EP1048768A2 - Procédé pour la surveillance de l'insertion de la trame dans les fournisseurs de métiers à tisser à jet avec unité de mesure de fil - Google Patents

Procédé pour la surveillance de l'insertion de la trame dans les fournisseurs de métiers à tisser à jet avec unité de mesure de fil Download PDF

Info

Publication number
EP1048768A2
EP1048768A2 EP00107986A EP00107986A EP1048768A2 EP 1048768 A2 EP1048768 A2 EP 1048768A2 EP 00107986 A EP00107986 A EP 00107986A EP 00107986 A EP00107986 A EP 00107986A EP 1048768 A2 EP1048768 A2 EP 1048768A2
Authority
EP
European Patent Office
Prior art keywords
turns
weft
nsp
drum
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00107986A
Other languages
German (de)
English (en)
Other versions
EP1048768A3 (fr
EP1048768B1 (fr
Inventor
Pietro Zenoni
Giovanni Pedrini
Luca Gotti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LGL Electronics SpA
Original Assignee
LGL Electronics SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LGL Electronics SpA filed Critical LGL Electronics SpA
Publication of EP1048768A2 publication Critical patent/EP1048768A2/fr
Publication of EP1048768A3 publication Critical patent/EP1048768A3/fr
Application granted granted Critical
Publication of EP1048768B1 publication Critical patent/EP1048768B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft
    • D03D47/361Drum-type weft feeding devices
    • D03D47/367Monitoring yarn quantity on the drum
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft
    • D03D47/361Drum-type weft feeding devices
    • D03D47/362Drum-type weft feeding devices with yarn retaining devices, e.g. stopping pins

