EP0524887B1 - Verfahren und Vorrichtung zur Herstellung von Pulver, insbesondere Metallpulver durch Atomisierung - Google Patents

Verfahren und Vorrichtung zur Herstellung von Pulver, insbesondere Metallpulver durch Atomisierung Download PDF

Info

Publication number
EP0524887B1
EP0524887B1 EP92402141A EP92402141A EP0524887B1 EP 0524887 B1 EP0524887 B1 EP 0524887B1 EP 92402141 A EP92402141 A EP 92402141A EP 92402141 A EP92402141 A EP 92402141A EP 0524887 B1 EP0524887 B1 EP 0524887B1
Authority
EP
European Patent Office
Prior art keywords
head
atomized
plasma
powders
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92402141A
Other languages
English (en)
French (fr)
Other versions
EP0524887A1 (de
Inventor
André Accary
Jean L. Coutiere
André Lacour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Publication of EP0524887A1 publication Critical patent/EP0524887A1/de
Application granted granted Critical
Publication of EP0524887B1 publication Critical patent/EP0524887B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0896Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid particle transport, separation: process and apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method and a device for producing powders and in particular metal powders by atomization.
  • the present invention aims to overcome these technical problems and in particular to be able to disperse a sufficiently hot metallic liquid, without there being any chemical interaction between the dispersing means and the liquid, to create a quenching zone eliminating any possibility of pollution of the atomized metal, and to provide a "cold chain” allowing the powders obtained to be used without polluting them before manufacturing the final solid product, after compaction and sintering.
  • a device for producing powders and in particular of metallic powders by atomization comprising means for melting the material to be atomized, an atomization enclosure in which is arranged a dispersion head rotating at high speed for diffusing the molten material in atomized form, means for cooling the atomized material and the head and means for collecting the cooled powder material thus obtained, said melting means comprising at least one vertical inductive plasma furnace producing a gas envelope plasmagens containing the upper face of the dispersion head and said cooling means comprising a first series of members for distributing a cooling fluid disposed in the upper part of the atomization enclosure to create a cold zone at the periphery of the casing and a second series of members for circulating a cooling fluid arranged in the lower part of the enclosure to create a cold zone on the underside of the head, characterized in that said first series of organs for distributing a cooling fluid consists of a ramp of nozzles producing jets of fluid tangential to the surface of said
  • said envelope of plasma gas consists of a cylindrical tube whose vertical axis is parallel to the vertical axis of the rotary head, and preferably the axis of the cylindrical tube is coincident with the 'axis of the head.
  • said vertical inductive plasma furnace is disposed above the upper face of the rotary head.
  • Another object of the invention is a method for manufacturing powders and in particular metallic powders by atomization, comprising the continuous melting of the material to be atomized flowing vertically and coaxially above a dispersing head rotating at great speed. speed intended for dispersing the molten material in atomized form, in a casing of plasma-producing gases by friction on the upper face of the rotary head, then quenching the atomized material and collecting the cooled powder material thus obtained, characterized in that quenching is carried out by passing said atomized material through a cooling vortex situated at the periphery of the envelope of plasma gas.
  • the invention allows the manufacture of ultra pure metallic powders using the above process.
  • the device of the invention can absorb a large flow of heat produced by a plasma torch and onto which the liquid material falls.
  • the atomized material then enters a quenching zone at the periphery of the head formed by a cylindrical tube of plasma gas moving parallel to the vertical axis of the head and enveloped in cold fluid.
  • the powders obtained are recovered in a collection zone comprising at least one chamber containing a neutral gas in the gaseous, liquid or solid state, before their use in formed or shaped products.
  • the powders obtained by the process of the invention with very rapid cooling are ultra pure and have a very fine particle size.
  • Figure 1 is a schematic representation of the atomizing device of the present invention.
  • FIG. 2 is an enlarged view of the central part of the device in FIG. 1.
  • FIG. 3 represents the quenching zone with the members for distributing the cooling fluid.
  • Figures 4a and 4b schematically show embodiments of the means for melting and supplying molten metal to the atomization enclosure.
  • the material to be melted and to be atomized is introduced by supply means A into the apparatus, for example in the initial form of a cylindrical bar 1 whose diameter is related to the power of the melting means, notably consisting of a plasma oven B.
  • the material to be atomized is initially in the form of pieces of various sizes, powders, shots or else may be directly brought to the molten state in the device.
  • the bar 1 is placed vertically in the axis of the oven B, the valve V1 then being closed, maintaining the oven B and the enclosure C in a neutral atmosphere. After vacuuming and purging the bar supply chamber several times, valve V1 is open. The bar 1 is then lowered with a hydropneumatic or electromechanical cylinder regulated at the speed which corresponds to the desired flow rate. It is preheated in the preheating furnace 3 by the currents induced with one or more inducing turns 5 at a frequency between 10 and 30 kHz, depending on its diameter.
  • the bar then enters the inductive plasma oven 4.
  • the plasma is ignited by creating an electric arc between the bar brought to high voltage and a retractable mobile electrode 8 located at ground.
  • a retractable mobile electrode 8 located at ground.
  • the vein or the liquid drops of molten materials pass more or less long over the hottest part of the plasma to, on the one hand, reach overheating and , on the other hand, pass through the most reactive area of the oven.
