EP1042224B1 - Verfahren und vorrichtung zur raffination von silicium - Google Patents
Verfahren und vorrichtung zur raffination von silicium Download PDFInfo
- Publication number
- EP1042224B1 EP1042224B1 EP98962494A EP98962494A EP1042224B1 EP 1042224 B1 EP1042224 B1 EP 1042224B1 EP 98962494 A EP98962494 A EP 98962494A EP 98962494 A EP98962494 A EP 98962494A EP 1042224 B1 EP1042224 B1 EP 1042224B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crucible
- silicon
- plasma
- inductive
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/037—Purification
Definitions
- the present invention relates to the manufacture of silicon to form energy production cells electric by photovoltaic effect.
- silicon intended for photovoltaic techniques consists essentially of waste from the microelectronics industry, since the silicon used for photovoltaic applications can contain a proportion of impurities (of the order of 10 -6 ) less critical than the level of impurities (10 -9 ) generally required in microelectronics.
- Silicon used in metallurgy may contain several percent of impurities such as iron, titanium, boron, phosphorus, etc.
- a silicon purification process which consists in directing an arc plasma towards the surface of a silicon bath.
- the high speed of the plasma causes a movement of the bath, the intensity of which depends on the power of the plasma.
- the silicon is contained in a hot crucible with a silica wall (SiO 2 ).
- Such a method has several drawbacks.
- the use of an arc plasma requires electrodes which constitute a source of silicon pollution in front to be purified.
- the use of a silica wall is a source of pollution of the silicon in the bath by the oxygen of the silica.
- the present invention aims to propose a new process refining of silicon allowing a degree of high purity and which is particularly suitable for refining large quantities of silicon, therefore suitable for an industrial process obtaining silicon with a degree of purity sufficient for photovoltaic techniques.
- the present invention aims, in particular, to overcome the disadvantages of known methods.
- the present invention also aims to propose a method refining that can be carried out from start to finish in the same refining installation.
- this invention aims to minimize the use of refining means mechanically different from each other and allow the elimination of impurities of different natures within a same equipment.
- the present invention further aims that this same equipment can be used to "dop" silicon once refined.
- the present invention provides a process for refining silicon consisting in filling a cold inductive solid silicon crucible; to liquefy the contents of the crucible; to organize, using the inductive crucible, turbulent mixing of the silicon bath while bringing in the liquid from the bottom of the crucible to the free surface up the along the central axis of the crucible; and direct a plasma produced by an inductive plasma torch to the surface of the bath for a period allowing the elimination of impurities for which the plasma reactive gas is suitable.
- the intensity of turbulent mixing is a function of the frequency of an electromagnetic field created by the crucible.
- the method consists in sequentially using several gases reactive.
- the reactive gases are chosen from the group comprising chlorine, oxygen, hydrogen, and water as vapor.
- the method also consists, after purification of the silicon bath, to reverse the direction of mixing of the bath and to inject, as plasma reactive gas, an element that boosts the silicon.
- the reactive gas injected to boost the silicon is hydrogen.
- silicon is processed in batches of a corresponding volume substantially to the volume that the crucible, the crucible can contain not being completely emptied after processing a batch current to form a liquid primer promoting fusion during the next batch.
- the plasma is used without reactive gas to heat the surface of the charge of silicon contained in the crucible until this charge reaches a temperature sufficient to make it conductive, continued heating of the load and its maintenance at the desired temperature being subsequently ensured by the magnetic field of the inductive crucible.
- the present invention further provides an installation refining of silicon comprising an inductive cold crucible suitable for receiving silicon, an inductive plasma torch directed towards the free surface of the silicon charge contained in the crucible, and a removable magnetic yoke between the plasma torch and crucible, the cylinder head being annular for allow the passage of the plasma flame.
- the crucible has, at its bottom, an orifice whose opening is controlled by an electromagnetic valve.
- a silicon refining installation essentially comprises a cold crucible 1 heated by induction (coil 12), intended to contain a silicon bath b , and an inductive plasma torch 2 oriented so that the "flame" f of plasma comes to lick the free surface of the bath b .
- the function of plasma is to create a plasma medium formed of free radicals and ions of the plasma gas (es) in the vicinity of the free surface of the silicon bath b.
