EP1052093A2 - Elektrisches Antriebssystem zur Vorstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen in Geräten und Maschinen, Antriebsordnung mit einem Winkellagegeber und Druckmaschine - Google Patents

Elektrisches Antriebssystem zur Vorstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen in Geräten und Maschinen, Antriebsordnung mit einem Winkellagegeber und Druckmaschine Download PDF

Info

Publication number
EP1052093A2
EP1052093A2 EP00116859A EP00116859A EP1052093A2 EP 1052093 A2 EP1052093 A2 EP 1052093A2 EP 00116859 A EP00116859 A EP 00116859A EP 00116859 A EP00116859 A EP 00116859A EP 1052093 A2 EP1052093 A2 EP 1052093A2
Authority
EP
European Patent Office
Prior art keywords
drive system
encoder
functional part
angular position
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00116859A
Other languages
English (en)
French (fr)
Other versions
EP1052093A3 (de
EP1052093B2 (de
EP1052093B1 (de
Inventor
Fritz Rainer Dr.-Ing. Götz
Harold Ing.(Grad) Meis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baumueller Nuernberg GmbH
Original Assignee
Baumueller Nuernberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8216141&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1052093(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Baumueller Nuernberg GmbH filed Critical Baumueller Nuernberg GmbH
Priority claimed from EP94111516A external-priority patent/EP0693374B2/de
Publication of EP1052093A2 publication Critical patent/EP1052093A2/de
Publication of EP1052093A3 publication Critical patent/EP1052093A3/de
Application granted granted Critical
Publication of EP1052093B1 publication Critical patent/EP1052093B1/de
Publication of EP1052093B2 publication Critical patent/EP1052093B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/004Electric or hydraulic features of drives
    • B41F13/0045Electric driving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2213/00Arrangements for actuating or driving printing presses; Auxiliary devices or processes
    • B41P2213/70Driving devices associated with particular installations or situations
    • B41P2213/73Driving devices for multicolour presses
    • B41P2213/734Driving devices for multicolour presses each printing unit being driven by its own electric motor, i.e. electric shaft

Definitions

  • the invention relates to an electric drive system for Adjustment of one or more rotatable and / or pivotable Functional parts of devices and machines, especially of printing presses, including at least one electric motor is used, the rotor for stiff and direct Connection is formed with the functional part. Furthermore, the invention relates to the arrangement of a regulated drive system connected angular position encoder, the a rotating or swiveling sensor rotor and one assigned, stationary scanning member to the angular position one rotatably mounted on a wall and with respect its axis of rotation longitudinally, obliquely, transversely and / or diagonally adjustable functional part of a device or a machine to determine. The invention further relates to a Printing machine, in particular offset machine, with direct drives Is provided.
  • the individual Functional units of printing machines for example unwinding / reel changers, Printing units, printing cylinders, dryers with chill rolls, folder, sheeter, tray, etc. mechanical shafts and / or gears coupled together, to bring about their mutual angular orientation. If you want these functional parts or components separate and do without mechanical coupling, so are the individual functional parts with their own drive systems equip, according to the DE-OS 41 38 479 are designed as direct drives. To achieve the necessary orientation of the individual printing press components among them is a corresponding one Synchronization of the drive systems required.
  • the signal processing module forms a configurable one and parameterizable drive controller, with which too complex control algorithms and / or several control loops implemented can be.
  • the invention is a concept for multiple control of a plurality of rotary axes created, with the associated control and regulation system can be configured modularly.
  • the drive system according to the invention is particularly suitable, because this ensures high quality and accuracy of the angular orientation, such as B. between the printing units where the halftone dots of different colors within a narrow tolerance range must be printed is available.
  • the drive system is the rotor of the electric motor with the Functional part, e.g. B. pressure cylinder, structurally integrated and / or made in one piece.
  • the Functional part e.g. B. pressure cylinder
  • the electric motor used in the drive system according to the invention with a cylindrical or cylindrical external rotor to train or rotor. This ensures that the Shape of the rotor, for example, of the appropriately rotationally symmetrical Form of the functional part corresponds, and in particular therein can be structurally included.
  • Analogous to the direct drive of the functional part mentioned lies within the scope of the invention a direct measurement of it Angular position, speed, acceleration etc.
  • the angular position encoder directly on the functional part for immediate measurement attached by its angular or rotary / pivoting movements.
  • Fast angular position encoders as known per se, can do so an immediate and therefore extremely realistic Observation of the controlled system, namely the one to be rotated or pivoting functional part.
  • the electric motor is on assigned only angular position encoder, the angular movements the rotor of the electric motor; is at the same time an observer module known per se in control engineering set up for state variables of the functional part, preferably in differential signal connection (in the control technology known per se) with the angular position encoder and / or the signal processing module is coupled.
  • the differential signal feed can be based on the Invention also in connection with at least two angular position sensors insert, each on the rotor of the electric motor and on the functional part for the immediate inclusion of their Angular movements are appropriate.
  • high-resolution, Fast angular position encoder for example in the version as a sine / cosine absolute encoder, as an incremental encoder with Square wave and zero pulse signal and as an incremental encoder with sine / cosine signal and zero pulse signal in Question.
  • page register adjustment are to be approved as angular position encoders in the sense of the invention especially with hollow shaft encoder a (tooth) pitch sensor wheel and a sensor head suitable. These are separated from each other by an air gap radially spaced, and axial displacements against each other within a certain frame affect the scanning function of the encoder head compared to the encoder wheel.
  • the advantage achieved with the use of the hollow shaft encoder consists mainly in the fact that the encoder wheel with the Functional part (to be scanned) structurally integrated and / or can be made in one piece, so that due to this Direct connection an immediate observation or Detection of its angular movements is guaranteed.
  • the drive system according to the invention is advantageous responsive power amplifiers with digital phase current regulators used.
  • the converter can use a DC link or with direct feed and thus higher DC link voltage must be executed (as known per se). With the latter there will be a large temporal change in current enabled.
  • the digital phase current control is for the drive system according to the invention expediently with pulse width modulation high clock frequency, fast transistor switches and voltage pre-control, the Phase current setpoints and / or the pilot values via interference-free Optical fiber connections can be specified.
  • There is also feedback of the actual phase current values and / or voltages for motor control and a specification of values for configuration and parameterization along with Feedback of status information for diagnosis is advantageous.
  • the signal processor is configurable and parameterizable Drive controller with realizable sampling times around 100 ⁇ sec. (even with complex control algorithms and several Control loops) and computing times in the area of 50 ⁇ sec. available.
  • the functions of the signal processor can the encoder evaluation, the motor control, Speed control, angular position control, fine interpolation of the Include default values and other.
  • the axis peripheral module is useful with a fiber optic cable Interface to the digital phase current controllers and also with an interface to the angular position encoder preferably as a sine / cosine absolute encoder, as an incremental encoder with square wave signals and Zero pulse signal and as an incremental encoder Provide sine / cosine signal with zero pulse signals.
  • Signal processing module can be set by simultaneous specification the setpoints according to the principle of position control an angular position oriented operation for the relevant turning masses or individual functional parts of a device or one Realize machine, especially printing machine.
  • setpoints in the signal processing module Observing the limitations in jerk, in acceleration, generated in speed. It can be particularly activation or precontrol of the angular position speed, - Accelerate and accelerate.
  • the Tracking device can include several functional components: one in the axial direction of the sensor rotor if necessary including the motor / functional part Linear guide to the "printing press” application Scanning device on side register adjustments of the cylinder adapt as a functional part; one related to the above Radially deflecting eccentric guide axis for use in applications "Printing machines” the scanning element on positioning movements or diagonal register adjustments of the printing cylinder adjust, which - as known per se - by means of eccentric Deflection of the cylinder / engine axis of rotation brought about become.
  • a locking device provided with the Tracking device connected in this way, in particular synchronized is that after active tracking has ended the sensing element fixed this relative to the wall.
  • One between the sensing element and the The sensor rotor usually has an air gap exploited.
  • This invention training can be practical realized by a hollow shaft encoder, in which the Sensor rotor forming the sensor wheel opposite the sensing element is arranged without bearing with the latter or the like to be mechanically connected.
  • the printing unit consists of a web offset machine from the four plate or blanket cylinders D1, D2, D3 and D4 (shown schematically) via bearings 40 on the fixed wall H (see FIG. 6) of the machine are rotatable. They each have an electric motor to turn them associated with a rotor package F and a stator package G.
  • the stub axle 41 of the rotor F is immediate connected to the stub shaft 42 of the cylinder D; with others Words, both are so structurally integrated with each other, that they merge into one another while doing a drive connection form that about as rigid as a one-piece Steel shaft is.
  • the on the free end faces of the electric motors F, G outstanding stub axles 43 are with sine / cosine absolute angular position encoders 44, provided.
  • the electric motors F, G are designed as built-in motors. You can with three-phase servo motors in synchronous design with Permanent magnets can be executed. These are from one Power block 47 each controlled by digital current controller 48.
  • the power block 47 is from an intermediate circuit supply 49 supplied with electrical energy.
  • the digital current regulators 48 each communicate via interference-free optical fiber 50 with an axis peripheral module AP.
  • the axis peripheral modules also have respective ones Interfaces 44a, 46a on the one hand for each of the at the Electric motors F, G attached angular position encoder 44 as well for one of the on the opposite shaft ends or Axle stub 45 on the free ends of cylinders D1 - D4 located angular position encoder 46.
  • the axis I / O modules AP are from a common, digital signal processor 51 checked. This is as a drive controller for a maximum number of axes with position controller, Speed controller, motor control and encoder evaluation configurable.
  • FIG 51 The respective internal structure of the signal processor is shown in FIG 51 and the axis peripheral modules AP enlarged shown and with abbreviations familiar to the expert referred to, so that there are further explanations in principle spare.
  • SCC serial Communication control block
  • FIG. 4 shows the integration of the drive system according to the invention 1 to 3 in a global concept for a multiple control with configurable, modular Control and regulation units illustrated.
  • a master computer IPC-486 are blocks CPU-68-3 for programmable logic Control and setpoint generation intended.
  • the signal processors 51 are connected to these coupled a system bus.
  • the block diagram according to FIG. 5 represents an exemplary drive system according to the invention for two position-controlled axes I, II coupled via friction slip (Schmitz rings). From a setpoint value generation (for example according to FIG. 4), each axis I, II becomes angular position setpoints for its position control ⁇ should be I, ⁇ should be II . After comparison with the actual values ⁇ ist I, ⁇ ist II obtained in each case via the angular position encoder 46, the respective control difference is fed to a position controller K VI , K VII .
  • each characteristic line element is connected on the input side to the output of the corresponding angular position sensor 46I, 46II.
  • the respective outputs of proportional feedback elements K I, II , K II, I are also fed to the summing elements 53I, 53II, which cross-tap into the actual angular velocity ⁇ actual II or ⁇ actual I on the respective differentiating element 54II, 54I.
  • the inputs of the differentiators 54I, 54II are each connected to the output of the corresponding angular position sensors 46I and 46II.
  • This cross-coupling by means of the proportional elements K I, II or K II, I has a decoupling effect on the controlled systems / axes I or II which are coupled, for example, via the Schmitz rings.
  • the respective outputs of the summing elements 53I and 53II open directly into respective proportional elements K -1 SI , K -1 SII , which represent factors related to the rotational masses of the functional parts comprising the axes I, II, among other things.
  • This is followed by current control circuits 55I, 55II, which convert the input current setpoints I sollI , I sollII into actual current values I istI , I istII .
  • the current control loops 55I, 55II behave approximately to the outside like PT 2 elements known per se in control engineering.
  • the respective actual current values I istI , I istII are supplied to proportional elements K TI , K TII , which represent the electric motor constant for converting current into a motor torque M MotI , M MotII , after linking to the respective proportional element I -1 I , I -1 II corresponding to the respective rotating mass of the axis I, II and immediately following integration of the angular acceleration ⁇ I , ⁇ II by means of the integration element 56I, 56II, the angular velocity ⁇ I, ⁇ II results with which the rotating masses / functional parts move around their respective Rotate axes of rotation I, II.
  • the actual position of the angular position ⁇ istI , ⁇ istII can be determined in connection with the respective angular position transmitters 46I, 46II and the respective comparisons 58I, 58II at the input of the block diagram according to FIG. 5 to the target actual value - Make a comparison.
  • the respective path velocities v I , v II of the two rotating masses I, II are calculated according to a first and outer one of the two pairs of proportional elements R I and R II , which have the respective angular velocities ⁇ I, ⁇ II of the two rotating masses as an input variable.
  • the web speeds V I , V II are subtracted from one another in the course of forming a difference 70.
  • the slip s results from the quotient of this difference and one of the two circumferential path speeds V I , V II of the two rotating masses, as illustrated by the dividing element 59.
  • the characteristic curve element 60 following this represents the specific friction characteristic when cylinder circumferential surfaces roll on one another and gives the friction coefficient ⁇ R as a function value.
  • the cylinder shaft E is axially extending Approach 62 provided by the electric motor G, F, N, Z projects coaxially and at the front end of the drive shaft rigidly and rigidly fixed and / or in one piece is executed.
  • a pole or encoder wheel 63 of a hollow shaft encoder rigid or fixed in place This points radially on its outer edge projecting teeth 64, which according to the circumferential direction a certain division lined up are.
  • On the outward facing end of the stator G, N comprising eccentric bushing B is a parallel to Fixed axis of rotation protruding mounting shaft 65, the at its free end the encoder head 66 of the hollow shaft encoder wearing.
  • the distance 67 is such that on the one hand the operative connection of the encoder head and the Teeth 64 on the encoder wheel 63 can come about and on the other hand to a certain extent axial dislocations between the encoder head 66 and the encoder wheel 63 are possible without the functionality of this functional connection is impaired becomes.
  • the encoder wheel 63 and / or its Teeth 64 are sufficiently wide. Also one central arrangement of the encoder head 66 with respect to the teeth is advantageous for this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Control Of Electric Motors In General (AREA)
  • Rotary Presses (AREA)