  • a cold cage 7 is used to protect the oven enclosure, and polished to increase the thermal efficiency of the plasma.
  • the bar 1 is thus heated at its periphery by direct induction of the HF fields - skin effect -, and by thermal conduction and convection of the plasma gases. It melts in a cone, point directed downwards, at an angle, the opening of which depends on the nature of the plasma gases. There is thus a casting which is, depending on the power of the furnace and the penetration of the bar into the plasma, continuous or not and perfectly axial. As for the diameter of the liquid stream or of the drops, it depends on the flow of liquid and the opening of the cone.
  • the material to be atomized is first received in fusion in a cold crucible (as in French patent 2,697,050) from which it flows by gravity passing through an electromagnetic and / or composite nozzle before enter the atomization enclosure as shown in Figures 4a and 4b.
  • the electromagnetic and / or composite nozzle constitutes a means of feeding and regulating the flow of molten metal and optionally makes it possible to maintain the metal in the desired thermal state.
  • the device shown in FIGS. 4a and 4b comprises means B for melting the solid (metal) material M consisting for example of a plasma torch.
  • the molten material then flows into a cold crucible 100 to form a bath of molten metal.
  • the heat losses on the surface of the bath are optionally compensated for by additional heating means B ′.
  • the molten material then flows vertically through the bottom of the crucible through an electromagnetic nozzle 101 ( Figure 4a) or composite 102 ( Figure 4b).
  • French Patent No. 87 00 866 (FR-A-2 609 914) already describes a composite nozzle 102 used for controlling a flow of liquid metal operating for example with a coil 102b at 450 kHz.
  • the electromagnetic nozzle 101 comprises a peripheral coil 101b inducing a high frequency field so as to create a constriction of the liquid stream thus causing a variation in the flow of molten material.
  • the molten material then enters the atomization enclosure to come into contact with the dispersion head 9.
  • the molten material flows into the atomization enclosure C at the center of the upper face of a dispersion or atomization head driven in rotation by the spindle 10 at a speed of up to '' at 125,000 rpm.
  • the shape of the dispersion head 9 is determined according to the optimal thermal mapping and advantageously, it is produced in the form of a cylinder whose dimensions are determined by the nature of the constituent material and the temperature sought on the upper side coming into contact with the molten material depending on the particle size sought for the powders.
  • the upper face of the head is preferably situated in a substantially horizontal plane and is crossed vertically by a heat flux generated by the plasma gases heated by induction by the inductor 6.
  • the plasma zone consists of an envelope of plasma gas in cylindrical tube shape whose vertical axis is parallel, being close to or coincident with the vertical axis of said head 9.
  • the underside of the cylindrical head 9 and the spindle 10 are cooled by axial circulation 11 of a fluid cooling which can be either water for the most important thermal fluxes, or a gas or a liquid gas such as argon or helium for example, in the case where a surface temperature of the head is desired more high.
  • the atomizing cylindrical head 9 is either made of copper, or of tungsten, or of a refractory alloy or not depending on the surface temperature which must be reached.
  • the underside of the cylinder constituting said head 9 is advantageously provided with a hemispherical cavity licked by the cooling fluid 11 circulating axially.
  • the cooling of the underside of the head 9 creates a temperature gradient in the mass thereof which is included for copper between 60 and 180 ° C / cm and between 200 and 500 ° C / cm for tungsten.
  • the liquid particles pass directly from the plasma zone 12 which envelops the head, to a quench zone 13 consisting of a cooling medium, two-phase or not, forming a vortex around the plasma.
  • FIG. 3 there is a ramp of eighteen nozzles 15 distributing a total flow of liquid argon sufficient to obtain complete cooling of the powders.
  • the nozzle ejection axis X 15 is inclined relative to the plane of the upper face of the head 9 with a jet width determined so as to obtain rapid cooling and a rotation effect of opposite direction (counter-rotating) to that of the head 9 in order to brake the movement of powders.
  • the nozzle ejection orifice 15 is located above the powder ejection triangle.
  • the refrigerant vortex 13 thus formed entrains the liquid and then solid particles in spiral trajectories, thus avoiding, on the one hand, direct impacts with the walls of the enclosure C, on the other hand, gas turbulence towards the top of the device, turbulence which could disturb the plasma and atomization.
  • the nozzles 16 oriented towards the walls of the enclosure, projecting onto them an argon mist which flows along the walls, thus driving the powders down and thus ensuring a tangential washing to the enclosure.
  • the mixture of liquid and powder is deposited at the bottom of enclosure C.
  • the powder obtained is therefore deposited at the bottom of the enclosure C and is recovered in the container 17.
  • the cooling and the collection of the powder are thus carried out using a neutral gas in the gaseous, liquid or solidified state after immersion of the collected powder in the liquid phase.
  • the invention also provides the possibility of combining in the same unit several atomization devices arranged around the energy sources: medium frequency preheating generator (MF) and plasma torch generator (HF).
  • MF medium frequency preheating generator
  • HF plasma torch generator
  • the operation is semi-continuous, in sequence of 2 bars.
  • D denotes a flow, P a pressure, T a temperature, V a valve, B a flange.
  • the method and the device of the invention make it possible to manufacture powders from various families of materials and in particular superalloys based on nickel, titanium and titanium alloys, aluminum, Niobium alloys, etc.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Claims (19)

