reaktionszeit beeinflußt werden.
Die Reaktionszeit ist unter anderem von Art, Reaktivität und Konzentration des gewählten Vernetzungsmittels und des Polyelektrolytkomplexes sowie der Reaktionstemperatur und dem pH Wert der Lösung abhängig. Sie kann unter Umständen durch Katalysatoren beeinflußt werden. Sie beträgt bei Raumtemperatur vorzugsweise 1 Minute bis 24 Stunden, besonders bevorzugt 5 bis 120 Minuten.
Die Oberfläche der Nanopartikel kann modifiziert werden. Diese Modifikation ist in den oben genannten Patentanmeldungen WO 96/20698, US 5,449,720 und WO 92/17167 beschrieben, die hierdurch in die Offenbarung mit einbezogen werden sollen.
Durch die Modifikation können die Eigenschaften der Nanopartikel gezielt beeinflußt werden. So können zum Beispiel antithrombozytische Eigenschaften erzeugt, die Aufnahme der Partikel über den Darm kann verbessert oder es können Stoffe an die
Partikel gebunden werden, so daß die Partikel an ganz definierten Bereichen im 21
Körper angereichert werden. Als Beispiel seien hier Antigene gegen Krebszellen genannt, die mit den Partikeln verbunden werden können, so daß die Arzneimittel direkt bei den Krebszellen aus den Wirkstoff gesättigten Pharmadepots freigesetzt werden.
Diese Modifikation kann dadurch erreicht werden, daß zumindest eines der geladenen Polymere des Polyelektrolytkomplexes vor, während oder nach Bildung des Komplexes zusätzlich mit einem Mittel behandelt wird, welches die Oberfläche modifiziert. Zu diesen Mitteln gehören, ohne daß hierdurch eine Einschränkung erfolgen soll, verschiedene synthetische Polymere, Biopolymere, niedermolekulare
Oligomere, Naturstoffe und oberflächenaktive Stoffe.
Zu den synthetische Polymere, mit denen die Oberfläche der Nanopartikel modifiziert werden können, gehören Carboxymethylcellulose, Cellulose, Celluloseacetat, Cellulosephtalat, Polyethylenglykol (Carbowachs), Polyvinylalkohol
(PVA), Hydroxypropylmethylcellulosephtalat, Hydroxypropylcellulose, Natrium- oder Kaliumsalze der Carboxymethylcellulose, Polyvinylpyrolidon, Polystyrol und Silikate, wie Bentonit.
Zu den Biopolymeren, mit denen die Oberfläche der Nanopartikel modifiziert werden können, gehören insbesondere Proteine und Peptide, wie Gelatine, Casein, Albumine (Ovalbumin), Myoglobin, Hämoglobin, monoklonale und polyklonale Anikörper, Cytokine, wie Wachstumsfaktoren, Interferone, Lymphokine, Monokine, Interleukine und Chemokine; sowie Polysaccharide und Pectine.
Zu den Naturstoffen, mit denen die Oberfläche der Nanopartikel modifiziert werden können, gehören insbesondere Cofaktoren, wie Coenzyme, wie Vitamine, insbesondere Vitamin B12, und prosthetische Gruppen, wie die Häm-Gruppe; Lipide, insbesondere Phospholipide, wie Lecithin, und Cholesterin; und Prostaglandine. 22
Zu den oberflächenaktiven Stoffen, mit denen die Oberflache der Nanopartikel modifiziert werden können, gehören nichtmoische Tenside, insbesondere Sorbitan-Fettsaureester, insbesondere Polyoxyethylen-Sorbitan-Fettsaureester, Fettalkohole, wie Cetylaikohole oder Stearylalkohole, und Polyethersulfonate, anionische Tenside, insbesondere Natπumdodecylsulfat, Fettsauren (beispielsweise Palmitmsaure, Stearinsaure und Olsaure), Gylceπnester von Fettsauren (beispielsweise Glyceπnmonostearat) sowie Natrium- und Kaliumsalze von Fettsauren (Natnumoleat, Natriumpalmitat, Natπumstearat, u a ), Polyoxylstearat, Polyoxylethylenlaurylether, Sorbitansesquioleat und Tπethanolamin, und kationische Tenside, insbesondere Didodecyldimethylammoniumbromid, Cetyltrimethylammoniumbromid, Benzalkoniumchlond, Hexadecyltπmethylammonumchlorid, Dimethyldodecylaminoprpan, N-Cetyl-N- ethylmorpholmiumethosulfat
Zu diesen Mitteln, mit denen die Oberflache der Nanopartikel modifiziert werden können, gehören bevorzugt Mittel, die einen aktiven Transport (beispielsweise Resorption) der Partikel ermöglichen Diese Mittel sind als Carπer bekannt
Zu diesen Carnern gehören unter anderem Gallensauren, Adhesine, Invasme,
Toxine, wie zum Beispiel Pflanzen- oder Bakteπentoxine, Cobalamine, virale Hamaglutimne, Lectme, Transferπn, Riboflavm sowie Peptide, die intestinal transportiert werden (die Carπersysteme für den mtestinalen Peptid-Transport verwenden) Derivate dieser Stoffe, die ebenfalls die jeweiligen Camer-Systeme verwenden, können ebenfalls eingesetzt werden