Abstract

Elektrisches Antriebssystem zur Verstellung von mehreren dreh- und/oder verschwenkbaren Funktionsteilen von Geräten und Maschinen, insbesondere von Druckmaschinen, in ihrer Winkellage, mit mehreren Elektromotoren, deren jeweiliger Rotor zur steifen und direkten Verbindung mit dem Funktionsteil ausgebildet ist, mit mehreren Winkellagegebern, die Winkelbewegungen des jeweiligen Elektromotor-Rotors und/oder Funktionsteiles aufnehmen, mit einem Signalverarbeitungsmodul, das eingangsseitig zur Aufnahme der Winkellagesignale als Istwerte mit den Winkellagegebern verbunden ist und mehrere, je einem Funktionsteil zugeordnete Regler oder Reihen mit mehreren Regelgliedern aufweist, die zur simultanen Aufnahme von je einem Funktionsteil zugeordneten Sollwerten und zu deren Vergleich mit den Istwerten ausgebildet sind, und mit mehreren, vom Signalverarbeitungsmodul und/oder den jeweiligen Reglern kontrollierte Leistungsverstärkern, die ausgangsseitig mit dem jeweiligen Elektromotor zu dessen Ansteuerung verbunden sind durch: (a) einen bidirektionalen Systembus, über den mehrere, jeweils die Regler oder Reihen von Regelgliedern enthaltende Signalverarbeitungsmodule mit einem Prozessor zur Sollwertgenerierung verbunden sind, (b) wobei die Regler oder Regelglieder zur simultanen Aufnahme von je einem Funktionsteil zugeordneten Sollwerten ausgebildet sind, (c) und einen Lokalbus, über den die Regler oder Reihen mit mehreren Regelgliedern des Signalverarbeitungsmoduls mit Achsperipheriemodulen als Schnittstellen zu den Leistungsblöcken der Elektromotoren und zu den Winkellagegebern verbunden sind.