  1. Vorrichtung zur Herstellung von Pulvern, insbesondere Metallpulvern, durch Atomisierung, bestehend aus
    - einem Atomisierungsraum (C), in dem ein Zerstäuberkopf (9) angeordnet ist, der mit hoher Geschwindigkeit dreht, um das schmelzflüssige Material in atomisierte Form zu überführen,
    - Mitteln (B) zum Schmelzen des zu atomisierenden Materials (1), die mindestens einen Turmofen (4) für induktives Plasma aufweisen, der eine Umhüllung (12) aus Plasmagas erzeugt, welche die Oberseite des Zerstäuberkopfs (9) aufnimmt,
    - Mitteln zur Kühlung des atomisierten Materials und des Kopfs (9), die eine erste Serie von Organen (15, 16) zur Verteilung einer Kühlflüssigkeit, die im oberen Bereich des Atomisierungsraums (C) angeordnet ist, um an der Peripherie der Umhüllung (12) eine Kältezone (13) zu schaffen, und eine zweite Serie von Organen (11) zur Umwälzung einer Kühlflüssigkeit aufweisen, die im unteren Bereich des Raums (C) angeordnet ist, um auf der Unterseite des Kopfs (9) eine Kältezone zu schaffen, und
    - Mitteln (17) zum Sammeln des so erhaltenen abgekühlten pulverförmigen Materials,
    dadurch gekennzeichnet, daß die erste Serie von Organen zur Verteilung einer Kühlflüssigkeit von einer Rampe mit Düsen (15), die tangential zur Oberfläche der Umhüllung (12) verlaufende Flüssigkeitsstrahlen erzeugen derart, daß eine Abschreckungszone (13) entsteht, die einen Wirbel um das Plasma darstellt, und mit Düsen (16) gebildet ist, die eine zum Raum tangentiale Waschung erzeugen.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Düsen (15) der ersten Serie oberhalb des Auswerfer-Dreiecks der Pulver angebracht sind und eine Ausstoßachse X besitzen, die in bezug auf die Ebene der Oberseite des Zerstäuberkopfs (9) geneigt ist.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Umhüllung (12) aus Plasmagas von einem zylindrischen Rohr gebildet ist, dessen vertikale Achse parallel zur vertikalen Achse des Drehkopfs (9) verläuft.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die vertikale Achse des zylindrischen Rohrs mit der vertikalen Achse des Kopfs zusammenfällt.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Turmofen (4) für induktives Plasma oberhalb der Oberseite des Drehkopfs (9) angeordnet ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zerstäuberkopf (9) zylindrisch und seine Oberseite in einer genau horizontalen Ebene angeordnet ist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Turmofen (4) für induktives Plasma einem Vorwärmofen (3) für Induktionsströme zugeordnet ist.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie außerdem einen Kältetiegel (100), der unterhalb der Schmelzmittel angeordnet ist, um das zu atomisierende Material im geschmolzenen Zustand aufzunehmen, und eine Stranggußdüse (101, 102) zur Regelung der Durchflußmenge des geschmolzenen Materials für die Einspeisung in den Atomisierungsraum (C) aufweist.