Definitions

  • the present invention relates to a method for monitoring weft insertion in feeders of jet looms with fed thread pre-measuring unit.
  • Weft pre-measuring units are known and widely used in the field of jet weaving (air- or water-jet looms) which, inserted between the spool and the loom, have the specific task of feeding a preset length of thread, for each weft insertion, by releasing it from a weft reserve accumulated on the drum of the unit in the form of turns wound onto the drum and to also replace the released weft by winding onto the drum a corresponding amount of thread, so as to keep the weft reserve substantially unchanged.
  • jet weaving air- or water-jet looms
  • a conventional system for feeding jet looms with a unit for pre-measuring the fed thread at each weft insertion uses a weft feeder and pre-measuring unit which comprises: a fixed drum, on which a windmilling arm winds the turns of thread that form the weft reserve; a weft retention finger for stopping the thread, which is associated with the fixed drum and is actuated electromagnetically in order to release the thread, allowing it to unwind from the drum, and to stop its unwinding when the pre-measured amount is reached; means for counting the turns of thread released at each weft insertion; means for counting the turns wound back onto the drum of the unit in order to restore the weft reserve; and a control microprocessor which receives a weft release signal from the loom and supervises the actuation of the weft retention finger, the counting of the unwound turns and the actuation of the motor that drives the windmilling arm that winds back the turns, restoring
  • the microprocessor processes the pulsed signals generated by a first optical sensor which detects the passage of the turns that unwind from the drum and, respectively, by a second magnetic sensor which provides one pulse at each turn of the windmilling arm that winds a corresponding turn onto the drum of the unit.
  • the microprocessor compares the number of pulses of the signals generated by the first and second sensors and actuates accordingly the motor of the windmilling arm, making the number of pulses match so as to keep unchanged the weft reserve that is present on the drum of the feeder and pre-measuring unit.
  • the circuit for detecting and amplifying the signal of the optical sensor designed to detect the turns that unwind from the drum can in fact eliminate the signal by interpreting it as noise and accordingly filtering it out by means of a high-pass filter.
  • the filter is provided in order to eliminate light variations that are much slower than those caused by the rapid passage of the thread and are noise-related, such as for example variations in external light, the passage of grains of dust, vibrations of light reflected on the sensor caused by the operation of the unit, and the like.
  • the weft can become entangled in the warp, or in the comb of the loom (if it is too dirty), and thus undergo sudden deceleration although the carrier fluid is fed at the maximum flow-rate.
  • the thread retained in the nozzle of the loom is propelled by a reduced flow, known as holding flow, at a pressure which is much lower than the normal weft release pressure: in this case also, the speed of the thread is reduced considerably.
  • the aim of the present invention is to eliminate this severe drawback.
  • an object of the present invention is to provide a method for monitoring weft insertion which is adapted to eliminate, or at least minimize, the possibility of depleting the weft reserve on the drum of the feeder and pre-measuring unit in any of the circumstances that can cause suppression of the signal of the sensor designed to detect the passage of the turns being unwound.
  • Another important object of the present invention is to provide a monitoring method which is highly reliable and in particular is independent of the variation of several parameters of the weaving process, such as in particular the nature and count of the weft thread, the structure and operating speed of the loom, and the length of the thread required for each weft insertion.
  • the method according to the invention is based on the statistical prediction that every insertion request that arrives at the control and supervisor microprocessor is usually performed correctly regardless of whether the unwinding turn detection sensor has seen and reported or not the passage of all the turns to be inserted. In this manner, if the passage of a turn is not detected after a preset interval of time since the last pulse generated by the passage of a turn, or since the last insertion request, this failed detection is taken to mean that the requested turns have been inserted.
  • the method according to the invention based on this prediction, consists in programming the microprocessor so that it generates, upon an external command, respective interrupts upon variation in the signals produced by the turn winding and unwinding sensors and upon variation in the weft request signal produced by the loom; in assigning the routines of the interrupts of the signals of said sensors the task of decreasing and, respectively, incrementing the counters of the number of turns wound onto, and respectively unwound from, the drum of the unit, and of setting a timer to a value which is equal to the maximum time that elapses between the passage of one turn and the next; and in giving the routine of the weft request signal the task of ascertaining that the number of turns inserted as a consequence of the directly preceding request exceeds a preset minimum threshold and the task of compensating for any missing turns by subtracting them from the turns that are present on the feeder drum; said microprocessor being also adapted to generate a periodic internal interrupt whose routine has the task of checking whether the setting of the timer has expired or
  • SI generally designates a conventional system for feeding a weft thread F to a jet loom TE with pre-measurement of the thread fed at each insertion and unwound from a spool RO.
  • the system SI uses, for this purpose, a weft feeder and pre-measuring unit, generally designated by the reference letter P, which comprises a fixed drum TA on which a windmilling arm BR, associated with a flywheel VO and actuated by a motor MO, winds a plurality of turns of thread which form a weft reserve RT.
  • a weft retention finger DI for stopping the thread F is associated with the drum TA of the feeder and is actuated by an electromagnetic actuator AE in order to release the thread, allowing it to unwind from the drum TA, and to stop its unwinding when the pre-measured amount or length is reached.
  • a microprocessor ⁇ P designed to supervise the entire system SI, generates an output CE for controlling the electromagnet of the weft retention finger DI and another set of three outputs a, b, c for controlling the motor MO by means of a power interface (driver) MPD.
  • a first optical sensor UWP located at the output of the drum TA, is provided in order to count the turns that unwind from the drum and sends to the microprocessor ⁇ P its pulsed signals UWSP, processed beforehand in an amplification and filtration circuit CAF.
  • a second magnetic sensor H provides the microprocessor ⁇ P with a pulse WSP at each rotation of the windmilling arm BR that winds a corresponding turn onto the drum TA, said magnetic sensor detecting the passage of a magnet M which is carried by the flywheel VO associated with the arm BR.
  • the circuit CAF for amplifying and filtering the signal produced by the optical sensor UWP is now described with reference to Figure 2.
  • Said sensor comprises an emitter diode LE and a receiver phototransistor FT, which produces, across its terminals, a weak current IR which is proportional to the amount of light received by reflection from a mirror, or the like, located on the drum TA of the unit P and which is struck by the light emitted by the diode LE.
  • the current fed to the emitter diode is adjusted by an appropriate control circuit CRC which is designed to keep the current substantially constant.
  • the weft thread F that unwinds from the drum intersects the beam of light that is incident on the mirror and reflected by it, causing an instantaneous decrease in the current IR emitted by the phototransistor.
  • the current signal IR is amplified in an amplifier A1 at the output of which there is a corresponding signal S2 which is amplified in terms of voltage.
  • the signal S2 is filtered in a high-pass filter A2 and the signal S3 that is present at the output of said filter is applied to a comparator A3, so that when signal S3 exceeds the reference threshold RF the positive pulse of the signal UWSP is produced. Otherwise, i.e., when S3 ⁇ RF, the pulse of the signal UWSP is suppressed.
  • the microprocessor ⁇ P also receives the weft release request signal TR generated by the loom TE.
  • the microprocessor receives the request signal TR, it immediately energizes the actuator AE, which lifts the weft retention finger DI, allowing the unwinding of the turns of the weft reserve RT.
  • the loom TE for example of the air-jet type, actuates the jets of the main nozzles and of the relay nozzles and inserts the weft in the shed.
  • the microprocessor by means of the signals UWSP, is kept informed on the number of turns unwound from the drum TA of the pre-measuring unit P and when the requested number of turns has been reached it actuates the actuator AE with reversed polarity, causing the lowering of the weft retention finger DI and stopping the unwinding of the thread.
  • the microprocessor ⁇ P actuates the motor MO in order to replenish the turns of thread taken from the weft reserve RT, and at each wound turn it receives from the sensor H a corresponding signal WSP.
  • the microprocessor compares the number of pulses of the signal UWSP with the number of pulses of the signal WSP and makes the number of the pulses substantially match. However, if one or more pulses of the signal UWSP are suppressed because S3 ⁇ RF due to one of the above noted reasons, the microprocessor loses control of reserve replenishment, and the reserve can become fully depleted, stopping the weaving process.
  • the present invention provides an insertion monitoring method which is independent of any checking of the match between the pulses of the signals WSP and UWSP and introduces the concept of the resetting, or lack thereof, of a counter within a preset time limit (timeout) elapsing from the passage of the last turn or from the actuation of the weft release request signal.
  • the microprocessor ⁇ P is programmed so as to generate ( Figures 4 and 5), upon a command which originates externally, respective interrupts upon a variation (a negative one in the example of Figures 4 and 5) of the signals UWSP and WSP produced by the turn unwinding and rewinding sensors and upon a variation (a positive one in the example) of the weft request signal TR generated by the loom TE, and so as to internally generate a periodic control interrupt.
  • the above described periodic interrupt is executed with a preset and constant frequency, for example equal to 1 ms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Looms (AREA)
EP00107986A 1999-04-27 2000-04-18 Procédé pour la surveillance de l'insertion de la trame dans les fournisseurs de métiers à tisser à jet avec unité de mesure de fil Expired - Lifetime EP1048768B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITTO990338 1999-04-27
IT1999TO000338A IT1307712B1 (it) 1999-04-27 1999-04-27 Metodo di sorveglianza dell'inserzione di trama nei sistemi dialimentazione di telai a getto di fluido con premisuratore del filato