- the atmosphere thus created on the free surface of the silicon bath is extremely reactive and the impurities present on the surface of the bath combine with reactive plasma gas and become volatile (or, conversely, solid) at surface temperature of the bath.
- the entire installation is maintained under a controlled atmosphere, allowing evacuation as you go volatile molecules containing impurities.
- inductive plasma torch presents, in particular compared to the use of a plasma torch by electric field ("arc plasma"), the advantage of not polluting the bath by consuming the electrode necessary for generation of plasma.
- Another benefit of using a hand torch plasma, versus using an electron beam to focus significant energy densities conducive to direct vaporization of the species on the surface of a bath, is that, in the case of an inductive plasma, we have a system near balance, so we can take advantage of the differences in volatility of elements or their compounds. For example, the silicon may not be vaporized.
- Another advantage is that the chemical action of plasma at the liquid-plasma interface is distributed over the entire surface of the bath thanks to the flow of plasma gas supplied by the torch.
- Another advantage of using a cold crucible inductive is that it creates turbulent mixing in the silicon bath so as to promote purification.
- the times of diffusion of impurities which must migrate from inside the melt towards the liquid-plasma interface to be able to be combined and then vaporized are incompatible with a process economically viable from an industrial point of view.
- a feature of the present invention is that the magnetic field of the inductive cold crucible is preferably alternating and single-phase, that is to say that the coil 12 of the crucible cold 1 is supplied by a single-phase alternating voltage.
- the choosing such a magnetic field has the advantage of causing heating the silicon bath at the same time as causing it movement.
- This mixing is said to be turbulent because it causes, not only large-scale recirculation (at the scale of bath) and at high speed to renew constantly and quickly the free surface of the bath and cause the free species to be eliminated near the reactive surface, but also turbulence on a small scale near the free surface to bring all substances to be removed from the surface and increase thus the reaction kinetics. All brewing scales directly undergo kinetic energy injection at from magnetic energy.
- the choice of the frequency of the field alternating magnetic adjusts the parameters (effect thermal, magnetic pressure, electromagnetic stirring) of the bath and, in particular, to favor one of the parameters.
- the excitation frequency of the coil 12 of the crucible 1, supplied by a generator 13, is chosen to promote turbulent mixing of the silicon bath b which, in the purification steps of the process of the invention, takes place in the direction symbolized by the arrows in Figure 1, that is to say that the liquid is brought from the bottom of the crucible towards the free surface going up along the axis, the descent towards the bottom of the crucible taking place on the periphery thereof.
- the turbulent nature or not of the stirring depends on the frequency of the current, the size of the crucible and the typical value of the magnetic field.
- the Reynolds number (Re) determines the nature of the flow.
- the screen parameter characterizes the greater or lesser penetration of the field in the bath. If the field only penetrates very superficially (high frequency), the Laplace forces will only be exerted on the peripheral part of the bath and the stirring will be weak. Similarly, if the field fully penetrates (zero frequency), there will be no mixing. For the maximum mixing, the screen parameter must have a value of the order of 40. Note that this screen parameter is adjustable by the operator.
- the fluid from the bottom of the crucible is quickly brought back to the reactive free surface and the impurities can then be combined and then vaporized by the plasma so as to be discharged. Note that the species formed by reaction of the plasma with the impurities contained in the silicon are removed continuously in the installation and, by therefore, the interface reactivity is constant and does not not saturate.
- Another advantage of the traffic provided in the figure 1 is that if solid particles (often larger oxides light), also resulting from the chemical reaction of impurities with the plasma, form on the surface of the bath, these are driven towards the wall 11 of the crucible 1, that is to say towards the solid silicon crust where they are trapped, thereby increasing the efficiency of the purification.
- the choice of supply frequencies for the coil crucible is a function of its size and shape. For example, with a crucible with a diameter of around 60 cm which can contain a silicon charge of the order of 200 kg, we can work with a frequency of the order of 50 or 60 Hz for the coil of the crucible, therefore at the frequency of the electrical network industrial.
- An advantage of the present invention is that it is now possible to inject simultaneously or successively, without any manipulation other than the opening of gas supply valves (not shown), various reactive gases g r in the plasma and control its concentration in relation to plasma gases.