  9. Verfahren zur Herstellung von Pulvern, insbesondere Metallpulvern, durch Atomisierung, bestehend aus einem fortlaufenden Schmelzen des zu atomisierenden Materials, das vertikal und auf koaxiale Weise oberhalb eines Zerstäuberkopfs (9) abläuft, der mit hoher Geschwindigkeit dreht und dazu bestimmt ist, das schmelzflüssige Material in atomisierter Form in eine Umhüllung aus Plasmagas durch Reibung auf der Oberseite des Drehkopfs (9) zu zerstäuben, sowie aus dem Abschrecken des atomisierten Materials und dem Sammeln des so erhaltenen abgekühlten pulverförmigen Materials, dadurch gekennzeichnet, daß die Abschreckung mittels Hineinführen des atomisierten Materials in einen Kühlwirbel realisiert wird, der sich an der Peripherie der Umhüllung aus Plasmagas befindet.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Sammeln der Pulver in einem neutralen Gas in gasförmigem, flüssigem oder festem Zustand erfolgt.
  11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß die Atomisierung bei Drücken über dem atmosphärischem Luftdruck stattfindet.
  12. Verfahren nach einem der Ansprüche 9 - 11, dadurch gekennzeichnet, daß das Plasma durch Bildung eines elektrischen Hochspannungsbogens zwischen dem zu atomisierenden Material (1) und einer Elektrode gezündet wird, die in der Achse des Ofens (4) angeordnet ist.
  13. Verfahren nach einem der Ansprüche 9 - 12, dadurch gekennzeichnet, daß die Abschreckung des atomisierten Materials durch Kontakt mit einem gasförmigen, flüssigen oder zweiphasigen Kältefluid erfolgt, das die Erzielung mikrokristalliner oder amorpher Gefüge erlaubt.
  14. Verfahren nach einem der Ansprüche 9 - 13, dadurch gekennzeichnet, daß die bei der Abschreckung erzeugten Gase in einem Kondensator verflüssigt und die Pulver mit einem Teil der verflüssigten Gase in mindestens einem Behälter gewonnen werden, der es erlaubt, die Mischung in flüssigem oder festem Zustand zu erhalten.
  15. Verfahren nach einem der Ansprüche 9 - 14, dadurch gekennzeichnet, daß die Drehung des Zerstäuberkopfs (9) mit einer Geschwindigkeit zwischen 30 000 und 125 000 tr/min bewirkt wird.
  16. Verfahren nach einem der Ansprüche 9 - 15, dadurch gekennzeichnet, daß in dem Zerstäuberkopf (9) ein Temperaturgradient von 60 bis 180° C/cm bei einem Kopf aus Kupfer und von 200 bis 500° C/cm bei einem Kopf aus Wolfram realisiert wird.
  17. Verfahren nach einem der Ansprüche 9 - 16, dadurch gekennzeichnet, daß die Abschreckung des atomisierten Materials mittels Düsen (15) durchgeführt wird, die eine Gesamt-Durchsatzmenge von flüssigem Argon verteilen, die ausreicht, um eine vollständige Abkühlung der Pulver zu erzielen, wobei die Ausstoßachse dieser Düsen in bezug auf die Ebene der Oberseite des Zerstäuberkopfs (9) geneigt und die Breite des Strahls derart ausgelegt ist, daß eine in bezug auf die Drehbewegung des Kopfs (9) gegensinnige Rotationswirkung erzeugt wird, um die Bewegung der Pulverteilchen zu bremsen.
  18. Verfahren nach einem der Ansprüche 9 - 17, dadurch gekennzeichnet, daß das zu atomisierende Material anfangs die Form eines zylindrischen Stabs (1) besitzt.
  19. Verfahren nach einem der Ansprüche 9 - 18, dadurch gekennzeichnet, daß das zu atomisierende Material zunächst in geschmolzenem Zustand in einem Kältetiegel (100) aufgenommen wird, von wo es durch eine Stranggußdüse (101, 102) zur Regelung der Durchsatzmenge in Richtung auf den Atomisierungsraum (C) hin abfließt.
EP92402141A 1991-07-25 1992-07-24 Verfahren und Vorrichtung zur Herstellung von Pulver, insbesondere Metallpulver durch Atomisierung Expired - Lifetime EP0524887B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9109462A FR2679473B1 (fr) 1991-07-25 1991-07-25 Procede et dispositif de production de poudres et notamment de poudres metalliques par atomisation.
FR9109462 1991-07-25