Description

Die Erfindung betrifft ein elektrisches Antriebssystem zur Verstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen von Geräten und Maschinen, insbesondere von Druckmaschinen, wozu mindestens ein Elektromotor verwendet wird, dessen Rotor zur steifen und direkten Verbindung mit dem Funktionsteil ausgebildet ist. Ferner betrifft die Erfindung die Anordnung eines mit einem geregelten Antriebssystem verbundenen Winkellagegebers, der einen dreh- oder schwenkbaren Fühlerrotor und ein diesem zugeordnetes, stationäres Abtastorgan aufweist, um die Winkellage eines an einer Wandung drehgelagerten und bezüglich seiner Drehachse längs-, schräg, quer- und/oder diagonal verstellbaren Funktionsteiles eines Gerätes oder einer Maschine zu bestimmen. Ferner betrifft die Erfindung eine Druckmaschine, insbesondere Offsetmaschine, die mit Direktantrieben ausgestattet ist.
Antriebssysteme, Antriebsanordnungen bzw. -verfahren und Druckmaschinen etwa dieser Art sind aus der DE-OS 41 38 479 und der älteren EP-Patentanmeldung 93 106 554.2 bekannt. Diese Fundstellen werden hiermit zum Bestandteil der vorliegenden Offenbarung gemacht.
Nach dem sonstigen Stand der Technik sind die einzelnen Funktionseinheiten von Druckmaschinen, beispielsweise Abrollung/Rollenwechsler, Druckwerke, Druckzylinder, Trockner mit Kühlwalzen, Falzer, Querschneider, Ablage usw. durch mechanische Wellen und/oder Zahnräder miteinander verkoppelt, um deren gegenseitige Winkellageorientierung herbeizuführen. Will man diese Funktionsteile bzw. -komponenten vereinzeln und auf die mechanische Verkopplung verzichten, so sind die einzelnen Funktionsteile mit eigenen Antriebssystemen auszurüsten, die nach der genannten DE-OS 41 38 479 als Direktantriebe ausgeführt sind. Zur Erzielung der notwendigen Winkellageorientierung der einzelnen Druckmaschinen-Komponenten untereinander ist eine entsprechende Synchronisation der Antriebssysteme erforderlich.
Zur Lösung der aufgezeigten Problematik werden bei einem elektrischen Antriebssystem mit den eingangs genannten Merkmalen erfindungagemäß ein oder mehrere Winkellagegeber, die Winkelbewegungen des Elektromotor-Rotors und/oder Funktionsteiles der Maschine oder des Gerätes aufnehmen, ein Signalverarbeitungsmodul, das eingangsseitig zur Aufnahme der Winkellagesignale als Istwerte mit dem oder den Winkelgebern verbunden sowie zur Aufnahme von Sollwerten und zu deren Vergleich mit den Istwerten ausgebildet ist, und ein vom Signalverarbeitungsmodul kontrollierter Leistungsverstärker angeordnet, der ausgangsseitig mit dem Elektromotor zu dessen Ansteuerung verbunden ist.
Dabei bildet das Signalverarbeitungsmodul einen konfigurierbaren und parametrierbaren Antriebsregler, mit dem auch komplexe Regel-Algorithmen und/oder mehrere Regelkreise realisiert werden können. Mit der Erfindung ist ein Konzept für eine Vielfachsteuerung einer Mehrzahl von Drehachsen geschaffen, wobei sich das zugehörige Steuerungs- und Regelungssystem modular projektieren läßt. Beim besonderen Anwendungsfall in Druck-, insbesondere Offsetmaschinen, ist das erfindungsgemäße Antriebssystem besonders geeignet, weil damit eine hohe Qualität bzw. Genauigkeit der Winkellageorientierung, wie z. B. zwischen den Druckeinheiten, wo die Rasterpunkte verschiedener Farben in einem engen Toleranzbereich gedruckt werden müssen, erreichbar ist.
Nach einer baulichen Konkretisierung des erfindungsgemäßen Antriebssystems ist der Rotor des Elektromotors mit dem Funktionsteil, z. B. Druckzylinder, baulich integriert und/oder einstückig ausgeführt. Einerseits kann dies durch Anbau des Rotors an einem Wellenstummel des drehbaren Funktionsteiles erfolgen. Zum anderen kann es vorteilhaft sein, den im erfindungsgemäßen Antriebssystem eingesetzten Elektromotor mit einem walzen- oder zylinderförmigen Außenläufer oder -rotor auszubilden. Damit ist erreicht, daß die Form des Rotors etwa der zweckmäßig rotationssymmetrischen Form des Funktionsteiles entspricht, und insbesondere darin baulich aufgenommen sein kann.
Analog dem genannten Direktantrieb des Funktionsteiles liegt im Rahmen der Erfindung eine Direktmessung von dessen Winkellage, -geschwindigkeit, -beschleunigung usw. So ist nach einer vorteilhaften Ausbildung der Erfindung der Winkellagegeber direkt am Funktionsteil zur unmittelbaren Messung von dessen Winkel- bzw. Dreh/Schwenkbewegungen angebracht. Vor allem im Zusammenhang mit hochauflösenden, schnellen Winkellagegebern, wie an sich bekannt, kann so eine unmittelbare und mithin äußerst wirklichkeitsgetreue Beobachtung der Regelstrecke, nämlich des zu drehenden oder schwenkenden Funktionsteiles, durchgeführt werden.
Nach einer alternativen Ausbildung ist dem Elektromotor ein einziger Winkellagegeber zugeordnet, der die Winkelbewegungen des Rotors des Elektromotors aufnimmt; gleichzeitig ist ein in der Regelungstechnik an sich bekanntes Beobachtermodul für Zustandsgrößen des Funktionsteiles eingerichtet, das vorzugsweise in Differenzsignalaufschaltung (in der Regelungstechnik an sich bekannt) mit dem Winkellagegeber und/oder dem Signalverarbeitungsmodul gekoppelt ist. Die Differenzsignalaufschaltung läßt sich auf der Basis der Erfindung auch im Zusammenhang mit wenigstens zwei Winkellagegebern einsetzen, die je am Rotor des Elektromotors und am Funktionsteil zur unmittelbaren Aufnahme von deren Winkelbewegungen angebracht sind.
Für die Zwecke der Erfindung kommen höchstauflösende, schnelle Winkellagegeber, beispielsweise in der Ausführung als Sinus/Kosinus-Absolutgeber, als Inkrementalgeber mit Rechtecksignalen und Nullimpulssignal und als Inkrementalgeber mit Sinus/Kosinus-Signal nebst Nullimpulssignal in Frage. Um im Betrieb axiale Verstellungen des Funktionsteiles, bei Druckmaschinen beispielsweise die sogenannte Seitenregisterverstellung, zuzulassen, sind als Winkellagegeber im Sinne der Erfindung vor allem Hohlwellengeber mit eine (Zahn-) Teilung aufweisendem Geberrad und einem Geberkopf geeignet. Diese sind über einen Luftspalt voneinander radial beabstandet, und axiale Versetzungen gegeneinander innerhalb eines bestimmten Rahmens beeinträchtigen die Abtastfunktion des Geberkopfes gegenüber dem Geberrad nicht. Der mit dem Einsatz des Hohlwellengebers erzielte Vorteil besteht vor allem darin, daß das Geberrad mit dem (abzutastenden) Funktionsteil baulich integriert und/oder einstückig ausgeführt sein kann, so daß aufgrund dieser Direktverbindung eine unmittelbare Beobachtung bzw. Erfassung von dessen Winkelbewegungen gewährleistet ist.
Mit Vorteil werden beim erfindungsgemäßen Antriebssystem reaktionsschnelle Leistungsverstärker mit digitalen Phasenstromreglern verwendet. Der Umrichter kann dabei mit Spannungszwischenkreis oder mit Direkteinspeisung und damit hoher Zwischenkreisspannung ausgeführt sein (wie an sich bekannt). Mit letzterer wird eine große zeitliche Stromänderung ermöglich. Die digitale Phasenstromregelung ist für das erfindungsgemäße Antriebesystem zweckmäßig mit Pulsbreitenmodulation hoher Taktfrequenz, schnellen Transistorschaltern und Spannungsvorsteuerung ausgeführt, wobei die Phasenstromsollwerte und/oder die Vorsteuerwerte über störsichere Lichtwellenleiter-Verbindungen vorgegeben werden. Ferner ist eine Rückmeldung der Phasenstromistwerte und/oder -spannungen zur Motorführung sowie eine Vorgabe von Werten zur Konfigurierung und Parametrierung nebst Rückmeldung von Statusinformationen zur Diagnose vorteilhaft.
Damit für die Kontrolle der Schwenk- oder Drehbewegungen des Funktionsteiles eine hohe Dynamik gewährleistet ist, empfiehlt sich für das erfindungsgemäße Antriebssystem der Einsatz schneller Signalverarbeitung. Diese ist zweckmäßig strukturiert in einen digitalen Signalprozessor und einen damit gekoppelten, separat ausgeführten Achsperipheriemodul. Der Signalprozessor ist als konfigurierbarer und parametrierbarer Antriebsregler mit realisierbaren Abtastzeiten um 100µsec. (auch bei komplexen Regel-Algorithmen und mehreren Regelkreisen) sowie bei Rechenlaufzeiten im Bereich von 50µsec. erhältlich. Die Funktionen des Signalprozessors können die Geberauswertung, die Motorführung, Drehzahlregelung, Winkellageregelung, Feininterpolation der Vorgabewerte und anderes umfassen. Das Achsperipheriemodul ist zweckmäßig mit einer über Lichtwellenleiter laufenden Schnittstelle zu den digitalen Phasenstromreglern und ferner mit einer Schnittstelle zu den Winkellagegebern vorzugsweise in der Ausführung als Sinus/Kosinus-Absolutgeber, als Inkrementalgeber mit Rechtecksignalen und Nullimpulssignal und als Inkrementalgeber mit Sinus/Kosinus-Signal mit Nullimpulssignalen versehen.
Durch diese Struktur für das erfindungagemäß eingesetzte Signalverarbeitungemodul läßt sich durch simultane Vorgabe der Sollwerte entsprechend dem Prinzip der Lagesteuerung ein winkellageorientierter Betrieb für die relevanten Drehmassen bzw. einzelne Funktionsteile eines Gerätes oder einer Maschine, insbesondere Druckmaschine, realisieren. Dabei können im Signalverarbeitungsmodul die Sollwerte unter Beachtung der Begrenzungen im Ruck, in der Beschleunigung, in der Geschwindigkeit generiert werden. Es läßt sich insbesondere eine Aufschaltung bzw. Vorsteuerung der Winkellage-Geschwindigkeit, -beschleunigung und des -rucks herbeiführen.
Reiben mehrere Funktionsteile bei ihrer Drehung aufeinander, stellen sie über Reibschlupf verkoppelte Drehmassen dar. Bei Druckmaschinen-Zylinder bezeichnet man aufeinanderreibende, blanke Mantelabschnitte, die wegen Druck aufeinanderliegen, als sogenannte Schmitz-Ringe. Dem Problem der über Reibschlupf verkoppelten Drehmassen wird durch eine besondere Ausbildung der Erfindung begegnet, nach der das Signalverarbeitungsmodul mehrere, je einem Funktionsteil zugeordnete Regler oder Reihen mit mehreren Regelgliedern aufweist, die miteinander über zusätzliche, gewichtete Rückführungen verkoppelt sind. Zweckmäßig ist eine Kreuzverkopplung realisiert.