Cobolamine, die als Carrier geeignet sind, umfassen beispielsweise Stoffe, wie Vitamin B12 oder Analoga, die an den intπnsic factor (IF), ein Glykoprotem des Magensaftes, binden Durch diese Bindung werden die Nanopartikel aktiv von den Schleimhäuten aus dem Verdauungstrakt resorbiert Zu den Analoga gehören beispielsweise, ohne daß hierdurch eine Einschränkung erfolgen soll, 23
Aquocobalamin, Adenosylcobalamin, Methylcobalamin, Hydroxycobalamm, Cyanocobalamin, Carbana d und 5-Methoxybenzalcyanocobalamιn sowie die Desdimethyl-, Monoethylamid- und Methylamid-Deπvate der zuvor genannten Verbindungen Des weiteren gehören zu diesen Analoga Chlorocobalamin-, Sulfitocobalamm-, Nitrocobalamin-, Thiocyanatocobalamin-,
Benzimidazolecyanocobalamm-Derivate, wie beispielsweise 5,6- Dichlorobenzimidazol, 5-Hydroxybenzιmιdazol, Trimethylbenzimidazol, sowie Adenosylcyanocobalamm [(Ade)CN-Cbl], Cobalammlaction, Cobalammlactam sowie die Anilid-, Ethylamid, Monocarbaoxyl- und Dicarboxyl-Deπvate des Vitamin B12 oder der entsprechenden Analoga Weitere Analoga des Vitamin B12 ergeben sich durch die Substitution des Cobaltatoms durch Zink oder Nickel
Diese oberflachenmodifizierenden Mittel können im Rahmen der vorliegenden Erfindung auch als Mischungen verwendet werden, um die verschiedenen Eigenschaften der oberflachenmodifizierenden Mittel zu kombinieren oder um synergistische Wirkungen zu erzielen
Zur Herstellung der Nanopartikel werden die oberflachenmodifizierenden Mittel vorzugsweise in einer Konzentration von 0 bis 200 g/l, besonders bevorzugt 0 bis 20 g/l eingesetzt
Diese oberflachenmodifizierenden Mittel können direkt in die wäßrige Losung gegeben werden Bevorzugt können diese Mittel kovalent oder ionisch an mindestens eines der hydrophilen Polymere, an das Vernetzungsmittel oder an die weiteren oben genannten biokompatibien und biologisch abbaubaren Polymere sowie an den bioaktiven Wirkstoff gebunden werden, um sie so möglichst fest mit dem Polyelektrolytkomplex zu verbinden
Hierzu können die oberflachenmodifizierenden Mittel mit weiteren Stoffen aktiviert werden Es ist aber auch möglich die hydrophilen Polymere, die Vernetzungsmittel oder an die weiteren oben genannten biokompatibien und biologisch abbaubaren 24
Polymere sowie an den bioaktiven Wirkstoff zu aktivieren, um danach diese Stoffe mit den oberflachenmodifizierenden Mittel zusammenzubringen Zu diesen Aktivatoren gehören beispielsweise, ohne daß hierdurch eine Einschränkung erfolgen soll, Disuccinimidylsuberat, Bιs(sulfoauccιnιmιdyl)suberat, Ethylenglycol- bιs(succιnιmdylsuccιnat), Ethylenglycol-bιs(sulfosuccιnιmdylsuccιnat), p-Aminophenylessigsaure, Dιthιo-bιs(succιnιmιdylpropιonat), 3 3'Dιthιo- bιs(sulfosuccιnιmιdylpropιonat), Disuccmimidyltartrat , Disulfosuccmimidyltartrat, bιs[2-(Succιnιmιdooxycarbonyloxy)-ethylen]sulfon, bιs[2-(Sulfosuccιnιmιdooxycarbonyloxy)-ethylen]sulfon, N,N'-Dιmethyladιpιnsauredιamιd*2HCI, N,N'-Dιmethylpιmelιnsauredιamιd*2HCI,
N,N'-Dιmethylsubeπnsauredιamιd*2HCI Des weiteren können Epoxide als Aktivatoreπ verwendet werden Zu diesen Epoxiden gehören beispielsweise Ethylenoxid, 1 ,2-Propylenoxιd, Glycidylether, wie Diglycidylbutandiolether, Diglycidylethandiolether, und Erythntolanhydπd
Es können aber auch Aktivatoren eingesetzt werden, die eine Thiolgruppe besitzen und so besonders gut biologisch abbaubar sind Zu diesen Aktivatoren gehören beispielsweise N-Succιnιmιdyl-3-(2-pyrιdyldιthιo)propιonat, Iminothiolan, Sulfosuccιnιmιdyl-6-[3-(2-pyrιdyldιthιo)propιonamιdo]hexanoat, Succιnιmιdyl-6-[3-(2- pyπdyldιthιo)propιonamιdo]hexanoat, Sulfosuccιnιmιdyl-6-[ -methyl- -(2-pyrιdyl- dιthιo)toluamιdo]hexanoat, 1 ,4-Dι[3'-(2'pyπdyldιthιo)propιonamιdo]butan, 4- -Succιnιmιdyloxycarbonyl-α-methyl- -(2-pyπdyldιthιo)toluol, Dimethyl- 3,3'Dιthιobιspropιonιmιdat*2HCI
Diese Aktivatoren können allem oder als Mischung verwendet werden
Zur Herstellung der Nanopartikel werden die Aktivatoren vorzugsweise in einer Konzentration von 0 bis 40 g/l, besonders bevorzugt 0 bis 2 g/l
Dies «st in den Patentanmeldungen WO 96/20698, US 5,449,720 und WO 92/17167 beschrieben 25
Die Nanopartikel können beispielsweise durch Polyelektrolytkomplexierung, Emulsionstechniken, Sprühtrocknung, Solvent evaporation, Lösungsmittelextraktion, Koazervation, Extrusion, Fällung sowie Filtration oder anderen dem Fachmann bekannten Verfahren hergestellt werden.