Publications (2)

Publication Number Publication Date
EP0524887A1 EP0524887A1 (de) 1993-01-27
EP0524887B1 true EP0524887B1 (de) 1997-04-09

Family

ID=9415555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402141A Expired - Lifetime EP0524887B1 (de) 1991-07-25 1992-07-24 Verfahren und Vorrichtung zur Herstellung von Pulver, insbesondere Metallpulver durch Atomisierung

Country Status (5)

Country Link
US (2) US5340377A (de)
EP (1) EP0524887B1 (de)
CA (1) CA2074684A1 (de)
DE (1) DE69218846T2 (de)
FR (1) FR2679473B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097977A (zh) * 2018-02-01 2018-06-01 广东美瑞克微金属磁电科技有限公司 一种铁硅铝软磁合金粉末的等离子雾化制取方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855642A (en) * 1996-06-17 1999-01-05 Starmet Corporation System and method for producing fine metallic and ceramic powders
US6972115B1 (en) 1999-09-03 2005-12-06 American Inter-Metallics, Inc. Apparatus and methods for the production of powders
GB2354256B (en) * 1999-09-15 2001-11-07 Korea Atomic Energy Res Uranium high-density dispersion fuel
JP2001254103A (ja) * 2000-03-13 2001-09-18 Sanei Kasei Kk ナノコンポジット構造を有する金属粒子及び自己組織化によるその製造方法
US20030156964A1 (en) * 2000-06-26 2003-08-21 Masami Kikuchi Method and apparatus for producing magnetic rare earth alloy powder, method for producing bonded magnet, method for producing rare earth sintering magnet, and method and apparatus for improving purity of inert gas
US7913884B2 (en) * 2005-09-01 2011-03-29 Ati Properties, Inc. Methods and apparatus for processing molten materials
CN100413617C (zh) * 2006-08-18 2008-08-27 陕西科技大学 一种制备金属超微粉体的装置及其方法
US8268035B2 (en) * 2008-12-23 2012-09-18 United Technologies Corporation Process for producing refractory metal alloy powders
WO2011054113A1 (en) * 2009-11-05 2011-05-12 Ap&C Advanced Powders & Coatings Inc. Methods and apparatuses for preparing spheroidal powders
CN101906516B (zh) * 2010-09-02 2012-01-11 唐山市长智农工具设计制造有限公司 金属制件淬火介质循环利用装置
PL3730208T3 (pl) 2014-03-11 2024-06-24 Tekna Plasma Systems Inc. Proces do wytwarzania cząstek proszku przez atomizację materiału wsadowego w postaci elementu podłużnego
WO2016191854A1 (en) * 2015-06-05 2016-12-08 Pyrogenesis Canada Inc. Plasma apparatus for the production of high quality spherical powders at high capacity
US11198179B2 (en) * 2015-07-17 2021-12-14 Ap&C Advanced Powders & Coating Inc. Plasma atomization metal powder manufacturing processes and system therefor
CA3020720C (en) 2016-04-11 2020-12-01 Ap&C Advanced Powders & Coatings Inc. Reactive metal powders in-flight heat treatment processes
US11110540B2 (en) * 2016-05-02 2021-09-07 Electronics And Telecommunications Research Institute Extruder for metal material and 3D printer using the same
EP3504020B1 (de) 2016-08-24 2023-04-19 5n Plus Inc. Pulverzerstäubungsherstellungsverfahren mit metallen oder legierungen mit niedrigem schmelzpunkt