- the reactive gas g r is brought to the center of the torch, an auxiliary gas g a , for example argon, is conveyed concentrically with the reactive gases.
- a plasma gas g p for example also argon, is further conveyed concentrically with the auxiliary gas.
- An induction coil 21 surrounds the free end of the torch 2 so as to create the inductive plasma.
- the torch coil is generally excited by an alternating current at a frequency of the order of MHz by a generator 22.
- reactive gases can be injected into the plasma either simultaneously or successively for their selective action on undesirable elements.
- reactive gases note oxygen, hydrogen, chlorine or water, in the form of vapor.
- the choice of gas is determined by chemical and thermodynamic properties of the impurity to be eliminated.
- the use of chlorine in plasma makes it possible to form volatile chlorides with impurities like boron, antimony or arsenic which are among the most common impurities in the case of silicon from releases from the microelectronics industry.
- the silicon also combines with chlorine to form a volatile chloride.
- the evaporation of impurities is favored by controlling the renewal of the atmosphere above the silicon bath melted (lower vapor pressure for chlorides impurities makes them more volatile).
- Oxygen eliminates traces of carbon (silicon is obtained by reduction of sand (silica) by carbon in an arc furnace). Note that the injection of reactive gas such that the oxygen in the plasma is perfectly controllable at the difference of an oxygen release by a silica wall as in the known methods.
- Oxygen, or more effectively water in the form of vapor, or alternatively the oxygen-hydrogen combination, makes it possible to make the boron in the form B 3 H 3 O 6 , which is gaseous, volatile.
- the refining installation comprises in in addition to a removable magnetic yoke 3 ( Figure 2) whose role is to reverse the direction of flow in the silicon bath.
- the brewing speed being proportional to the typical value of the magnetic field, the presence or absence of the magnetic yoke allows to modify this field and gives the speed and the character turbulent or not of the flow, without having to modify the frequency, which would present serious technological difficulties and fundamental.
- the role of the magnetic yoke 3 will be better understood later.
- the cold crucible 1 is filled with powders, silicon chips or debris from, for example, a tank 4. Since silicon is semiconductor, it must be preheated before gradually becoming a driver (around 800 ° C) and can then be heated by induction by means of the coil 12 of the crucible 1.
- the plasma torch 2 first the plasma torch 2, to preheat the solid silicon charge and bring it to the temperature making it possible to obtain a coupling with the low frequency field created by the coil 12 of the crucible 1.
- the gas used in this preheating phase is preferably argon. If necessary, hydrogen is introduced as a reactive gas to increase the thermal conductivity of the plasma and thus accelerate the preheating of the charge of silicon.
- An advantage of preheating using the plasma torch compared to the conventional use of a susceptor is that we avoid any pollution of the silicon which would otherwise be provided by the material of the susceptor (generally carbon or iron).
- turbulent stirring of the silicon bath is favored in the direction of the arrows in FIG. 1 and one or more reactive gases suitable for removing impurities which are introduced into the plasma, simultaneously or sequentially. , by combining with a reactive gas on the surface of the bath b , form volatile species which are vaporized.
- the traces of oxygen (or other impurities) contained in the powders and shavings introduced by the distributor 4 of solid silicon during the previous step cause the formation of a gangue on the surface of the bath.
- This gangue which consists of oxide and sub-oxides lighter than the rest of the bath, is rejected at the periphery of the crucible 1 thanks to the turbulent stirring in the direction of the arrows in Figure 1. This guarantees a clear surface at the liquid-plasma interface.
- the purification phase can include several stages corresponding to the use of different reactive gases in function of the elements to be removed from the liquid bath.
- Another characteristic of the present invention is to provide a third phase of "doping" of the purified silicon, by elements promoting photovoltaic power polycrystalline silicon by passivation of the defects, for example hydrogen.
- a dopant is introduced into the plasma, for example, hydrogen.
- the movements of the turbulent stirring in the liquid bath are preferably reversed.
- the magnetic yoke 3 is put in place which has an annular shape at the center of which the plasma passes.
- an annular magnetic yoke in the form of a coil controlled by an alternative excitation
- this is poured in the form of ingots suitable for be sawn to get solar cells.