Bevorzugt werden die Nanopartikel durch Polyelektrolytkomplexierung erzeugt. Die Nanopartikel können durch Zusammenbringen einer wäßriger Lösung von Polykationen, einer wäßriger Lösung von Polyanionen und mindestens einem bioaktiven Wirkstoff sowie gegebenenfalls weiterer Stoffe (weitere Polymere, Hilfsstoffe usw.), die an eines der beiden ionischen Polymere gebunden sein können oder der in freier Form vorliegen können, und anschließender Behandlung mit einem Vernetzungsmittel erhalten werden.
Das Zusammenbringen der mindestens zwei wäßrigen Lösungen der hydrophilen Polymere erfolgt so, daß sich Nanopartikel der gewünschten Größe und
Größenverteilung bilden. Dies kann beispielsweise durch kontrolliertes Zutropfen einer der beiden Lösungen in die andere der beiden Lösungen geschehen. Der sich bei dem Mischen bildende Komplex fällt infolge von Neutralisation aus. Es kann erforderlich sein, daß zur Lösung der Stoffe, wie beispielsweise der Polymere, bioaktiven Wirkstoffe, usw., der pH-Wert eingestellt werden muß. Diese pH-Werte sind unter anderem von dem jeweiligen Polyelektrolyten abhängig und dem Fachmann bekannt. Bei bevorzugten Ausführungsformen kann sich der Fachmann beispielsweise am isoelektrischen Punkt orientieren. Die Teilchengröße läßt sich durch die Art und Weise des Zusammenbringens, beispielsweise beim Zutropfen die Verdünnung der mindestens zwei Lösungen, die Geschwindigkeit des Rührers, den pH-Wert sowie Durchmesser der beim Zutropfen verwendeten Düsen und Tropfgeschwindigkeit, steuern. Die Teilchengröße kann aber zusätzlich durch Ultraschall beeinflußt werden.
In besonders bevorzugten Ausführungsformen des erfindungsgemäßen
Herstellungsverfahrens kann auf weitere Hilfsstoffe verzichtet werden. Diese 2 6
Hilfsstoffe können aber je nach bioaktivem Wirkstoff, beispielsweise als Losungsvermittler, notwendig sein Hilfsstoffe können auch bei der Behandlung mit dem Vernetzungsmittel unverzichtbar sein
Es können aber je nach bioaktivem Wirkstoff und je nach verwendetem Polymer verschiedene Emulsionsverfahren angewendet werden Dies kann beispielsweise notwendig sein, falls in die Nanopartikel besonders hydrophobe Wirkstoffe oder zusätzlich hydrophobe Polymere eingebracht werden sollen Diese Emulsionsverfahren sind in der WO 96/05810 beschrieben
Hierbei wird beispielsweise eines der hydrophilen Polymere in Wasser gelost Diese Losung wird unter starkem Ruhren in ein unpolares Losungsmittel gegeben indem der hydrophobe Wirkstoff gelost ist Anschließend kann beispielsweise das zweite der hydrophilen Polymere in die entstandene Emulsion zugegeben werden, so daß der Polyelektrolytkomplex gebildet wird Dieser Komplex kann durch Zugabe eines der oben genannten Vernetzungsmittel in situ vernetzt werden Es ist bevorzugt, daß diese Emulsion durch geeignete Mittel, beispielsweise Dioctylsulphosuccmat stabilisiert wird
Ein unpolares Polymer kann ebenfalls in einem hydrophoben Losungsmittel gelost werden, um dieses in den Polyelektrolytkomplex einzubringen Falls sowohl ein hydrophober bioaktiver Wirkstoff als auch ein unpolares Polymer in den Polyelektrolytkomplex eingebracht werden sollen, ist es möglich, das oben erläuterte Verfahren leicht zu variieren, so daß eine mehrfache Emulsion (Ol-in- Wasser-ιn-ÖI-Emulsιon) gebildet wird
Die Partikel können auch durch Sprühtrocknung entstehen Hierbei wird eine geeignete Losung aus mindestens einem Polyanion, mindestens einem Polykation und mindestens einem bioaktiven Wirkstoff sowie gegebenenfalls weiterer Stoffe durch eine entsprechende Düse gesprüht, so daß Partikel der gewünschten Große entstehen Diese Partikel werden anschließend getrocknet 27
Die entstandenen Partikel können durch Zugabe von Vernetzungsmitteln in situ vernetzt werden, um die erfindungsgemäßen Nanopartikel zu erhalten. Hierzu kann beispielsweise eines der oben genannten Vernetzungsmittel zugegeben und vorzugsweise bei Raumtemperatur je nach gewünschtem Vernetzungsgrad und Vemetzuπgsmittel für weitere 10 Minuten bis 24 Stunden gerührt werden. Die exakte
Vorschrift für die Umsetzung der Partikel ist vom Vernetzungsmittel abhängig und kann vom Fachmann mit wenigen Routineversuchen optimiert werden.