CN106216704B (zh) * 2016-10-10 2018-05-04 江西悦安超细金属有限公司 一种进料装置以及等离子组合离心雾化制粉装置
TWI618589B (zh) * 2016-12-23 2018-03-21 悅城科技股份有限公司 製造材料粉末的方法及裝置
CN106622029B (zh) * 2017-02-23 2022-08-12 湖南久泰冶金科技有限公司 一种塔式金属雾化制粉设备
JP7012350B2 (ja) * 2017-12-18 2022-01-28 株式会社大阪真空機器製作所 遠心アトマイザ用回転ディスク装置、遠心アトマイザ、および、金属粉末の製造方法
EP3752304B1 (de) 2018-02-15 2023-10-18 5n Plus Inc. Herstellungsverfahren durch verdüsung von metall- oder legierungspulvern mit niedrigem schmelzpunkt
CN109128206B (zh) * 2018-09-25 2020-11-24 中国人民解放军陆军装甲兵学院 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
CN111014700A (zh) * 2019-12-11 2020-04-17 湖南天际智慧材料科技有限公司 一种真空无坩埚熔炼等离子体制备高纯纳米材料的装置
CN110883338A (zh) * 2019-12-11 2020-03-17 湖南天际智慧材料科技有限公司 一种射频等离子体制备微纳米粉末材料的装置
CN111331147A (zh) * 2020-03-18 2020-06-26 甘肃省机械科学研究院有限责任公司 一种制备AlSi9Mg超细粉的方法
CN115679055B (zh) * 2022-11-18 2023-09-01 河北鑫泰轴承锻造有限公司 一种轴承成型模具淬火设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588781A1 (fr) * 1985-10-17 1987-04-24 Aubert & Duval Acieries Dispositif d'atomisation de metaux ou alliages

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517283A (en) * 1974-06-28 1978-07-12 Singer Alec Production of metal articles
JPS58197206A (ja) * 1982-04-30 1983-11-16 Hitachi Metals Ltd 高品位金属または合金粉末の製造方法
US5263689A (en) * 1983-06-23 1993-11-23 General Electric Company Apparatus for making alloy power
US5120352A (en) * 1983-06-23 1992-06-09 General Electric Company Method and apparatus for making alloy powder
US4731517A (en) * 1986-03-13 1988-03-15 Cheney Richard F Powder atomizing methods and apparatus
JPS63502839A (ja) * 1986-03-13 1988-10-20 チェニ−、リチャ−ド エフ 粉末の微細化方法および装置
FR2595595B1 (fr) * 1986-03-17 1989-07-28 Aubert & Duval Acieries Procede de refroidissement et de collecte de poudres metalliques produites par atomisation de metal liquide
US4762553A (en) * 1987-04-24 1988-08-09 The United States Of America As Represented By The Secretary Of The Air Force Method for making rapidly solidified powder
WO1989000470A1 (en) * 1987-07-20 1989-01-26 Battelle Development Corporation Double disintegration powder method
US4781754A (en) * 1987-09-24 1988-11-01 General Motors Corporation Rapid solidification of plasma sprayed magnetic alloys
FR2629573B1 (fr) * 1988-04-05 1991-01-04 Aubert & Duval Acieries Tete de fusion continue pour metaux ou alliages
US5084091A (en) * 1989-11-09 1992-01-28 Crucible Materials Corporation Method for producing titanium particles
US5272718A (en) * 1990-04-09 1993-12-21 Leybold Aktiengesellschaft Method and apparatus for forming a stream of molten material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588781A1 (fr) * 1985-10-17 1987-04-24 Aubert & Duval Acieries Dispositif d'atomisation de metaux ou alliages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097977A (zh) * 2018-02-01 2018-06-01 广东美瑞克微金属磁电科技有限公司 一种铁硅铝软磁合金粉末的等离子雾化制取方法