- This casting can, according to an embodiment not shown, to be obtained by overturning of the crucible.
- the casting is obtained by actuating a valve 5 of closing of an orifice 14 at the bottom of crucible 1.
- a quantity remains liquid from the previous phase so as to avoid resorting to back to a first start-up phase.
- the reversal of the direction of mixing provided for in the third doping phase can also, and so preferential, be planned in the initial start-up phase to improve the mixing of silicon powders and chips melt by dragging them towards the center of the crucible and avoiding immediate trapping by the cold walls.
- An advantage of the present invention is that by means of from a single installation, coupling inductive plasma and crucible inductive cold, we obtain a refinement of silicon compared to all its impurities. Therefore, this refining can be obtained under attractive economic conditions.
- Another advantage of the present invention is that it maintains, during the purification and doping phases, the silicon in a liquid state by means of heating non-polluting inductive. This heating means is external to crucible and leaves the surface of the bath completely free.
- Another advantage of using a cold crucible inductive is that liquid silicon is brewed with strong intensity of turbulence which promotes material transfers in the bath. Turbulence induced near the interface accelerates material transfers between the two phases by above and below the free surface and increases the kinetics reactionary.
- Another advantage of the present invention is that the use of a magnetic yoke between the torch and the crucible makes it possible to reverse the direction of mixing and, by Consequently, we can favor the fusion of a new charge of silicon and / or improve the purification and / or improve the doping of refined silicon.
- the present invention is capable of various variants which will appear to the man of art.
- the gases used in the plasma will chosen according to the impurities to be removed from the bath.
- the practical realization of a refining installation allowing the implementation of the method of the invention is at the scope of the skilled person from functional indications data above.
- We will take care to respect the coupling between the plasma and the cold crucible which allows priming, without pollution, of the induction melting of a semiconductor material, and the use of an annular magnetic yoke to force the direction of convection in the bath.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Photovoltaic Devices (AREA)
Claims (10)
- Verfahren zur Raffination bzw. Reinigung von Silizium, dadurch gekennzeichnet, daß es umfaßt:ein induktiver Kalt-Schmelztiegel (1) wird mit festem Silizium gefüllt;der Schmelztiegelinhalt wird verflüssigt;mit Hilfe des induktiven Schmelztiegels wird eine turbulente Durchmischung bzw. Durchwirbelung des Siliziumbads (b) herbeigeführt, indem die Flüssigkeit vom Boden des Schmelztiegels durch Anstieg längs der Mittelachse des Schmelztiegels zur freien Oberfläche geführt wird; undein durch einen induktiven Plasmabrenner (2) erzeugtes Plasma (f) wird während einer Zeitdauer, die es gestattet, Verunreinigungen, für welche das reaktive Gas (gr) des Plasmas angepaßt ist, zu beseitigen, auf die Oberfläche des Bads gerichtet.
- Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die Intensität der Turbulenz-Durchmischung bzw. -Durchwirbelung eine Funktion der Frequenz eines durch den Schmelztiegel (1) erzeugten elektromagnetischen Feldes ist. - Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß es in der aufeinanderfolgenden Verwendung mehrerer reaktiver Gase (gr) besteht. - Verfahren nach Anspruch 3,
dadurch gekennzeichnet, daß die reaktiven Gase (gr) aus der Chlor, Sauerstoff, Wasserstoff und Wasser in Dampfform umfassenden Gruppe gewählt werden. - Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß das Verfahren des weiteren, nach der Reinigung des Siliziumbads (b), in folgendem besteht:der Richtungssinn der Durchmischung bzw. Durchwirbelung des Bades wird umgekehrt; undals reaktives Gas (gr) des Plasmas wird ein eine Dotierung des Siliziums gestattendes Element injiziert. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet, daß das zum Dotieren des Siliziums injizierte reaktive Gas (gr) Wasserstoff ist. - Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß das Silizium in Chargen behandelt wird, deren Volumen im wesentlichen dem Volumen entspricht, das der Tiegel (1) aufnehmen kann, wobei der Tiegel bei der Beendigung der Behandlung einer laufenden Charge nicht vollständig entleert wird, zur Bildung einer flüssigen Start- bzw. Auslösehilfe, welche das Aufschmelzen bei der folgenden Charge unterstützt. - Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß, wenn bei der anfänglichen Startphase der Anlage das Plasma ohne reaktives Gas zum Erwärmen der Oberfläche der in dem Schmelztiegel (1) enthaltenen Siliziumcharge verwendet wird, bis diese Charge eine Temperatur erreicht, die ausreicht, um sie leitfähig zu machen, die weitere Aufheizung der Charge und das Halten der Charge bei der gewünschten Temperatur in der Folge durch das Magnetfeld des induktiven Schmelztiegels gewährleistet wird. - Anlage bzw. Einrichtung zur Reinigungsraffination von Silizium, dadurch gekennzeichnet, daß sie umfaßt:einen induktiven Kalt-Schmelztiegel (1) zur Aufnahme des Siliziums;einen auf die freie Oberfläche der in dem Schmelztiegel enthaltenen Siliziumcharge gerichteten induktiven Plasmabrenner (2); sowieein abnehmbares Magnetjoch (3) zwischen dem Plasmabrenner (2) und dem Schmelztiegel (1), wobei das Magnetjoch ringförmig ist, um den Durchtritt der Plasmaflaame (f) zu gestatten.