Die Bestimmung der Vernetzung kann mittels literaturbekannter Methoden wie NMR, NIR oder Ausschlußchromatographie erfolgen.
Die entstandenen Partikel, die einen Polyelektrolytkomplex sowie zumindest einen bioaktiven Wirkstoff enthalten, können aber auch später vernetzt werden. Hierzu können diese Partikel in einem geeigneten Lösungsmittel, beispielsweise Wasser oder ein dipolar aprotisches Lösungsmittel, wie DMF (Dimethylformamid) oder
DMSO (Dimethylsoulfoxid), aufgenommen werden. In diese Lösung kann dann eines der oben genannten Vernetzungsmittel gegeben und mit dem Polyelektrolytkomplex so umgesetzt werden, daß dieser zusätzlich vernetzt wird. Dies kann beispielsweise durch Rühren für 10 Minuten bis 24 Stunden bei Raumtemperatur geschehen.
Die Partikel können anschließend isoliert werden. Diese Abtrennung kann beispielsweise durch Filtration oder Zentrifugation erfolgen. Die Partikel werden vorzugsweise anschließend mit Wasser gewaschen und beispielsweise durch Lyophilisation getrocknet.
Die so erhaltenen Nanopartikel können durch Bestrahlung sterilisiert werden, wie dies in der Fachwelt weithin bekannt ist. Die Nanopartikel können aber auch unter sterilen Bedingungen hergestellt werden. 28
Die Partikel können auf jede dem Fachmann bekannte Art verabreicht werden. Hierzu gehören insbesondere, ohne daß hierdurch eine Einschränkung erfolgen soll, die orale Applikationsform. Sie können beispielsweise aber auch parenteral zum Beispiel durch Injektion intravenös, intraarteriell, intramuskulär, subkutan, intrathekal oder intralumbal appliziert werden. Die Nanopartikel können des weiteren nasal, occular, rectal, vaginal, buccal, oral, transdermal sowie durch Inhalation verabreicht werden.
Die Herstellung soll aber durch die folgenden Beispiele näher erläutert werden.
Beispiel 1a:
18 mg Insulin und 2 mg FITC (Fluoresceinisothiocyanat) markiertes Insulin wurden in einem 50 ml Erlenmeyerkolben mit 12 ml destilliertem Wasser (aus einer Wasseraufbereitungsanlage der Firma Millipore) für 1 min bei Raumtemperatur auf einem Magnetrührer (Firma Ikamag RCT, Stufe 5) gerührt. Anschließend wurde solange eine 0.1 N wäßrigen HCI-Lösung zugetropft, bis eine klare Lösung erhalten wird und das Insulin vollständig in Lösung gegangen ist.
Zu dieser Lösung tropfte man unter Rühren 20 mg Xylanpolysulfat (der Firma Bene-
Arzneimittel) zu, das in 4 ml destilliertem Wasser gelöst wurde. Beim Zutropfen trat eine Trübung auf. Nachfolgend wurde langsam 0,1 N NaOH Lösung hinzugetropft, bis die Lösung ganz klar war.
Zu dieser Lösung fügte man unter Rühren bei mittlerer Umdrehungszahl eine
Lösung von 4 mg Chitosan (der Firma Fluka) in 2 ml Millipore Wasser hinzu. Die Lösung war nun ganz leicht getrübt.
Die Vernetzung erfolgte mit Glyoxal (Riedel). Hierzu wurden 400 μl einer wässrigen 2 %-igen Glyoxallösung (entspricht 8 mg reinem Glyoxal) zugegeben. Die entstandene Suspension wurde 10 min lang bei Raumtemperatur gerührt. 2 9
Die Suspension wurde hiernach über eine 100 kD Membran (PLHK-Membran der Firma Millipore) ultrafiltriert (Ultrafiltrationszelle Amicon 8050, Stickstoffdruck 0,2 bar, Reinheit > 99,9%), wobei der Rückstand noch mit 5 ml Wasser gewaschen wurde. Das Retentat wurde danach in einen 100 ml Rundkolben überführt, eingefroren (mit einer Mischung aus Isopropanol/Trockeneis) und über Nacht gefriergetrocknet (Modell LDC-1 , Christ).