Beim Anwendungsfall "Druckmaschinen" tritt bei den rotierenden Druckzylindern als Störgröße der an sich bekannte "Kanalschlag" auf, der auf eine Längsrille im Zylinder zum Aufziehen eines Gummituchs oder einer Druckplatte beruht. Die an der Manteloberfläche zu Tage tretende Rille führt zu einer sich ändernden Normalkraft und damit zu einem sich ändernden Drehmoment. Diesem Phänomen des "Kanalschlags" läßt sich im Rahmen des erfindungsgemäßen Antriebssystems zweckmäßig durch Bewertung der Istwerte mit Kennliniengliedern und Störgrößenaufschaltung begegnen.
Aus der eingangs erläuterten Problematik wird ferner das der Erfindung zugrundeliegende Problem aufgeworfen, eine Beobachterstruktur und -methodik zu schaffen, mit der eine möglichst verlustlose und naturgetreue Messung bzw. Wiedergabe des Dreh- und/oder Schwenkverhaltens von Funktionsteilen möglich ist. Insbesondere soll eine maximale Kraftschlüssigkeit zwischen einem sich mitdrehenden Winkellagegeber und der davon beobachteten Drehmasse herrschen. Zur Lösung wird bei einer Anordnung eines Winkellagegebers mit den gattungsgemäßen Merkmalen vorgeschlagen, daß vom Winkellagegeber dessen Fühlerrotor mit dem Funktionsteil unmittelbar steif und starr verbunden, und das Abtastorgan an der Wandung abgestützt sind, wobei eine auf das Abtastorgan einwirkende Nachführeinrichtung dergestalt ausgebildet und angeordnet ist, daß es die Verstellbewegungen des Funktionsteiles mit dem Fühlerrotor entsprechend nachvollzieht. Damit können vorteilhaft Funktionsteil-Verstellbewegungen größeren Umfangs, für die sich der Luftspalt zwischen dem Abtastorgan und dem Fühlerrotor nicht ausreichend bemessen läßt, ausgeglichen werden. Nach der Erfindung wirkt nämlich die Nachführeinrichtung so auf das Abtastorgan des Winkellagegebers ein, daß das Abtastorgan die Funktionsteil (Drehmasse)/Fühlerrotor-Verstellbewegungen, jedenfalls solange diese die Abmessungen des Luftspaltes zwischen Abtastorgan und Fühlerrotor überschreiten, nachvollzieht. Die Nachfübreinrichtung kann mehrere Funktionskomponenten umfassen: eine in Achsrichtung des Fühlerrotors gegebenenfalls einschließlich des Motors/Funktionsteils gerichtete Linearführung, um beim Anwendungsfall "Druckmaschinen" das Abtastorgan an Seitenregister-Verstellungen des Zylinders als Funktionsteil anzupassen; eine bezüglich der genannten Achse radial auslenkende Exzenterführung, um beim Anwendungsfall "Druckmaschinen" das Abtastorgan auf Anstellbewegungen oder Diagonalregister-Verstellungen des Druckzylinders einzustellen, die - wie an sich bekannt - mittels exzentrischer Auslenkung der Zylinder/Motor-Drehachse herbeigeführt werden. Dabei erscheint es notwendig, daß die Funktionsteil-/Fühlerrotor- und andererseits die Abtastorgan-Exzenterführungen einander entsprechend, insbesondere zueinander kongruent, ausgebildet sind, um die Nachführung vor allem in Form sich deckender, eszentrischer Umlaufbahnen von Abtastorgan und Funktionsteil/Fühlerrotor zu gewährleisten. Die Genauigkeit der Nachführung läßt sich noch dadurch fördern, daß beide Exzenterführungen durch eine gemeinsame, lösbare, vorzugsweise mechanische Verbindungseinrichtung miteinander gekoppelt und/oder synchronisiert sind.
Um eine stationäre, steife Abstützung des Abtastorgans an dem Maschinenfundament, insbesondere Wandung einer Druckmaschine, zu erreichen, ist in weiterer Ausbildung der Erfindung eine Feststelleinrichtung vorgesehen, die mit der Nachführeinrichtung derart verbunden, insbesondere synchronisiert ist, daß sie nach Beendigung der aktiven Nachführung des Abtastorgans dieses relativ zur Wandung fixiert.
Zur axialen Linearverschiebung oder exzentrischen Auslenkung des Stators entsprechend den Funktionsteil/Fühlerrotor-Verstellbewegungen ist es zweckmäßig, eine oder mehrere, gesonderte Bewegungseinrichtungen vorzusehen: zum Beispiel einen an einer Exzenterbuchse, an die das Abtastorgan fixiert ist, angreifenden Drehantrieb oder einen Linearantrieb, der am axial verschiebbar gelagerten Abtastorgan angreift, um jeweils das Abtastorgan zur Beibehaltung eines ausreichenden Luftspalts gegenüber dem Fühlerrotor nachzuführen. Diese Nachführbewegungen lassen sich in ihrer Genauigkeit noch weiter verbessern, indem die genannten Dreh- oder Linearantriebe, die jeweils dem Abtastorgan einerseits und dem Drehmassen-/Fühlerrotor-Verbund andererseits zugeordnet sind, bei Registerverstellung oder Anstellbewegung (Einsatzfall: Druckmaschinen) miteinander gekoppelt und/oder synchronisiert sind.
Im Hinblick auf die eingangs erwartete Problematik wird bei Druckmaschinen das der Erfindung zugrundeliegende Problem aufgeworfen, deren dreh- oder schwenkbare Funktionsteile zuverlässig beobachten und entsprechende Zustandsgrößen einem geregelten Antriebssystem zuführen zu können. Dabei sollen Verfälschungen des Meßergebnisses möglichst ausgeschlossen bzw. eine möglichst verlustlose Kopplung mit maximaler Kraftschlüssigkeit in Kraft- bzw. Drehmomentübertragungsrichtung zwischen den anzutreibenden Zylindern und dem Meßwertgeber ermöglicht sein. Zur Lösung wird bei einer gattungsgemäßen Druckmaschine erfindungsgemäß vorgeschlagen, daß die Zylinder zur unmittelbaren Messung ihrer Winkelgrößen mit je einem Winkellagegeber direkt verbunden sind, der ausgangsseitig an das Antriebssystem angeschlossen ist. Der Winkellagegeber bildet damit einen Direkt-Beobachter für das Funktionsteil im Rahmen einer Antriebs-Steuerungskette oder eines Antriebs-Regelkreises, der insbesondere die Umfangsregisterverstellung herbeiführt. Mit dieser Direktbeobachtung kann für jedes Funktionsteil, nämlich Zylinder- bzw. Druckwerkswalze, ein spielfreier, trägheitsarmer und mechanisch steifer Meßstrang bzw. Meßkette aufgebaut werden. Dies ergibt eine hohe Regelgenauigkeit und -dynamik, so daß sich exakte Bahnführung, konstante Bahnspannung und gleichbleibende Farbgebung über die so ermöglichte, hochpräzise Registersteuerung und Druckanstellung erreichen lassen. Die relevanten Drehmassen (beispielsweise Platten- und Gummituch-Zylinder in einem Druckwerk) werden erfindungsgemäß direkt, ohne dazwischen angeordnete Feder-, Dämpfungs-, Reibungsglieder usw., erfaßt, so daß unter Ausschluß von Elastizitäten, Nachgiebigkeiten und Spielen das Bewegungsverhalten des in der Druckmaschine zu beobachtendem Funktionsteiles originalgetreu im Regelungssystem weitergegeben werden kann. Dabei ist es zweckmäßig, auch das Abtastorgan des Winkellagegebers an einer stationären Wandung, beispielsweise der Druckmaschinenwand, elastizitäts- und spielfrei zu fixieren.
In Weiterführung dieses Gedankens ergibt sich die Notwendigkeit, daß der an einem Druckzylinder beispielsweise steif und dicht angesetzte Fühlerrotor zur Realisierung von Druck-An- und Druck-Ab-Bewegungen sowie Diagonalregister-Verstellungen exzentrisch auslenkbar sind. Dem wird mit einer vorteilhaften Ausbildung der Erfindung Rechnung getragen, wonach beim Winkellagegeber Fühlerrotor und Abtastorgan zueinander mit einem solchen Abstand angeordnet und/oder derart verstellbar ausgebildet sind, daß der von diesem begrenzte Luftspalt sich ausreichend verändern und dabei entsprechende, exzentrische Auslenkungen auffangen kann.
So können Stellbewegungen des steifen Drehmasse(Funktionsteil)/Fühlrotor-Verbunds ausgeglichen werden, obgleich das Abtastorgan an der stationären Wandung ortsfest fixiert ist. Ein zwischen dem Abtastorgan und dem Fühlrotor in der Regel vorhandener Luftspalt wird hierzu ausgenutzt. Diese Erfindungsausbildung läßt sich praktisch durch einen Hohlwellengeber realisieren, bei dem der das Geberrad bildende Fühlrotor dem Abtastorgan gegenüberliegend angeordnet ist, ohne mit letzterem über Lager oder dergleichen mechanisch verbunden zu sein.
Weitere Merkmale, Einzelheiten und Vorteile auf der Basis der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele der Erfindung. Diese zeigen in:
Fig. 1
das Schema eines erfindungsgemäßen Direkt-Antriebsystems teilweise in Längsansicht,
Fig. 2
im teilweisen Längsschnitt einen mit einem zu drehenden Zylinder gekoppelten Direktantrieb,
Fig. 3
ein Blockschaltbild eines Signalverarbeitungsmoduls des erfindungsgemäßen Direktantriebs,
Fig. 4
ein Blockschaltbild eines erfindungsgemäßen, modularen Antriebssystems zur Steuerung und Regelung einer Mehrzahl von Funktionsteile-Achsen,
Fig. 5
das dynamische Verhalten eines Ausführungsbeispiels der Erfindung anhand eines Strukturblockschemas,
Fig. 6
im axialen bzw. Längsschnitt die Anbringung eines Hohlwellengebers am Direktantrieb bzw. der Wandung eines Druckwerkszylinder,
Fig.7
eine Richtungspfeil VII in Fig. 6 entsprechende Stirnansicht und
Fig. 8
eine Richtungspfeil VIII in Figur 7 entsprechende Stirnansicht.