- Anlage bzw. Einrichtung nach Anspruch 9,
dadurch gekennzeichnet, daß dar Schmelztiegel (1) in seinem Boden eine Auslaßöffnung (14) aufweist, deren Öffnen durch ein Elektromagnetventil (5) gesteuert wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9716544A FR2772741B1 (fr) | 1997-12-19 | 1997-12-19 | Procede et installation d'affinage du silicium |
FR9716544 | 1997-12-19 | ||
PCT/FR1998/002765 WO1999032402A1 (fr) | 1997-12-19 | 1998-12-17 | Procede et installation d'affinage du silicium |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1042224A1 EP1042224A1 (de) | 2000-10-11 |
EP1042224B1 true EP1042224B1 (de) | 2001-10-31 |
Family
ID=9515165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98962494A Expired - Lifetime EP1042224B1 (de) | 1997-12-19 | 1998-12-17 | Verfahren und vorrichtung zur raffination von silicium |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1042224B1 (de) |
JP (1) | JP4433610B2 (de) |
AU (1) | AU744857B2 (de) |
CA (1) | CA2315019C (de) |
DE (1) | DE69802307T2 (de) |
FR (1) | FR2772741B1 (de) |
WO (1) | WO1999032402A1 (de) |
ZA (1) | ZA9811644B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009112428A1 (fr) * | 2008-03-14 | 2009-09-17 | Centre National De La Recherche Scientifique (Cnrs) | Procede de purification de silicium pour applications photovoltaiques |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2827592B1 (fr) * | 2001-07-23 | 2003-08-22 | Invensil | Silicium metallurgique de haute purete et procede d'elaboration |
FR2831881B1 (fr) * | 2001-11-02 | 2004-01-16 | Hubert Lauvray | Procede de purification de silicium metallurgique par plasma inductif couple a une solidification directionnelle et obtention directe de silicium de qualite solaire |
FR2871151B1 (fr) * | 2004-06-07 | 2006-08-11 | Centre Nat Rech Scient Cnrse | Installation d'affinage de silicium |
US7344594B2 (en) | 2004-06-18 | 2008-03-18 | Memc Electronic Materials, Inc. | Melter assembly and method for charging a crystal forming apparatus with molten source material |
US7691199B2 (en) | 2004-06-18 | 2010-04-06 | Memc Electronic Materials, Inc. | Melter assembly and method for charging a crystal forming apparatus with molten source material |
US7465351B2 (en) | 2004-06-18 | 2008-12-16 | Memc Electronic Materials, Inc. | Melter assembly and method for charging a crystal forming apparatus with molten source material |
DE602005014103D1 (de) * | 2004-06-18 | 2009-06-04 | Memc Electronic Materials | Schmelzeinheitanordnung zur beladung eines kristal |
JP4788925B2 (ja) * | 2007-11-07 | 2011-10-05 | 信越化学工業株式会社 | 金属珪素の精製方法 |
US20100047148A1 (en) * | 2008-05-23 | 2010-02-25 | Rec Silicon, Inc. | Skull reactor |
US20090289390A1 (en) * | 2008-05-23 | 2009-11-26 | Rec Silicon, Inc. | Direct silicon or reactive metal casting |
JP5099774B2 (ja) * | 2008-06-06 | 2012-12-19 | ユーエムケー・テクノロジ−株式会社 | シリコンの精製方法及び精製装置 |
JP5512941B2 (ja) * | 2008-08-27 | 2014-06-04 | 株式会社アルバック | シリコンの精製装置および精製方法 |
JP2011251853A (ja) * | 2008-08-29 | 2011-12-15 | Shin-Etsu Chemical Co Ltd | 珪素の精製方法 |
TWI393805B (zh) * | 2009-11-16 | 2013-04-21 | Masahiro Hoshino | Purification method of metallurgical silicon |