Die Freigabe des Insulins wurde getestet, indem 5 mg der getrockneten Partikel in 10 ml Phosphatpuffer pH 7,4 (hergestellt mit Sigma Phosphatpuffertabletten) suspendiert und bei 37°C im Trockenschrank erwärmt wurden. Nach 30 min wird eine Probe gezogen, ultrafiltriert (Filter Millipore PLHK) und mittels Fluoreszenzspektroskopie auf FITC-Insulingehalt nach literaturbekannter Methode (Excitationswellenlänge: 494 nm, Emmissionswellenlänge: 518 nm) untersucht.
Es zeigte sich, daß nach 30 min nur 30,1 % des Insulins freigesetzt wurden.
Vergleichsbeispiel 1 :
Das Beispiel 1 wurde wiederholt. Die entstandenen Partikel wurden jedoch nicht vernetzt. D.h., die entstandene Suspension wurde nicht mit Glyoxal versetzt, sondern direkt, wie oben beschrieben, gewaschen, ultrafiltriert und getrocknet.
Der Freisetzung des FITC-Insulins wurde wie in Beispiel 1 getestet. Es wurde festgestellt, daß 59,4 % des FITC-Insulins in die Lösung abgegeben wurde.
Beispiel 1 b:
Die Reaktion wurde ähnlich wie in Beispiel 1 beschreiben durchgeführt: 20 mg Insulin wurden in einem 50 ml Erlenmeyerkolben mit 12 ml destilliertem Wasser für 1 min gerührt und solange eine 0,1 N HCI Lösung hinzugetropft, bis eine klare Lösung erhalten wird. Zu dieser Lösung wurden unter Rühren 20 mg 30
Xylanpolysulfat, gelost in 4 ml Wasser, getropft und nachfolgend eine 0,1 N NaOH Losung hinzugegeben, bis eine klare Losung entstand Zu dieser Losung fugte man unter rühren bei mittlerer Umdrehungszahl eine Losung von 4 mg Chitosan in 2 ml Wasser Zusätzlich wurden 20 mg eines Hydrolysates von Poly-(L- Lysinmethylesterfumaramid) (LMF), (die Herstellung kann z B nach dem im Patent
EP 0 245 840 B1 beschriebenen Verfahren geschehen) in 4 ml Wasser gelost und hinzugetropft Anstelle von Glyoxal wurde diesmal zur Vernetztung zuerst 8 μl N- Ethyldnsopropylamin (der Firma Fluka) und dann 13 mg (N-Succιnιmιdyl)-N,N,N',N'- tetramethyluronium tetrafluoroborat (TSTU, Firma Fluka) unter Ruhren hinzugegeben und für 15 mm bei Raumtemperatur gerührt Die Aufarbeitung und
Freigabe wurde analog zu Beispiel 1 a durchgeführt, diesmal wurde die freigegebene Menge Insulin mittels literaturbekaπnter HPLC Methode bestimmt Nach 4 Stunden wurden in PBS Puffer nur 30% des Insulins freigegeben Der Vergleichsversuch unter genau gleichen Bedingungen aber ohne Vernetzung ergibt eine Freigabe von 73% Insulin nach 4 Stunden
Beispiel 1 c
Die Reaktion wurde wieder wie in Beispiel 1 b beschrieben durchgeführt Diesmal wurde anstelle von TSTU als Vernetzer 16,4 mg O-(1 H Benzotπazol-1-yl-N,N,N',N', tetramethyluronium hexafluorophosphat (HBTU, Firma Fluka) verwendet Die Freigabe des Insulins in Puffer betragt nach 4 Stunden jetzt nur 14%
Beispiel 2a Einschluss von Albumin
18 mg Bovines Serum Albumin (BSA) und 2 mg BSA- FITC (der Firma Sigma) wurden in 4 ml destilliertem Wasser für 1 mm bei Raumtemperatur auf einem Magnetruhrer (Firma IKA - combimag RCT, Stufe 5 ) gerührt Zu dieser Losung tropfte man unter Ruhren 20 mg Xylanpolysulfat (der Firma Bene Arzneimittel ) zu, das vorher in 4 ml destilliertem Wasser gelost wurde 31
Zu dieser Losung fugt man unter Ruhren bei mittlerer Umdrehungszahl eine Losung von 4 mg Chitosan ( der Firma Fluka) in 2 ml Millipore - Wasser hinzu Die Losung war nun ganz leicht trüb Zur gesamten Losung wurden 20 mg LMF ( Lysmmethylesterfumaramid - Hydrolysat ), gelost in 4 ml Wasser, zugetropft Die Vernetzung erfolgte mit 200 μl einer wassπgen 40%-ιgen Glyoxallosung (Riedel).