Publications (3)

Publication Number Publication Date
EP1048768A2 true EP1048768A2 (fr) 2000-11-02
EP1048768A3 EP1048768A3 (fr) 2001-11-28
EP1048768B1 EP1048768B1 (fr) 2004-09-22

Family

ID=11417758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00107986A Expired - Lifetime EP1048768B1 (fr) 1999-04-27 2000-04-18 Procédé pour la surveillance de l'insertion de la trame dans les fournisseurs de métiers à tisser à jet avec unité de mesure de fil

Country Status (3)

Country Link
EP (1) EP1048768B1 (fr)
DE (1) DE60013951T2 (fr)
IT (1) IT1307712B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1335054A2 (fr) * 2002-01-28 2003-08-13 L.G.L. Electronics S.p.A. Procédé et dispositif pour mesurer le fil de trame, en particulier dans les métiers à tricoter circulaires électroniques
EP1391983A3 (fr) * 2002-08-21 2006-06-07 L.G.L. Electronics S.p.A. Méthode pour détecter le décalage d'un moteur de préalimentation du prédoseur d'une trame d'un métier à tisser
WO2006058776A1 (fr) * 2004-12-03 2006-06-08 Iro Ab Procede permettant de faire fonctionner un systeme de traitement de fil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702285A (en) * 1985-04-05 1987-10-27 Tsudakoma Corp. Weft insertion control method and device for carrying out the same
US4848417A (en) * 1987-04-08 1989-07-18 Martinus Dekker Monitor device for a weft yarn store and a method of operating a weft yarn store
WO1997004151A1 (fr) * 1995-07-18 1997-02-06 Iro Ab Procede de detection de fil et capteur de levee de fil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702285A (en) * 1985-04-05 1987-10-27 Tsudakoma Corp. Weft insertion control method and device for carrying out the same
US4848417A (en) * 1987-04-08 1989-07-18 Martinus Dekker Monitor device for a weft yarn store and a method of operating a weft yarn store
WO1997004151A1 (fr) * 1995-07-18 1997-02-06 Iro Ab Procede de detection de fil et capteur de levee de fil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1335054A2 (fr) * 2002-01-28 2003-08-13 L.G.L. Electronics S.p.A. Procédé et dispositif pour mesurer le fil de trame, en particulier dans les métiers à tricoter circulaires électroniques
EP1335054A3 (fr) * 2002-01-28 2003-09-17 L.G.L. Electronics S.p.A. Procédé et dispositif pour mesurer le fil de trame, en particulier dans les métiers à tricoter circulaires électroniques
EP1391983A3 (fr) * 2002-08-21 2006-06-07 L.G.L. Electronics S.p.A. Méthode pour détecter le décalage d'un moteur de préalimentation du prédoseur d'une trame d'un métier à tisser
WO2006058776A1 (fr) * 2004-12-03 2006-06-08 Iro Ab Procede permettant de faire fonctionner un systeme de traitement de fil