Gemäß Figur 1 besteht das Druckwerk einer Rollenoffset-Maschine aus den vier Platten- bzw. Gummituchzylindern D1, D2, D3 und D4 (schematisch dargestellt), die über Lager 40 an der ortsfesten Wandung H (vgl. Figur 6) der Maschine drehbar sind. Zu ihrer Drehung ist ihnen jeweils ein Elektromotor mit einem Rotorpaket F und einem Statorpaket G zugeordnet. Der Achsstummel 41 des Rotors F ist unmittelbar mit dem Achsstummel 42 des Zylinders D verbunden; mit anderen Worten, beide sind miteinander so baulich integriert, daß sie ineinander übergehen und dabei eine Antriebsverbindung bilden, die etwa so drehsteif wie eine einstückige Stahlwelle ist. Die an den freien Stirnseiten der Elektromotoren F,G herausragenden Achsstummel 43 sind mit Sinus/Kosinus-Absolut-Winkellagegebern 44, versehen. Am entgegengesetzten Ende stehen Achsstummel 45 von den Zylindern D1 - D4 vor, die ebenfalls je mit einem gleichartigen Absolut-Winkellagegeber 46 versehen sind. Die Elektromotoren F,G sind konstruktiv als Einbaumotoren ausgeführt. Sie können mit Drehstrom-Servomotoren in synchroner Bauart mit Permanentmagneten ausgeführt sein. Diese werden von einem Leistungsblock 47 jeweils mit digitalem Stromregler 48 angesteuert. Der Leistungsblock 47 wird von einer Zwischenkreis-Versorgung 49 aus mit elektrischer Energie versorgt. Die digitalen Stromregler 48 kommunizieren jeweils über störsichere Lichtwellenleiter 50 mit einem Achs-Peripheriemodul AP. Die Achs-Peripheriemodule weisen ferner jeweilige Schnittstellen 44a, 46a einerseits für je einen der an den Elektromotoren F,G angebrachten Winkellagegeber 44 als auch für je einen der auf den entgegengesetzten Wellenenden bzw. Achsstummeln 45 an den freien Stirnseiten der Zylinder D1 - D4 befindlichen Winkellagergeber 46 auf. Die Achs-Peripheriemodule AP werden von einem gemeinsamen, digitalen Signal-Prozessor 51 kontrolliert. Dieser ist als Antriebsregler für eine maximale Anzahl von Achsen mit Lageregler, Drehzahlregler, Motorführung und Geberauswertung konfigurierbar.
In Figur 3 ist die jeweilige interne Struktur des Signal-Prozessors 51 als auch der Achs-Peripheriemodule AP vergrößert dargestellt und mit dem Fachmann geläufigen Abkürzungen bezeichnet, so daß sich weitere Erläuterungen grundsätzlich erübrigen. Mit SCC ist ein sogenannter serieller Kommunikations-Steuerbaustein bezeichnet.
In Figur 4 ist die Einbindung des erfindungsgemäßen Antriebssystems gemäß Figur 1 - 3 in ein globales Konzept für eine Vielfachsteuerung mit projektierbaren, modularen Steuerungs- und Regelungseinheiten veranschaulicht. Neben einem Leitrechner IPC-486 sind Bausteine CPU-68-3 zur speicherprogrammierbaren Steuerung und zur Sollwertgenerierung vorgesehen. An diese sind die Signalprozessoren 51 über einen Systembus angekoppelt.
Das Blockschema gemäß Figur 5 stellt ein beispielhaftes, erfindungsgemäßes Antriebssystem für zwei über Reibschlupf (Schmitz-Ringe) verkoppelte, lagegeregelte Achsen I, II dar. Aus einer Sollwert-Generierung (beispielsweise gemäß Figur 4) werden jeder Achse I, II zu ihrer Lagesteuerung Winkellagesollwerte  soll I,soll II vorgegeben. Nach Vergleich mit dem über die Winkellagegeber 46 jeweils erhaltenen Istwerten  ist I,ist II wird die jeweilige Regeldifferenz einem Lageregler KVI, KVII zugeführt. Dessen jeweiliger Ausgangswert wird einer Differenzbildung 52I, 52II mit dem differenzierten Winkellage-Istwert, d.h. der jeweiligen Ist-Winkelgeschwindigkeit ΩistI, ΩIstII der Achsen I, II unterworfen. Der daraus jeweils resultierende Differenzwert wird einem Drehzahlregler KpI, KpII zugführt, dessen jeweiliger Ausgang auf ein Summierglied 53I, 53II trifft. Jedem dieser Summierglieder 53I, 53II ist zur Bildung einer Störgrößenaufschaltung der Ausgang eines Kennliniengliedes f(I), f(II) als Funktion der Winkellage I, II zugeführt. Demgemäß ist jedes Kennlinineglied eingangsseitig mit dem Ausgang des entsprechenden Winkellagergebers 46I, 46II verbunden. Den Summiergliedern 53I, 53II sind ferner die jeweiligen Ausgänge proportionaler Rückführungsglieder KI,II, KII,I zugeführt, welche kreuzweise in die Ist-Winkelgeschwindigkeit Ω Ist II bzw. ΩIst I am jeweils entsprechenden Differenzierglied 54II, 54I abgreifen. Die Eingänge der Differenzierglieder 54I, 54II sind jeweils mit dem Ausgang der entsprechenden Winkellagegeber 46I bzw. 46II verbunden. Diese Kreuzverkopplung mittels der Proportionalglieder KI,II bzw. KII,I wirkt auf die beispielsweise über die Schmitz-Ringe verkoppelten Regelstrecken/Achsen I bzw. II entkoppelnd.
Die jeweiligen Ausgänge der Summierglieder 53I und 53II münden direkt in jeweilige Proportionalglieder K-1 SI, K-1 SII, welche u.a. auf die Drehmassen der die Achsen I, II umfassenden Funktionsteile bezogene Faktoren darstellen. Danach folgen Stromregelungskreise 55I, 55II, die die eingangsseitigen Stromsollwerte IsollI, IsollII in Ist-Stromwerte IistI, IistII umwandeln. Die Stromregelkreise 55I, 55II verhalten sich nach außen näherungsweise wie in der Regelungstechnik an sich bekannte PT2-Glieder. Die jeweiligen Ist-Stromwerte IistI, IistII sind Proportionalgliedern KTI, KTII zugeführt, welche die Elektromotor-Konstante zur Umwandlung von Strom in ein Motor-Drehmoment MMotI, MMotII darstellen, Nach Verknüpfung mit dem jeweiligen Proprtionalglied I-1 I, I-1 II entsprechend der jeweiligen Drehmasse der Achse I, II und unmittelbar nachfolgender Aufintegration der Winkelbeschleunigung βI, βII mittels des Integrations-Gliedes 56I, 56II ergibt sich die Winkelgeschwindigkeit ΩI, ΩII, mit denen die Drehmassen/Funktionsteile um ihre jeweiligen Drehachsen I, II rotieren. Nach Integration mit einem weiteren Integrations-Glied 57I, 57II läßt sich in Verbindung mit den jeweiligen Winkellagegebern 46I, 46II der Winkellage-Istwert istI, istII ermitteln und den jeweiligen Vergleichen 58I, 58II am Eingang des Blockschaltbildes gemäß Figur 5 zum Soll-Istwert-Vergleich zuführen.
Zu berücksichtigen ist noch, daß im Anwendungsfall bei Platten-/Gummizylindern eines Druckwerks einer Rollenoffset-Maschine (vgl. Figur 1) die jeweiligen Zylinder D1, D2 bzw. D3, D4 mit Schlupf aufeinander reiben, woraus ein Störmoment resultiert. Dies ist in Figur 5 im Ausgangsbereich des Blockschemas bzw. der Antriebsstruktur durch die paarweise übereinstimmenden und parallel liegenden Proportionalglieder RI (entsprechend dem Halbdurchmesser bzw. Radius der die Achse I umfassenden Drehmasse) einerseits und RII (entsprechend dem Radius bzw. Halbmesser, der die Achse II umfassenden Drehmasse) andererseits zum Ausdruck gebracht. Die jeweiligen Bahngeschwindigkeiten vI, vII der beiden Drehmassen I, II errechnen sich nach je einem ersten bzw. äußeren der beiden Proportionalglieder-Paare RI bzw. RII, die die jeweilgen Winkelgeschwindigkeiten ΩI, ΩII der beiden Drehmassen als Eingangsgröße haben. Die Bahngeschwindigkeiten VI, VII werden im Rahmen einer Differenzbildung 70 voneinander subtrahiert. Der Schlupf s ergibt sich durch den Quotienten aus dieser Differenz und einer der beiden Umfangsbahn-Geschwindigkeiten VI, VII der beiden Drehmassen, wie durch das Dividierglied 59 verdeutlicht. Das diesem nachfolgende Kennlinienglied 60 repräsentiert die spezifische Reibungscharakteristik beim Aufeinanderrollen von Zylinder-Mantelflächen und ergibt als Funktionswert den Reibungskoeffizienten µR. Wird diese mit der Normalkraft FN entsprechend dem Anpressdruck der Zylinder aufeinander mulitpliziert, ergibt sich die störende Reibungskraft in Zylinder-Tangantial- bzw. Umfangsrichtung. Diese multipliziert mit dem jeweiligem zweiten bzw. inneren Radius-Proportionalglied RI bzw. RII jedes Parallel-Proportionalgliedpaares ergibt den Drehmomenteneinfluß, der jedem vom zugeordneten Antriebsmotor erzeugten Drehmoment MMotI bzw. MMotII aufgrund der Schlupfreibung entgegenstehend wie durch das jeder Achse I bzw. II zugeordnete Vergleichsglied 61I bzw. 61II veranschaulicht.
In den Figuren 6 - 8 ist die Nachführung des Rotors F,Z und/oder des Stators N,G des Elektromotors für die Platten- oder Gummituchzylinder D1 - D4 dargestellt, die u.a. mittels der Exzenterbuchsen A, B realisiert ist. Damit lassen sich für die Zylinder D1 - D4 Verstellbewegungen in Längsrichtung U (Verstellung der Seitenregister), in Querrichtung R (Verstellung der Diagonalregister), Anstellbewegungen W usw. realisieren. Wegen der Einzelheiten der Zylinder-Lageeinstellung wird auf die eingangs genannten Fundstellen DE-OS 41 38 479 und ältere EP-Patentanmeldung 93 106 545.2 verwiesen. Die dort zur Beschreibung der (dortigen) Figuren 7 - 9 verwendeten Bezugszeichen sind in den vorliegenden Figuren 6 - 8 sinngemäß verwendet.
Zusätzlich ist die Zylinderwelle E mit einem sich axial erstreckenden Ansatz 62 versehen, der vom Elektromotor G,F,N,Z koaxial vorspringt und am Stirnende der Antriebswelle starr und steif fixiert und/oder damit einstückig ausgeführt ist. Auf der Umfangsfläche des Ansatzes 62 ist ein Pol- oder Geberrad 63 eines Hohlwellengebers starr bzw. ortsfest fixiert. Dieses weist an seinem äußeren Rand radial vorspringende Zähne 64 auf, die in Umfangsrichtung gemäß einer bestimmten Teilung beabstandet aneinandergereiht sind. An der nach außen gewandten Stirnseite der den Stator G,N umfassenden Exzenterbuchse B ist ein parallel zur Drehachse vorspringender Befestigungsschaft 65 fixiert, der an seinem freien Ende den Geberkopf 66 des Hohlwellengebers trägt. Dieser ist mit einem bezüglich der Geberrad-Drehachse verlaufenden Abstand 67 zu den Zähnen 64 des Geberrads 63 angeordnet. Der Abstand 67 ist so bemessen, daß einerseits die Wirkungsverbindung von dem Geberkopf und der Zähne 64 auf dem Geberrad 63 zustandekommen kann und andererseits in bestimmtem Umfang Axialversetzungen zwischen dem Geberkopf 66 und dem Geberrad 63 möglich sind, ohne daß die Funktionsfähigkeit dieser Wirkungsverbindung beeinträchtigt wird. Außerdem sind das Geberrad 63 und/oder dessen Zähne 64 dazu ausreichend breit ausgeführt. Auch eine mittige Anordnung des Geberkopfs 66 gegenüber den Zähnen ist hierzu vorteilhaft.
Die Erfindung ist nicht auf dieses in Figuren 6 - 8 dargestellte Ausführungsbeispiel beschränkt: So ist es denkbar, daß der Befestigungsschaft 65 direkt an der Wandung H der Druckmaschine fixiert ist, und/oder der vom Geberrad 63 umgebene Ansatz direkt an der Stirnseite eines der Zylinder D1 - D4 angebracht ist, während der Elektromotor F,G beispielsweise an der anderen Stirnseite des Zylinders D1 - D4 angreift, wie in Figur 1 angedeutet.