Also Published As

Publication number Publication date
CA2074684A1 (en) 1993-01-26
FR2679473B1 (fr) 1994-01-21
FR2679473A1 (fr) 1993-01-29
EP0524887A1 (de) 1993-01-27
US5529292A (en) 1996-06-25
DE69218846D1 (de) 1997-05-15
US5340377A (en) 1994-08-23
DE69218846T2 (de) 1997-10-23

Similar Documents

Publication Publication Date Title
EP0524887B1 (de) Verfahren und Vorrichtung zur Herstellung von Pulver, insbesondere Metallpulver durch Atomisierung
EP0408453B1 (de) Vorrichtung für eine elektromagnetische Giessdüse zum Regeln eines Flüssigmetallstrahles
CA2183290C (fr) Methode de production de poudres metalliques ou ceramiques par atomisation plasma
FR2662182A1 (fr) Depot par projection de plasma a radiofrequence.
FR2642672A1 (fr) Appareil et procede de pulverisation sous plasma par un laser a flux axial
EP0275228B1 (de) Verfahren und Anlage zum Schmelzen und Stranggiessen von Metallen
CH648062A5 (fr) Procede et installation pour la preparation de metaux.
CA2025114C (en) System and method for atomizing a titanium-based material
FR2648068A1 (fr) Procede et appareil de soudage laser
FR2688516A1 (fr) Dispositif pour la fabrication de metaux et d'alliages de metaux de grande purete.
EP3817877A1 (de) Granulierungsverfahren und -vorrichtung
EP1742870B1 (de) Verfahren und vorrichtung zur herstellung von blöcken aus halbleitermaterial
CA2758563A1 (fr) Procede et installation de purification d'une charge a base de silicium
WO2012123389A1 (fr) Procédé et dispositif pour la formation de billes de verre métallique
US5993509A (en) Atomizing apparatus and process
FR2571484A1 (fr) Procede et dispositif pour faire fondre progressivement du materiau en forme de barreau au moyen d'une bobine d'induction
EP0896639A1 (de) Verfahren und vorrichtung zur metallisierung von rohren und gusseisen
JPH06346117A (ja) 反応性金属粒の製法及びその製造装置
FR2524356A1 (fr) Procede et dispositif pour la fabrication de poudres metalliques de haute purete et depourvues de matieres ceramiques
RU2171160C1 (ru) Способ центробежного распыления металла и устройство для его осуществления
CA2423140C (fr) Procede de preparation de particules de metal ou d'alliage de metal nucleaire
EP0125964B1 (de) Verfahren und Vorrichtung zur Kühlung eines Materials und Verwendung für die Herstellung von feuerfesten Materialien durch Härtung
EP0457674B1 (de) Verfahren und Vorrichtung zur Herstellung von Pulverlegierungen durch schnelle Erstarrung
FR2629573A1 (fr) Tete de fusion continue pour metaux ou alliages
JPS63145703A (ja) 粉末製造装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19930716

17Q First examination report despatched

Effective date: 19950609

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 69218846

Country of ref document: DE

Date of ref document: 19970515

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970716

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970718

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970722

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970731

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980725

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980724

EUG Se: european patent has lapsed

Ref document number: 92402141.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST