EP1047649A1 - Procede de production de materiaux composites, et exemples de tels materiaux composites - Google Patents

Procede de production de materiaux composites, et exemples de tels materiaux composites

Info

Publication number
EP1047649A1
EP1047649A1 EP99955824A EP99955824A EP1047649A1 EP 1047649 A1 EP1047649 A1 EP 1047649A1 EP 99955824 A EP99955824 A EP 99955824A EP 99955824 A EP99955824 A EP 99955824A EP 1047649 A1 EP1047649 A1 EP 1047649A1
Authority
EP
European Patent Office
Prior art keywords
sintering
metal silicide
composite material
starting material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99955824A
Other languages
German (de)
English (en)
Inventor
Guenter Knoll
Gert Lindemann
Friederike Lindner
Matthias Wiedmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1047649A1 publication Critical patent/EP1047649A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Definitions

  • the invention relates to a method for producing a composite material from silicon nitride and a starting material containing metal silicide by gas pressure sintering in a nitrogen-containing atmosphere and a silicon-containing composite material, the silicon-containing components of which consist of Si3 4 and a metal silicide.
  • Composite materials containing silicon nitride and metal silicide and processes for their production are known.
  • the production of such materials by uniaxial hot pressing is described in DE 37 34 274 C2 and DE 36 06 403 C2, the starting material containing Si3 4 and MoSi2 as silicide, and in EP 0335 382 AI, the starting material Si3N4, M ⁇ 5Si3 as silicide and contains carbon and the material produced contains as metal silicide M ⁇ 5Si3C or more precisely Mo 5-X si 3 c lY (0 • $ X ⁇ 2; 0 ⁇ Y $ 1).
  • the electrical properties of the materials produced in this way can be specifically adjusted.
  • the method is apparatus and complex in terms of energy consumption. More complex geometric structures can only be produced using expensive hard machining.
  • the inventors found a way to take advantage of the gas pressure sintering process and still manufacture composite materials with specified electrical properties. They found that a defined setting of the electrical properties when using N2 partial pressures outside a certain pressure range is not possible. In experiments, they found a range of the N2 ⁇ partial pressures in which it can be prevented that the finished composite material contains components other than Si3N4 and Me5Si3 containing silicon. In this way, they succeeded in producing composite materials with specified electrical properties.
  • the gas pressure sintering process requires a much simpler sintering device than hot pressing. Dense high-strength materials can be produced with the method according to the invention. Compared to materials containing MeSi2, the temperature dependence of the electrical conductivity is very low for those containing M ⁇ 5Si3.
  • the metal silicide in the composite material has a carbon content (preferably between about 0.3 and about 0.6 mass% based on the composite material), i.e. is present as Me5Si3 (C).
  • Fig. 1 in a diagram plotted against the sintering temperature, the logarithm of the lower and upper limit values of the ⁇ partial pressures which can be used in the method according to the invention for the production of a composite material containing M ⁇ 5Si3 and
  • FIG. 2 shows the same as FIG. 1 but for the production of a composite material containing N 5Si3.
  • the exemplary embodiments of the method according to the invention described below are particularly advantageous, but it should be clarified that they are only mentioned by way of example and that diverse deviations from them are possible within the scope of the claims.
  • a preconditioned Si3N4 powder with sintering additives such as Al2O3, ⁇ 2 ° 3 ° pole. , which - based on the total inorganic content - make up less than about 10 Ma%, Ma% stands for mass percent, Me5Si3 in appropriate mass fractions and optionally organic press and / or binding agents with the addition of an organic solvent - preferably - mixed in an attritor mill .
  • the attrited suspension is dried, for example, in a rotary evaporator.
  • Shaped articles can be produced from the dried powder by cold isostatic pressing at pressures between about 150 and about 250 MPa, and can be given their final shape after green processing by pressing.
  • CIM ceramic injection molding
  • extrusion After the introduction of appropriate binders, further possibilities for processing are ceramic injection molding (CIM) or extrusion.
  • CIM ceramic injection molding
  • the moldings are treated at about 600 ° C. under a pressure of 1 bar in an inert gas atmosphere for about two hours, the organic components are removed practically without residue.
  • the main sintering then follows preferably in a gas pressure sintering furnace at a temperature in the range between approximately 1700 and approximately 1900 ° C. and preferably between approximately 1800 and approximately 1900 ° C.
  • N 2 partial pressure total pressure between approximately 0.1 MPa and approximately 10 MPa , which is determined in such a way that the Si3N4 ⁇ phase and the Me5Si3 ⁇ or Me5Si3 (C) phase are in thermodynamic equilibrium during sinter densification, ie no chemical reactions occur.
  • the range of N2 partial pressure that can be used at a certain temperature depends on the metal silicide. 1 and 2 are the - D _
  • the criterion that no reaction took place is that only the desired silicon-containing phases are found in the X-ray diffractogram of the sintered material.
  • the above-mentioned equations were then determined on the basis of these values, known data, such as enthalpies of formation, and thermodynamic functions.
  • the sintering takes about two to about five hours.
  • the specific electrical resistance of the composite materials produced according to the invention is set via the choice of the metal in the silicide and the proportion and distribution of the silicide in the composite material. Outside the respective percolation range, materials with N 5Si3 (C) containing specific electrical resistances between about 1.7 • 10 _4 - ⁇ .cm and about 1'10 12 -Qcm and materials containing M ⁇ 5Si3 (C) between about 1'10 _5 _Qcm and about 1 • 10 ⁇ - Q cm can be set reproducibly.
  • the specific resistance is measured using the four-tip method.
  • the sintered materials - apart from the carbon content and without taking the organic components into account - have the same composition as the mixture that was used in the manufacture.
  • the carbon in the metal silicide is preferably present in a proportion based on the composite material of between approximately 0.3 and approximately 0.6 mass% and particularly preferably of approximately 0.5 mass%.
  • the room temperature strengths of the composite materials are not less than 500 MPa.
  • Me can stand with comparable success for all metals of the 5th and 6th subgroup of the periodic table, in particular for vanadium, tantalum, chromium and tungsten.
  • the starting material was mixed from 36 Ma% Si3 4, 1.7 Ma% Al2O3, 2.38_Ma% _ Y2O3, 60 Nb 5 Si3 Ma% and conventional pressing and binding aids.
  • the average grain size of the Si3N4 was 0.7 ⁇ m and that of the Nb5Si3 was 7 ⁇ m.
  • pre-sintering was carried out at up to 600 ° C under an inert gas, using argon (nitrogen could also have been used). Sintering was then carried out at an N2 ⁇ partial pressure of 0.5 MPa (total pressure 1 MPa) and 1800 ° C. in a graphite furnace.
  • the composite material obtained had a density of 97% of the material density.
  • the X-ray phase analysis carried out after the sintering revealed only Si3N4 and b5Si3 (C) as silicon-containing phases.
  • As more specific electrical resistance was 3.6 • 10 ⁇ 3 .Ticm. determined at 25 ° C.
  • the temperature coefficient of the specific electrical resistance was 2'10 "4 K " 1 .
  • the material density achieved was also 97%
  • the X-ray phase analysis showed only silicon-containing phases as Si3N4 and b5Si3 (C)
  • the specific electrical resistance was 2'10 cm at 25 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

L'objectif de l'invention est de produire des matériaux composites contenant du nitrure de silicium et du siliciure métallique, possédant des caractéristiques électriques déterminées, cela avec des appareils peu complexes et une faible consommation d'énergie, des corps moulés dont les contours sont proches des contours finaux pouvant être produits à partir de ces matériaux composites, avant le frittage, et des exemples de tels matériaux composites pouvant être donnés. A cet effet, il est proposé un procédé selon lequel un matériau de départ contenant du Si3N4 et du siliciure métallique est soumis à un frittage sous pression de gaz dans une atmosphère contenant de l'azote, du Me5Si3 étant introduit dans le matériau de départ en tant que siliciure métallique et la pression partielle d'azote étant fixée en fonction de la température de frittage de telle sorte qu'à la limite inférieure de la plage utilisable, le Si3N4 est encore stable et qu'à la limite supérieure c'est le Me5Si3 qui est encore stable. L'invention concerne un matériau composite contenant du silicium, dont les composants contenant du silicium sont constitués de Si3N4 et d'un siliciure métallique, ce siliciure métallique étant choisi dans le groupe: Nb5Si3, V5Si3, Ta5Si3 et W5Si3.
EP99955824A 1998-10-02 1999-10-01 Procede de production de materiaux composites, et exemples de tels materiaux composites Withdrawn EP1047649A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19845532A DE19845532A1 (de) 1998-10-02 1998-10-02 Verfahren zur Herstellung von Kompositwerkstoffen und Vertreter solcher Kompositwerkstoffe
DE19845532 1998-10-02
PCT/DE1999/003155 WO2000020352A1 (fr) 1998-10-02 1999-10-01 Procede de production de materiaux composites, et exemples de tels materiaux composites

Publications (1)

Publication Number Publication Date
EP1047649A1 true EP1047649A1 (fr) 2000-11-02

Family

ID=7883261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99955824A Withdrawn EP1047649A1 (fr) 1998-10-02 1999-10-01 Procede de production de materiaux composites, et exemples de tels materiaux composites

Country Status (5)

Country Link
US (1) US6737015B1 (fr)
EP (1) EP1047649A1 (fr)
JP (1) JP4755342B2 (fr)
DE (1) DE19845532A1 (fr)
WO (1) WO2000020352A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024623B4 (de) * 2005-05-30 2007-08-23 Beru Ag Verfahren zum Herstellen eines keramischen Glühstiftes für eine Glühkerze
DE102014212685A1 (de) * 2014-07-01 2016-01-07 Heraeus Deutschland GmbH & Co. KG Herstellung von Cermets mit ausgewählten Bindemitteln
ITUB20150793A1 (it) * 2015-05-22 2016-11-22 Nuovo Pignone Srl Materiale composito a base di siliciuro e processo per produrlo
CN105523766B (zh) * 2016-03-03 2018-11-06 广东金润源陶瓷股份有限公司 一种氮化硅-硅化钽复合陶瓷材料及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782905B2 (ja) 1985-02-28 1995-09-06 日本電装株式会社 セラミックヒータおよびセラミックヒータ用発熱体の製造方法
DE3734274C2 (de) 1986-10-09 1996-07-11 Nippon Denso Co Keramische Glühkerze und Verfahren zu deren Herstellung
JPH0710601B2 (ja) * 1987-08-26 1995-02-08 株式会社日立製作所 感熱ヘツド
JPH01115872A (ja) * 1987-10-29 1989-05-09 Kurasawa Opt Ind Co Ltd 窒化ケイ素セラミックス
US5086210A (en) 1988-03-29 1992-02-04 Nippondenso Co., Ltd. Mo5 Si3 C ceramic material and glow plug heating element made of the same
JP2745030B2 (ja) * 1990-01-29 1998-04-28 日本特殊陶業株式会社 窒化珪素焼結体およびその製造方法
CA2068979A1 (fr) 1991-06-24 1992-12-25 Allan B. Rosenthal Ceramiques de nitrure de silicium contenant une base dispersee de trisiliciure de pentamolybdene
US5234643A (en) * 1992-01-27 1993-08-10 Matsumoto Roger L K Silicon nitride ceramics containing crystallized grain boundary phases
DE4233602C2 (de) * 1992-10-06 1996-01-25 Bayer Ag Verfahren zur Herstellung eines dichten Si¶3¶N¶4¶-Werkstoffes sowie dessen Verwendung
JP2774761B2 (ja) * 1993-08-03 1998-07-09 株式会社東芝 高熱伝導性窒化けい素焼結体およびその製造方法
JPH07223866A (ja) * 1994-02-15 1995-08-22 Ube Ind Ltd 窒化珪素基複合セラミックス及びその製造方法
JP3212450B2 (ja) * 1994-07-11 2001-09-25 日本特殊陶業株式会社 窒化珪素焼結体
DE19500832C2 (de) 1995-01-13 1998-09-17 Fraunhofer Ges Forschung Dichter Siliziumnitrid-Kompositwerkstoff und Verfahren zu seiner Herstellung
US5948717A (en) * 1995-01-13 1999-09-07 Fraunhofer-Gesellschaft Dense silicon nitride composite material
JPH09169570A (ja) * 1995-12-19 1997-06-30 Isuzu Ceramics Kenkyusho:Kk 窒化ケイ素複合焼結体
JPH10182237A (ja) * 1996-12-26 1998-07-07 Kyocera Corp 窒化珪素質複合焼結体およびその製造方法
JP2000072553A (ja) * 1998-08-31 2000-03-07 Kyocera Corp 窒化珪素質耐摩耗性部材及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0020352A1 *

Also Published As

Publication number Publication date
JP4755342B2 (ja) 2011-08-24
US6737015B1 (en) 2004-05-18
DE19845532A1 (de) 2000-04-06
WO2000020352A1 (fr) 2000-04-13
JP2002526374A (ja) 2002-08-20

Similar Documents

Publication Publication Date Title
DE69721565T2 (de) Verfahren zur herstellung eines dichten keramischen werkstückes
DE3205877C2 (fr)
DE2621523C3 (de) Verfahren zur Herstellung keramischer Formkörper
EP0002067B1 (fr) Procédé pour la fabrication de corps denses polycristallins en carbure de bore par frittage sans compression à chaud
EP1664362B1 (fr) Alliage ods molybdene-silicium-bore
DE3010545C2 (de) Gesinterte Keramik, insbesondere für Zerspanungswerkzeuge, und Verfahren zur Herstellung derselben
EP1718777B1 (fr) Procede pour produire un alliage de molybdene
EP0433856B1 (fr) Matériaux mixtes à base de métaux durs comprenant des borures, nitrures et une matrice en métal ferreux
DE3608326A1 (de) Praktisch porenfreie formkoerper aus polykristallinem aluminiumnitrid und verfahren zu ihrer herstellung ohne mitverwendung von sinterhilfsmitteln
DE3238555C2 (fr)
DE102006013746A1 (de) Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
EP0372382B1 (fr) Poudres frittables en céramique, procédé de leur fabrication et céramique en nitrure de silicium obtenue, son procédé de fabrication et son utilisation
EP3041631B1 (fr) Poudre métallique à base de chrome
WO1994018140A1 (fr) Procede pour fabriquer des corps moules ceramiques contenant de l'alumine a grains fins, a l'aide d'aluminium pulverulent
EP1047649A1 (fr) Procede de production de materiaux composites, et exemples de tels materiaux composites
AT502394B1 (de) Verfahren zur herstellung eines keramischen werkstoffes und keramischer werkstoff
EP0918735B1 (fr) Procede de fabrication de corps moules avec un materiau ceramique composite
DE3939989C2 (de) Verfahren zur Herstellung eines Sinterkörpers auf Siliziumnitridbasis und Sinterkörper auf Siliziumnitridbasis
EP0321975A1 (fr) Corps frittés polycristallins à base de nitrure d'aluminium et leur procédé de fabrication
WO1995033079A1 (fr) Production d'alliages-mere de type intermetallique
EP0721925B1 (fr) Matériau composite dense en nitrure de silicium et procédé pour sa fabrication
EP0600255B1 (fr) Composites à base de diborure de titane et procédé de leur fabrication
DE10335167B4 (de) Verfahren zur Herstellung eines keramischen Leuchtstoffs
WO1988007029A1 (fr) Procede d'emboutissage isostatique a chaud de corps en nitrure de silicium renforces par des fibres et des barbes de carbure
DE3323679C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20001013

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19950909

R17C First examination report despatched (corrected)

Effective date: 20090617

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130701