TWI397617B (zh) * | 2010-02-12 | 2013-06-01 | Masahiro Hoshino | Metal silicon purification device |
TWI403461B (zh) | 2010-07-21 | 2013-08-01 | Masahiro Hoshino | Method and apparatus for improving yield and yield of metallurgical silicon |
CN102742034B (zh) * | 2010-08-16 | 2015-10-14 | 星野政宏 | 冶金硅的提纯方法 |
CN102834935B (zh) * | 2010-08-16 | 2015-06-03 | 星野政宏 | 用于太阳能电池的冶金硅的提纯设备和方法 |
CN104245579A (zh) * | 2012-02-06 | 2014-12-24 | 菲罗索拉硅太阳能公司 | 金属或半导体熔融液的精制方法和真空精制装置 |
JP5942899B2 (ja) * | 2013-02-28 | 2016-06-29 | 三菱化学株式会社 | シリコンの製造方法 |
CN111304751B (zh) * | 2020-03-19 | 2021-05-18 | 西北工业大学 | 一种通过反应性气体除h2o的原料提纯方法及装置 |
CN115571882A (zh) * | 2022-09-09 | 2023-01-06 | 滁州学院 | 基于光伏硅废渣制备锂离子电池负极材料的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2924584A1 (de) * | 1979-06-19 | 1981-01-15 | Straemke Siegfried | Verfahren zur herstellung von silicium fuer solarzellen |
FR2487808A1 (fr) * | 1980-08-01 | 1982-02-05 | Electricite De France | Procede et dispositif d'elimination du bore dans le silicium par fusion de zone sous plasma reactif |
EP0274283B1 (de) * | 1987-01-08 | 1989-05-24 | Rhone-Poulenc Chimie | Verfahren zur Plasmareinigung von zerkleinertem Silizium |
JP3205352B2 (ja) * | 1990-05-30 | 2001-09-04 | 川崎製鉄株式会社 | シリコン精製方法及び装置 |
JP3138003B2 (ja) * | 1991-05-10 | 2001-02-26 | 川崎製鉄株式会社 | シリコンの精製方法及びその装置 |
JP3300425B2 (ja) * | 1992-10-07 | 2002-07-08 | 川崎製鉄株式会社 | シリコン精製方法 |
JPH07267624A (ja) * | 1994-03-29 | 1995-10-17 | Kawasaki Steel Corp | シリコンの精製方法及びその装置 |
JPH09142823A (ja) * | 1995-11-29 | 1997-06-03 | Kawasaki Steel Corp | 金属シリコンの精製方法および精製装置 |
-
1997
- 1997-12-19 FR FR9716544A patent/FR2772741B1/fr not_active Expired - Lifetime
-
1998
- 1998-12-17 AU AU17656/99A patent/AU744857B2/en not_active Expired
- 1998-12-17 WO PCT/FR1998/002765 patent/WO1999032402A1/fr active IP Right Grant
- 1998-12-17 CA CA002315019A patent/CA2315019C/en not_active Expired - Lifetime
- 1998-12-17 DE DE69802307T patent/DE69802307T2/de not_active Expired - Lifetime
- 1998-12-17 EP EP98962494A patent/EP1042224B1/de not_active Expired - Lifetime
- 1998-12-17 JP JP2000525344A patent/JP4433610B2/ja not_active Expired - Lifetime
- 1998-12-18 ZA ZA9811644A patent/ZA9811644B/xx unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009112428A1 (fr) * | 2008-03-14 | 2009-09-17 | Centre National De La Recherche Scientifique (Cnrs) | Procede de purification de silicium pour applications photovoltaiques |
FR2928641A1 (fr) * | 2008-03-14 | 2009-09-18 | Centre Nat Rech Scient | Procede de purification de silicium pour applications photovoltaiques |
Also Published As
Publication number | Publication date |
---|---|
AU1765699A (en) | 1999-07-12 |
CA2315019A1 (en) | 1999-07-01 |
DE69802307T2 (de) | 2002-07-11 |
CA2315019C (en) | 2008-02-26 |
WO1999032402A1 (fr) | 1999-07-01 |
FR2772741B1 (fr) | 2000-03-10 |
JP2001526171A (ja) | 2001-12-18 |
EP1042224A1 (de) | 2000-10-11 |
JP4433610B2 (ja) | 2010-03-17 |
AU744857B2 (en) | 2002-03-07 |
FR2772741A1 (fr) | 1999-06-25 |
ZA9811644B (en) | 1999-06-18 |
DE69802307D1 (de) | 2001-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1042224B1 (de) | Verfahren und vorrichtung zur raffination von silicium | |