Claims (16)

  1. Elektrisches Antriebssystem zur Verstellung von mehreren dreh- und/oder verschwenkbaren Funktionsteilen (D1 - D4) von Geräten und Maschinen, insbesondere von Druckmaschinen, in ihrer Winkellage (istI, istII), mit mehreren Elektromotoren (F, G), deren jeweiliger Rotor (F) zur steifen und direkten Verbindung mit dem Funktionsteil (D1 - D4) ausgebildet ist, mit mehreren Winkellagegebern (44,46), die Winkelbewegungen des jeweiligen Elektromotor-Rotors und/oder Funktionsteiles (D1 - D4) aufnehmen, mit einem Signalverarbeitungsmodul (51, AP), das eingangsseitig zur Aufnahme der Winkellagesignale (istI, istII) als Istwerte mit den Winkellagegebern (44,46) verbunden ist und mehrere, je einem Funktionsteil (D1 - D4; I, II) zugeordnete Regler oder Reihen mit mehreren Regelgliedern aufweist, die zur simultanen Aufnahme von je einem Funktionsteil (D1 - D4; I, II) zugeordneten Sollwerten (soll) und zu deren Vergleich mit den Istwerten ausgebildet sind, und mit mehreren, vom Signalverarbeitungsmodul (51, AP) und/oder den jeweiligen Reglern kontrollierte Leistungsverstärkern (47, 48), die ausgangsseitig mit dem jeweiligen Elektromotor (F, G) zu dessen Ansteuerung verbunden sind, gekennzeichnet durch :
    (a) einen bidirektionalen Systembus , über den mehrere, jeweils die Regler oder Reihen von Regelgliedern enthaltende Signalverarbeitungsmodule (51,AP) mit einem Prozessor (CPU-68-3) zur Sollwertgenerierung verbunden sind,
    (b) wobei die Regler oder Regeiglieder zur simultanen Aufnahme von je einem Funktionsteil (D1-D4) zugeordneten Sollwerten ausgebildet sind,
    (c) und einen Lokalbus, über den die Regler oder Reihen mit mehreren Regelgliedern des Signalverarbeitungsmoduls (51,AP) mit Achsperipheriemodulen (AP) als Schnittstellen (44a,46a,50) zu den Leistungsblöcken (47) der Elektromotoren (F,G) und zu den Winkellagegebern (44,46) verbunden sind.
  2. Antriebssystem nach Anspruch 1, dadurch gekennzeichnet, daß der Rotor (F) mit dem Funktionsteil (D1 - D4) baulich integriert und/oder einstückig ausgeführt ist.
  3. Antriebssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Elektromotor (F, G) zum Anbau an einem Wellenstummel eines drehbaren Funktionsteiles (D1 - D4) ausgebildet ist.
  4. Antriebssystem nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Elektromotor mit einem walzen- oder zylinderförmigen Außenläufer oder -rotor gebildet ist, dessen Form der des Funktionsteiles entspricht, insbesondere zur Aufnahme darin ausgeführt ist.
  5. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß dem Elektromotor ein einziger Winkellagegeber (44) zugeordnet ist, der am Rotor (F) des Elektromotors (F, G) zur unmittelbaren Aufnahme von dessen Winkelbewegungen (istI, istII) angebracht ist, wobei das Signalverarbeitungsmodul (51, AP) und/oder der Winkellagegeber (44) mit einem Beobachtermodul für Zustandsgrößen des Funktionsteiles vorzugsweise in Differenzsignalaufschaltung gekoppelt ist.
  6. Antriebssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß dem Elektromotor (F, G) wenigstens zwei Winkellagegeber (44, 46) zugeordnet sind, die je am Rotor (F) des Elektromotors (F, G) und am Funktionsteil (D1 - D4) zur unmittelbaren Aufnahme von deren Winkelbewegungen (istI, istII) angebracht sind, wobei die Signalausgänge (44a, 46a) dieser beiden Geber mit dem Signalverarbeitungsmodul (51, AP) vorzugsweise in Differenzsignalaufschaltung gekoppelt sind.
  7. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß dem Elektromotor ein einziger Winkellagegeber (46) zugeordnet ist, der am Funktionsteil (D1 - D4) zur unmittelbaren Aufnahme von dessen Winkelbewegungen (istI, istII) angebracht ist.
  8. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Winkellagegeber als Sinus/Cosinus-Absolutgeber, Inkrementalgeber mit Rechtecksignalen und Nullimpuissignal, als Inkrementalgeber mit Sinus/Cosinus-Signal nebst Nullimpulssignal oder als Hohlwellengeber mit Geberkopf (66) und die Winkelteilung aufweisendem Geberrad (63) ausgeführt ist.
  9. Antriebssystem nach Anspruch 8, dadurch gekennzeichnet, daß das Geberrad (63) mit dem Funktionsteil (D1 - D4) baulich integriert und/oder einstückig ausgeführt ist.
  10. Antriebssystem nach Anspruch 9, dadurch gekennzeichnet, daß der Geberkopf (66) und das Geberrad (63) entsprechend der Dreh- oder Schwenkachse des Funktionsteiles (D1 - D4) axial gegeneinander verschiebbar sind.
  11. Antriebssystem nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der Geberkopf (66) an oder gegenüber dem stationären Teil des Elektromotors (F, G), insbesondere dem Stator (G) oder dessen Gehäuse, fixiert beziehungsweise abgestützt ist.
  12. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Leistungsverstärker (47) mit Umrichter mit Spannungszwischenkreis (49) und/oder mit Direkteinspeisung ausgeführt ist.
  13. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Leistungsverstärker (47) mit digitaler Phasenstromregelung (48) auf der Basis von Pulsbreitenmodulation hoher Taktfrequenz, schneller Transistorschalter, Spannungsvorsteuerung und/oder Vorgabe der Phasenstromsollwerte und/oder der Vorsteuerwerte über Lichtwellenleiter-Verbindungen (50) realisiert ist.
  14. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß im Signalverarbeitungsmodul (51, AP) ein digitaler Signalprozessor (51) angeordnet ist, mit dem Funktionen zur Geberauswertung, Motorsteuerung, Drehzahlregelung, Winkellageregetung und/oder Feininterpolation der Soll- oder Vorgabewerte implementiert sind.
  15. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Signalverarbeitungsmodul (51, AP) mehrere, je einem Funktionsteil zugeordnete Regler oder Reihen mit mehreren Regelgliedern aufweist, die miteinander über zusätzliche, gewichtete Rückführungen (KI,II, KII,I), vorzugsweise über Kreuz, verkoppelt sind.
  16. Antriebssystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Signalverarbeitungsmodul (51, AP) einen oder mehrere Regler und/oder eine oder mehrere Reihen von Regelgliedern aufweist, die mit einem eingangsseitig Istwerte (istI, istII) aufnehmenden Kennlinienglied zur Störgrößenaufschaltung (53I, 53II) verknüpft sind.
EP00116859A 1994-07-23 1994-07-23 Elektrisches Antriebssystem zur Vorstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen in Geräten und Maschinen, Antriebsordnung mit einem Winkellagegeber und Druckmaschine Expired - Lifetime EP1052093B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP94111516A EP0693374B2 (de) 1993-07-08 1994-07-23 Elektrisches Antriebssystem insbesondere für Druckmaschinen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP94111516A Division EP0693374B2 (de) 1993-07-08 1994-07-23 Elektrisches Antriebssystem insbesondere für Druckmaschinen