Die Suspension wurde 15 mm bei Raumtemperatur gerührt
Aufgereinigt wurde die Suspension mit Hilfe einer Ultrafiltration ( Ultrafiltrationszelle Amicon 8050, Stickstoffdruck 1 bar ) über eine 300kD Membrane ( PLMK der Firma Millipore ) Der Ruckstand wurde 3 mal mit 30 ml Wasser gewaschen, wobei 100 ml Permeat entstanden
Das Retentat wurde danach in einen 250 ml Rundkolben überfuhrt, eingefroren und über Nacht gefriergetrocknet
Die Freigabe des BSA-FITC wurde getestet, indem 5 mg der getrockneten Partikel in 10 ml Phosphatpuffer pH 7,4 suspendiert und bei 37°C im Trockenschrank inkubiert wurden Nach 4 Std wurde eine Probe gezogen, ultrafiltriert (Filter
Millipore PLHK) und mittels Spektralfotometer auf FITC- Gehalt bei 494 nm untersucht und betrug nach 4 Stunden 54% des FITC-BSA Zum Vergleich wurden Partikel ohne Zugabe an Vernetzungsmittel unter gleichen Bedingungen hergestellt Bei diesen Partikeln betrug die Freigabe des FITC-BSA 80,5%
Beispiel 2 b
Die Reaktion wurde wie in Beispiel 1 beschrieben durchgeführt Anstelle von Glyoxal wurde diesmal zur Vernetztung zuerst 8 μl N-Ethyldnsopropylamin (der
Firma Fluka) und dann 13 mg (N-Succιnιmιdyl)-N,N,N',N'-tetramethyluronιum tetrafluoroborat (TSTU, Firma Fluka) unter Ruhren hinzugegeben und für 15 mm bei Raumtemperatur gerührt Die Aufarbeitung und Freigabe wurde analog zu Beispiel 2a durchgeführt Nach 4 Stunden wurden in PBS Puffer 67% des BSA freigegeben 32
Beispiel 2 c
Die Reaktion wurde wieder wie in Beispiel 2b beschrieben durchgeführt. Diesmal wurde anstelle von TSTU als Vernetzer 16,4 mg O-(1 H Benzotriazol-1 -yl-N,N,N',N' tetramethyluronium hexafluorophosphat (HBTU, Firma Fluka) verwendet. Bei der
Verwendung dieses Vernetzers wurden nur 45% des BSA freigegeben.
Beispiel 3a: Einschluss von Tetracyclin
Anstelle des Modellarzneistoffes BSA wurden diesmal 20 mg Tetracyclin (Sigma) eingesetzt und nach Beispiel 2a verarbeitet. Die Freigabe des Tetracyclins wurde nach literaturbekannter Methode mittels UV-Spektroskopie bei 356 nm gemessen. Ohne Vernetzung betrug die Freigabe des Tetracyclins 70% nach 4 Stunden. Wurden, wie in Beispiel 2a erwähnt, die Partikel mit 200 μl einer 40%igen Glyoxallosung vernetzt, so betrug die Freigabe von Tetracyclin nur 10%
Beispiel 3b:
Anstelle von Glyoxal wurde als Vernetzer 13 mg TSTU sowie wieder 8 μl N- Ethyldiisopropylamin verwendet. Die Freigabe des Tetracyclins betrug in diesem
Falle nur 34%.

Claims

33Patentansprüche
1. Nanopartikel aufweisend einen biokompatiblen, biologisch abbaubaren Polyelektrolytkomplex aus mindestens einem Polykation und mindestens einem Polyanion sowie mindestens einen bioaktiven Wirkstoff, wobei die Nanopartikel dadurch erhältlich sind, daß der Polyelektrolytkomplex während oder nach seiner Bildung zusätzlich mit mindestens einem Vernetzungsmittel behandelt wird.
2. Nanopartikel gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Partikel eine mittlere Größe von 50 bis 250 nm aufweisen.
3. Nanopartikel gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Vernetzungsmittel Glyoxal, TSTU oder
EDAP ist.
4. Nanopartikel, gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Polykation Chitosan ist.
5. Nanopartikel, gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Polyanion Xylanpolysulfat ist
6. Nanopartikel gemäß mindestens einem der vorhergehenden Ansprüche, wobei die Nanopartikel dadurch erhältlich sind, daß zumindest eines der beiden geladenen Polymere des Polyelektrolytkomplexes vor, während oder nach der Bildung des Komplexes zusätzlich mit mindestens einem Mittel behandelt wird, welches die Oberfläche der Nanopartikel modifiziert.
7. Nanopartikel gemäß Anspruch 6, dadurch gekennzeichnet, daß der oberflächenmodifizierende Stoff einen Carrier enthält. 34
8. Verfahren zur Herstellung von Partikeln gemäß einem der vorhergehenden Ansprüche, wobei man einen Wirkstoff in gebundener oder ungebundener Form, eine wäßrige Lösung mindestens eines Polykations und eine wäßrige Lösung mindestens eines Polyanions zusammenbringt und anschließend der Polyelektrolyt in nanopartikulärer Form entsteht oder gegebenenfalls in eine nanopartikuläre Form überführt wird, dadurch gekennzeichnet, daß der nanopartikuläre Polyelektrolytkomplex mit einem Vernetzungsmittel behandelt wird.