EP0524887B1 (de) | Verfahren und Vorrichtung zur Herstellung von Pulver, insbesondere Metallpulver durch Atomisierung | |
EP0050578A1 (de) | Vorrichtung zum Behandeln eines geschmolzenen Metallbades durch Gaseinblasen | |
JPH03215632A (ja) | 汚染された金属含有スクラップ材料の溶融方法および装置 | |
EP2419380A1 (de) | Verfahren und vorrichtung zur aufreinigung von rohsilicium | |
FR2547034A1 (fr) | Procede et dispositif de liquefaction de matiere fusible par ablation avec utilisation d'un plasma | |
EP1753695A2 (de) | Siliziumverfeinerungsanlage | |
FR2512313A1 (fr) | Procede d'utilisation d'un dispositif de chauffage a arc a plasma pour fournir de l'energie thermique a un reacteur | |
FR2575683A1 (fr) | Procede et installation pour la fabrication continue de tuyaux en fonte a graphite spheroidal a structure controlee | |
FR2912397A1 (fr) | Installation d'affinage de silicium. | |
CA2423140C (fr) | Procede de preparation de particules de metal ou d'alliage de metal nucleaire | |
FR2587366A1 (fr) | Procede de preparation d'un lingot a partir de residus metalliques | |
FR2505874A1 (fr) | Procede d'augmentation du rendement d'un processus metallo-thermique | |
FR2649191A1 (fr) | Unite pour l'obtention du plomb metallique a partir des concentres de plomb sulfures | |
US5513207A (en) | Melting furnace and method | |
EP0158563B1 (de) | Verfahren zur nichtverunreinigenden Herstellung von massivem Silicium aus feinteiligem Silicium | |
CH621365A5 (en) | Process for refining magnesium, copper, zinc, tin and lead | |
BE1008485A3 (fr) | Procede et four pour la fabrication d'un produit fondu. | |
FR2763079A1 (fr) | Rotor et installation pour le traitement d'un bain de metal liquide | |
EP4431454A1 (de) | Vorrichtung und verfahren zur herstellung von hochreinem 3n oder höherem silicium durch reinigung von hochreinem 2n-silicium | |
FR2646170A1 (fr) | Procede de transformation de dechets d'aluminium et de ses alliages et installation pour sa realisation | |
BE417620A (de) | ||
FR2562449A1 (fr) | Dispositif de traitement de l'acier, avant coulee continue, par injection de gaz | |
BE340407A (de) | ||
EP0931839A1 (de) | Verfahren zur Herstellung von Stahlblöcken mit einem hohen Reinheitsgrad |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000614 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20001218 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69802307 Country of ref document: DE Date of ref document: 20011206 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MOINAS & SAVOYE SA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020110 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR Free format text: FORMER OWNER: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171212 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20171219 Year of fee payment: 20 Ref country code: IT Payment date: 20171213 Year of fee payment: 20 Ref country code: GB Payment date: 20171219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180102 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69802307 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20181216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20181216 |