Also Published As

Publication number Publication date
EP1048768A3 (fr) 2001-11-28
DE60013951T2 (de) 2005-10-06
EP1048768B1 (fr) 2004-09-22
ITTO990338A1 (it) 2000-10-27
DE60013951D1 (de) 2004-10-28
IT1307712B1 (it) 2001-11-14
ITTO990338A0 (it) 1999-04-27

Similar Documents

Publication Publication Date Title
EP0094099B1 (fr) Système de contrôle pour métier à tisser
EP2031106B1 (fr) Procédé de controle de tension d'un fil délivré par un fournisseur négatif vers une machine textile, et dispositif permettant de mettre en oeuvre le procédé
EP1048768B1 (fr) Procédé pour la surveillance de l'insertion de la trame dans les fournisseurs de métiers à tisser à jet avec unité de mesure de fil
EP0713838B1 (fr) Dispositif et procédé pour surveiller la réserve de fil dans des fournisseurs de trame
JP4651821B2 (ja) 糸の走行/停止状態を監視する方法および糸検知器
EP0081502B1 (fr) Dispositif de preparation de la trame pour metiers a tisser pneumatiques
JPH07122197B2 (ja) 空気噴射式織機の緯入れ装置
JPS60119257A (ja) 整経織機用糸送り異常検出装置
KR960012186B1 (ko) 씨실 삽입상태 검사장치
EP1382727B1 (fr) Dispositif pour éviter un démarrage accidentel d'un métier à tisser
EP0548185B1 (fr) Systeme de commande d'un systeme de traitement de trame et d'un dispositif d'alimentation mesureur
US6068028A (en) Yarn scanning process and yarn unwinding sensor
EP0325793A1 (fr) Détecteur de trame avec ajustement automatique du retardement pour un dispositif d'alimentation de trame dans les métiers à tisser sans navette
JP3278874B2 (ja) ジェットルームにおける緯入れ制御装置
EP1391983B1 (fr) Méthode pour détecter le décalage d'un moteur de préalimentation du prédoseur d'une trame d'un métier à tisser
EP1050610A2 (fr) Procédé et dispositif pour contrôler les signaux de rotation du bras d'enroulement du fil de trame dans les fournisseurs de trame pour métiers à tisser
JP2636467B2 (ja) ジェットルームにおける緯入れ制御装置
JP2929775B2 (ja) ジェットルームにおける緯糸測長方法
JP5575898B2 (ja) 織機での異なる緯糸の緯入れの際に緯糸到達を監視するための方法及び装置
EP3498901A1 (fr) Procédé de détection de fil de trame dans un métier à tisser à jet d'air
JP2901382B2 (ja) 織機のスキップフィーラ装置
BE889677R (nl) Inslagvoorbereidingsinrichting voor luchtgetouwen
JPH07279012A (ja) 織機の緯糸検知装置
JP2000303323A (ja) 織機における製織停止の際の制動遅れ防止方法
JP3129752B2 (ja) 織機の織段防止方法と、その装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE LI SE

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020508

AKX Designation fees paid

Free format text: BE CH DE LI SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE LI SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60013951

Country of ref document: DE

Date of ref document: 20041028

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080331

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080416

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170327

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170327

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60013951

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430