9. Verwendung der Partikel gemäß den Ansprüchen 1 bis 8 oder erhalten nach dem Anspruch 9 als orale Applikationsform.
EP99911744A 1998-03-13 1999-03-06 Nanopartikel, verfahren zu ihrer herstellung und ihre verwendung Withdrawn EP1061904A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19810965 1998-03-13
DE1998110965 DE19810965A1 (de) 1998-03-13 1998-03-13 Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung
PCT/EP1999/001452 WO1999047130A1 (de) 1998-03-13 1999-03-06 Nanopartikel, verfahren zu ihrer herstellung und ihre verwendung

Publications (1)

Publication Number Publication Date
EP1061904A1 true EP1061904A1 (de) 2000-12-27

Family

ID=7860805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99911744A Withdrawn EP1061904A1 (de) 1998-03-13 1999-03-06 Nanopartikel, verfahren zu ihrer herstellung und ihre verwendung

Country Status (6)

Country Link
EP (1) EP1061904A1 (de)
JP (1) JP2002506814A (de)
CN (1) CN1292687A (de)
AU (1) AU3031899A (de)
DE (1) DE19810965A1 (de)
WO (1) WO1999047130A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952073A1 (de) * 1999-10-29 2001-07-12 Cognis Deutschland Gmbh Verfahren zur Herstellung von nanopartikulären Chitosanen oder Chitosan-Derivaten
EP1229940B1 (de) 1999-11-15 2014-05-14 Piramal Healthcare (Canada) Limited Temperaturgesteuerte und ph-abhängige selbstgelierende biopolymere wässrige lösung
DE10118852A1 (de) * 2001-04-17 2002-10-31 Fricker Gert Bdellosomen
DE10127526A1 (de) * 2001-05-31 2002-12-12 Novosom Ag Verfahren zur Herstellung und Auflösung von Nano- und Mikrokapseln
DE10132669B4 (de) * 2001-07-05 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pharmakologische Zubereitung aus einem nanopartikulären mesomorphen Polyelektrolyt-Lipid-Komplex und mindestens einem Wirkstoff
ES2353116T3 (es) * 2002-07-16 2011-02-25 Bio Syntech Canada Inc. Composiciones para disoluciones de quitosano citocompatibles, inyectables, autogelificantes para encapsular y administrar células vivas o factores biológicamente activos.
CN100339712C (zh) * 2002-09-13 2007-09-26 日立化成工业株式会社 固定化载体和固相
ES2246694B1 (es) 2004-04-29 2007-05-01 Instituto Cientifico Y Tecnologico De Navarra, S.A. Nanoparticulas pegiladas.
ES2246695B1 (es) 2004-04-29 2007-05-01 Instituto Cientifico Y Tecnologico De Navarra, S.A. Composicion estimuladora de la respuesta inmunitaria que comprende nanoparticulas a base de un copolimero de metil vinil eter y anhidrido maleico.
US20100092572A1 (en) * 2007-01-29 2010-04-15 Peter Kaeuper Chitosan-based colloidal particles for rna delivery
ITRM20070327A1 (it) * 2007-06-11 2008-12-12 Univ Palermo Vettori colloidali a struttura poliamminoacidica per il rilascio orale di peptidi e proteine e relativo metodo di produzione.