Publications (4)

Publication Number Publication Date
EP1052093A2 true EP1052093A2 (de) 2000-11-15
EP1052093A3 EP1052093A3 (de) 2001-02-07
EP1052093B1 EP1052093B1 (de) 2003-02-26
EP1052093B2 EP1052093B2 (de) 2009-01-07

Family

ID=8216141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00116859A Expired - Lifetime EP1052093B2 (de) 1994-07-23 1994-07-23 Elektrisches Antriebssystem zur Vorstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen in Geräten und Maschinen, Antriebsordnung mit einem Winkellagegeber und Druckmaschine

Country Status (4)

Country Link
EP (1) EP1052093B2 (de)
AT (1) ATE233181T1 (de)
DE (2) DE59410249D1 (de)
ES (2) ES2183823T5 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007069A1 (de) * 2004-02-13 2005-08-25 Goss International Montataire S.A. Rotationselement einer Druckmaschine, mit einem Encoder
WO2006136578A1 (de) * 2005-06-23 2006-12-28 Koenig & Bauer Aktiengesellschaft Antriebe eines rotierenden bauteils einer druckmaschine
DE102008044154A1 (de) * 2008-11-28 2010-06-24 Koenig & Bauer Aktiengesellschaft Verfahren zur Einstellung des Diagonalregisters und/oder des Diagonalpassers einer Rotationsdruckmaschine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346680C5 (de) * 2003-10-08 2010-04-01 Siemens Ag Verfahren zur Erhöhung der Regeldynamik einer mit einer Antriebswelle eines Direktantriebes angetriebenen Last

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138540A1 (de) 1981-09-28 1983-04-14 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Vorrichtung zum zufuehren von auf einem anlegertisch vereinzelten und nach vorder- und seitenkante ausgerichteten bogen
DE3228507A1 (de) 1982-07-30 1984-02-02 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Winkelmesseinrichtung
GB2146801A (en) 1983-09-16 1985-04-24 Emi Plc Thorn Control of robots
GB2149149A (en) 1983-10-28 1985-06-05 Rockwell Graphic Syst Printing press synchronization
DE3919291A1 (de) 1988-06-14 1989-12-21 Tokyo Kikai Seisakusho Ltd Bahnvorschubrolle und antriebssteueranordnung hierfuer
DE3308988C2 (de) 1982-06-03 1991-08-14 Planeta Druckmaschinenwerk Ag, O-8122 Radebeul, De
DE4104105A1 (de) 1991-02-11 1992-08-13 Hueller Hille Gmbh Einrichtung zur potentialgetrennten messung des vom umrichter eines drehstrom-asynchron-motors aufgenommenen stromes, z. b. zur werkzeugueberwachung eines bearbeitungszentrums
DE4138479A1 (de) * 1991-11-22 1993-06-03 Baumueller Nuernberg Gmbh Verfahren und anordnung fuer einen elektromotor zum antrieb eines drehkoerpers, insbesondere des druckgebenden zylinders einer druckmaschine
DE4214394A1 (de) 1992-04-30 1993-11-04 Asea Brown Boveri Rotationsdruckmaschine
US5329216A (en) * 1991-03-04 1994-07-12 Matsushita Electric Industrial Co., Ltd. Multi-shaft driving apparatus and fluid rotary apparatus
DE4344896A1 (de) 1993-12-29 1995-07-06 Wifag Maschf Rotationsdruckmaschine mit paarweise zu Zylindergruppen zusammengefaßten Gummituch- und Platten- bzw. Formzylindern
EP0693374A1 (de) 1993-07-08 1996-01-24 Baumüller Nürnberg Gmbh Elektrisches Antriebssystem insbesondere für Druckmaschinen