WO2009035438A1 (en) * 2007-09-13 2009-03-19 Janos Borbely Polymeric nanoparticles by ion-ion interactions
US9095568B2 (en) * 2007-09-26 2015-08-04 Mark Berninger Therapeutic and vaccine polyelectrolyte nanoparticle compositions
CN101396351B (zh) * 2007-09-28 2011-04-27 上海交通大学医学院附属瑞金医院 可响应磷酸酶浓度的载药聚电解质胶囊及其制备方法
EP2250248B1 (de) 2008-01-24 2013-03-20 University of Utah Research Foundation Adhäsive komplexe koazervate, ihre herstellung und verwendung
US8283384B2 (en) 2008-01-24 2012-10-09 University Of Utah Research Foundation Adhesive complex coacervates and methods of making and using thereof
EP2266546A1 (de) 2009-06-08 2010-12-29 Advancell Advanced in Vitro Cell Technologies,S.A. Verfahren zur Herstellung kolloidaler Systeme zur Abgabe von Wirkstoffen
CA2799818A1 (en) 2010-05-24 2011-12-01 University Of Utah Research Foundation Reinforced adhesive complex coacervates and methods of making and using thereof
JP2014502296A (ja) 2010-11-12 2014-01-30 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション 単純接着剤コアセルベートならびにその製造方法および使用
CN102813937A (zh) * 2012-06-12 2012-12-12 天津大学 含有疏水性药物的聚电解质复合物及其制备方法和应用
EP2953992B1 (de) 2013-02-06 2021-11-24 3M Innovative Properties Company Polymere sowie herstellung und verwendung davon
JP6742297B2 (ja) 2014-07-14 2020-08-19 ユニヴァーシティ オブ ユタ リサーチ ファンデーション その場凝固複合コアセルベートならびにその製造および使用方法
WO2019147922A2 (en) 2018-01-26 2019-08-01 Fluidx Medical Technology, Llc Apparatus and method of using in situ solidifying complex coacervates for vascular occlusion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937283A1 (de) * 1989-11-09 1991-05-16 Hoechst Ag Polyelektrolytkomplexe zur behandlung und prophylaxe von viruserkrankungen, neue polyelektrolytkomplexe sowie verfahren zu deren herstellung
DK0454044T3 (da) * 1990-04-25 1996-04-22 Hoechst Ag Farmakologisk præparat indeholdende polyelektrolytkomplekser på mikropartikelform og mindst et virksomt stof
DE69221568T2 (de) * 1991-04-02 1998-03-19 Biotech Australia Pty Ltd Systeme zur oralen freisetzung von mikropartikeln
DE4407898A1 (de) * 1994-03-09 1995-09-14 Hoechst Ag Nanopartikel, enthaltend einen Wirkstoff und ein Polyketalweinsäureamid, Verfahren zu ihrer Herstellung und Verwendung derselben
WO1999018934A1 (en) * 1997-10-09 1999-04-22 Vanderbilt University Micro-particulate and nano-particulate polymeric delivery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9947130A1 *

Also Published As

Publication number Publication date
WO1999047130A1 (de) 1999-09-23
CN1292687A (zh) 2001-04-25
JP2002506814A (ja) 2002-03-05
AU3031899A (en) 1999-10-11
DE19810965A1 (de) 1999-09-16

Similar Documents

Publication Publication Date Title
EP1061904A1 (de) Nanopartikel, verfahren zu ihrer herstellung und ihre verwendung
CN1897975B (zh) 口服给药的水溶性药物纳米颗粒组合物及其制备方法
DE69928283T2 (de) Herstellung von mikropartikeln mit einem gewählten freisetzungsprofil
KR100250390B1 (ko) 마이크로입자의 경구전달 시스템
DE69927841T2 (de) Partikel auf polyaminosäure(n)basis sowie deren herstellungsverfahren
EP2819659B1 (de) Verfahren zur herstellung wirkstoffbeladener nanopartikel
EP1289642B2 (de) Nanokapseln mit einer polyelektrolythülle
DE112006002617T5 (de) Verfahren zur Herstellung von Core-Shell-Kompositen bzw. Kern-Hüllen-Kompositen mit vernetzten Hüllen und daraus entstehende Core-Shell-Komposite
HUE026134T2 (en) Microparticles containing diketopiperazine salts for drug delivery
DE112006002618T5 (de) Verfahren und Zusammensetzungen zum selektiven Entfernen von Kaliumionen aus dem Gastrointestinaltrakt eines Säugers
KR20100054750A (ko) 고분자 미립구의 제조방법 및 그 방법에 의해 제조된 고분자 미립구
WO2002096551A1 (de) Auflösbare nano- und mikrokapseln, verfahren zu ihrer herstellung sowie ihre verwendung
DE102006011507A1 (de) Wirkstoffbeladene Nanopartikel auf Basis hydrophiler Proteine
EP0615442B1 (de) Sol-gesteuerte thermokolloidmatrix auf gelatine basis für perorale retardformen
JP2002534392A (ja) 黄体化ホルモン放出ホルモン類似体をカプセル化する持続放出性のマイクロスフェアおよびその調製方法
JP2006241321A (ja) キトサンナノ粒子の製造方法、キトサン粒子、コーティング用組成物、徐放性製剤、注射剤
WO2004030649A2 (de) Methode zur herstellung und stabilisierung von mikro- und nanosuspensionen mit amphiphilen und polyelektrolyten
DE3738228A1 (de) Verfahren zur herstellung von bioabbaubaren mikrokapseln wasserloeslicher peptide und proteine sowie nach diesem verfahren erhaltene mikrokapseln
Zhang et al. Preparation and in vitro in vivo characterization of polyelectrolyte alginate–chitosan complex based microspheres loaded with verapamil hydrochloride for improved oral drug delivery
US20180250231A1 (en) Polymeric microspheres with spontaneous pore-closing functionality and methods for preparign the same
DE10157046A1 (de) Nano- und Mikrokapseln umfassend Reaktivpolymere
WO2002000162A2 (de) Drug-delivery-systeme
Piatkowski et al. Application of Poly (aspartic acid) and its Derivatives in Medicine and Pharmacy
RU2256440C2 (ru) Фармацевтический препарат
EP1404305B1 (de) Pharmakologische zubereitung aus einem nanopartikulären mesomorphen polyelektrolyt-lipid-komplex und mindestens einem wirkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20011114