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138540A1 (de) 1981-09-28 1983-04-14 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Vorrichtung zum zufuehren von auf einem anlegertisch vereinzelten und nach vorder- und seitenkante ausgerichteten bogen
DE3308988C2 (de) 1982-06-03 1991-08-14 Planeta Druckmaschinenwerk Ag, O-8122 Radebeul, De
DE3228507A1 (de) 1982-07-30 1984-02-02 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Winkelmesseinrichtung
GB2146801A (en) 1983-09-16 1985-04-24 Emi Plc Thorn Control of robots
GB2149149A (en) 1983-10-28 1985-06-05 Rockwell Graphic Syst Printing press synchronization
DE3919291A1 (de) 1988-06-14 1989-12-21 Tokyo Kikai Seisakusho Ltd Bahnvorschubrolle und antriebssteueranordnung hierfuer
DE4104105A1 (de) 1991-02-11 1992-08-13 Hueller Hille Gmbh Einrichtung zur potentialgetrennten messung des vom umrichter eines drehstrom-asynchron-motors aufgenommenen stromes, z. b. zur werkzeugueberwachung eines bearbeitungszentrums
US5329216A (en) * 1991-03-04 1994-07-12 Matsushita Electric Industrial Co., Ltd. Multi-shaft driving apparatus and fluid rotary apparatus
DE4138479A1 (de) * 1991-11-22 1993-06-03 Baumueller Nuernberg Gmbh Verfahren und anordnung fuer einen elektromotor zum antrieb eines drehkoerpers, insbesondere des druckgebenden zylinders einer druckmaschine
DE4214394A1 (de) 1992-04-30 1993-11-04 Asea Brown Boveri Rotationsdruckmaschine
US5309834A (en) * 1992-04-30 1994-05-10 Asea Brown Boveri Ltd. Rotary printing machine
EP0693374A1 (de) 1993-07-08 1996-01-24 Baumüller Nürnberg Gmbh Elektrisches Antriebssystem insbesondere für Druckmaschinen
DE4344896A1 (de) 1993-12-29 1995-07-06 Wifag Maschf Rotationsdruckmaschine mit paarweise zu Zylindergruppen zusammengefaßten Gummituch- und Platten- bzw. Formzylindern

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Elektronische Welle mit digitalen intelligenten Antrieben" (HMI/04.93) *
DR.-ING. HANS WALCHER: 'Winkel- und Wegmessungen im Maschinenbau', 1985, VDI-VERLAG, DOSSELDORF DEUTSCHLAND, ISBN 3-18-400708-1
HERBERT SCHLITT: 'Regelungstechnik', 1988, VOGEL BUCHVERLAG, WORZBURG DEUTSCHLAND, ISBN 3-8023-0171-4 Seiten 223 - 318
'NC/CNC Handbuch 93/94', 1993, CARL HANSER VERLAG, MONCHEN DEUTSCHLAND, ISBN 3-446-17464-8 Artikel HANS B. KIEF
PROF. DR. PETER MUTSCHLER: 'Offenes digitales Kommunikationssystem für numerische Steuerug und Antriebe in Werkzeugmaschinen' VORTRAG DER ETG-FACHTAGUNG 09 M{rz 1989 - 10 M{rz 1989, AUGSBURG,
R. SCHöNFELD: 'Digitale Regelung elektrischer Antriebe', 1990, HOTHIG BUCH VERLAG, HEIDELBERG DEUTSCHLAND, ISBN 3-7785-1904-2 Seiten 203 - 220
RICHARD BRONE, W. WEISSLER: 'Antriebe für Werkzeugmaschinen Umrichtersysteme SIMODRIVE 611' ENGINEERING & AUTOMATION 15 Bd. HEFT, Nr. 6, 1993, Seiten 9 - 11
SIEMENS: 'Automation Systems for Machine Tools, Robots and Special-Purposes Machines' CNC REPORT 02 April 1994, Seiten 1-3 - 10-11
SIEMENS: 'Automatisierungssysteme für Werkzeugmaschinen, Roboter und Sondermaschinen' CNC REPORT 01 Februar 1994, Seite 1+4
SIEMENS: 'SIMODRIVE Antriebssysteme für die Automatisierungstechnik Umrichtersysteme SIMODRIVE 611-D und 611-A' KATALOG SD 27 1993, ERLANGEN DEUTSCHLAND,
SIEMENS: 'TransistorPulswechselrichter für Drehstrom-Vorschubantriebe und Drehstrom-Hauptspindelantriebe' HERSTELLER-DOKUMENTATION August 1993, Seiten 3-36 - 3-53
W. BOTTNER: 'Digitale Regelungssysteme', 1991, VIEWEG, LENGERICH DEUTSCHLAND, ISBN 3-528-13041-5 Seiten 145 - 168
W. LIENKE, M. BöHM, N. PAUL: 'CNC und digitale Antriebe versprechen schnelle Inbetriebnahme und umfangreiche Diagnosemöglichkeiten' ZEITSCHRIFT NC Juni 1993, ERLANGEN DEUTSCHLAND, Seiten 32 - 36

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007069A1 (de) * 2004-02-13 2005-08-25 Goss International Montataire S.A. Rotationselement einer Druckmaschine, mit einem Encoder
WO2006136578A1 (de) * 2005-06-23 2006-12-28 Koenig & Bauer Aktiengesellschaft Antriebe eines rotierenden bauteils einer druckmaschine
CN101378904B (zh) * 2005-06-23 2011-04-27 柯尼格及包尔公开股份有限公司 印刷机具有端侧轴颈的旋转滚筒
DE102008044154A1 (de) * 2008-11-28 2010-06-24 Koenig & Bauer Aktiengesellschaft Verfahren zur Einstellung des Diagonalregisters und/oder des Diagonalpassers einer Rotationsdruckmaschine

Also Published As

Publication number Publication date
EP1052093A3 (de) 2001-02-07
ES2189716T3 (es) 2003-07-16
ATE233181T1 (de) 2003-03-15
ES2189716T5 (es) 2009-06-01
ES2183823T5 (es) 2010-04-15
DE59410218D1 (de) 2003-01-16
EP1052093B2 (de) 2009-01-07
DE59410249D1 (de) 2003-04-03
ES2183823T3 (es) 2003-04-01
EP1052093B1 (de) 2003-02-26

Similar Documents

Publication Publication Date Title
EP0916485B1 (de) Anordnung eines Winkellagegebers und dessen Verwendung in einem Positionierverfahren
DE19740153C2 (de) Verfahren zur Regelung eines Antriebes innerhalb einer Druckmaschine und Antrieb für eine Druckmaschine
EP0699524B2 (de) Rollenrotationsoffsetdruckmaschine
EP0930160B1 (de) Rotationsdruckmaschine
DE19527199C2 (de) Flexodruckmaschine und deren Verwendung
EP0621133B1 (de) Verfahren und Anordnung für einen Elektromotor zum Antrieb eines Drehkörpers, insbesondere des druckgebenden Zylinders einer Druckmaschine
EP0852538B1 (de) Wellenlose rotationsdruckmaschine
EP0747214B1 (de) Verfahren zum Steuern eines Mehrmotorenantriebs einer Druckmaschine sowie entsprechende Steuerung
DE19720952C2 (de) Schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder
EP0806294B1 (de) Verfahren und Vorrichtung zum Einstellen des Umfangsregisters in einer Rollenrotationsdruckmaschine mit einem eine hülsenförmige Druckplatte tragenden Plattenzylinder
EP0985989A2 (de) Verfahren und Einrichtung zum Verbessern des dynamischen Verhaltens eines Roboters
DE10254118B4 (de) Verfahren zum Antreiben einer drucktechnischen Maschine
DE4143597C2 (de) Druckmaschine mit wenigstens einem elektromotorisch angetriebenen, axial verstellbaren Zylinder oder sonstigen Drehkörper
EP0722831B1 (de) Verfahren und Anordnung für einen Elektromotor zum Antrieb eines Drehkörpers, insbesondere des druckgebenden Zylinders einer Druckmaschine
EP1052093A2 (de) Elektrisches Antriebssystem zur Vorstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen in Geräten und Maschinen, Antriebsordnung mit einem Winkellagegeber und Druckmaschine
DE10317570B3 (de) Antriebsvorrichtung eines Aggregates einer Druckmaschine
EP2122426B1 (de) Antriebseinrichtung aus mehreren antrieben und regelung für diesen gesamtantrieb
DE19961880B4 (de) Elektrisches Antriebssystem zur aktiven Schwingungsdämpfung
DE102006014526A1 (de) Verfahren und Vorrichtung zur Reduzierung von periodischen Drehwinkel-Lagedifferenzen
DE9321402U1 (de) Elektrisches Antriebssystem zur Verstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen in Geräten und Maschinen, Antriebsanordnung mit einem Winkellagegeber und Druckmaschine
EP0692377B1 (de) Verfahren und Vorrichtung zum synchronen Antreiben von Druckmaschinenkomponenten
DE19826338A1 (de) Antrieb für eine Druckmaschine
DE102009045679B4 (de) Verfahren zur Regelung eines Antriebes wenigstens eines registerhaltig anzutreibenden Rotationskörpers einer Druckmaschine
DE10212534A1 (de) Mehrmotorenantrieb und Verfahren zum Antreiben einer Druckmaschine
DE10255041A1 (de) Antrieb für einen umlaufenden Zylinder einer drucktechnischen Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 693374

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7B 41F 13/004 A

17P Request for examination filed

Effective date: 20010419

17Q First examination report despatched

Effective date: 20010823

AKX Designation fees paid

Free format text: AT CH DE ES FR GB IT LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0693374

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Designated state(s): AT CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 59410249

Country of ref document: DE

Date of ref document: 20030403

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2189716

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20031126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060703

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070723

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20090107

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20090406

Kind code of ref document: T5

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110706

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120803

Year of fee payment: 19

Ref country code: ES

Payment date: 20120723

Year of fee payment: 19

Ref country code: IT

Payment date: 20120724

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120720

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 233181

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130723

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130723

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130723

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130724