EP0125964B1 - Verfahren und Vorrichtung zur Kühlung eines Materials und Verwendung für die Herstellung von feuerfesten Materialien durch Härtung - Google Patents

Verfahren und Vorrichtung zur Kühlung eines Materials und Verwendung für die Herstellung von feuerfesten Materialien durch Härtung Download PDF

Info

Publication number
EP0125964B1
EP0125964B1 EP84400824A EP84400824A EP0125964B1 EP 0125964 B1 EP0125964 B1 EP 0125964B1 EP 84400824 A EP84400824 A EP 84400824A EP 84400824 A EP84400824 A EP 84400824A EP 0125964 B1 EP0125964 B1 EP 0125964B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
orifice
liquefied gas
treated
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400824A
Other languages
English (en)
French (fr)
Other versions
EP0125964A1 (de
Inventor
Marcel Boncoeur
Bernard Hansz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to AT84400824T priority Critical patent/ATE32628T1/de
Publication of EP0125964A1 publication Critical patent/EP0125964A1/de
Application granted granted Critical
Publication of EP0125964B1 publication Critical patent/EP0125964B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the subject of the present invention is a method and a device for cooling a material and more particularly the use of this method and of this device for the preparation of a material when the latter has to undergo one or more operations of time during its manufacture.
  • Cooling processes are widely used today to quench certain materials during their preparation. It is thus well known to use water or oil quenching for the preparation of metals and in particular steels.
  • water or oil quenching for the preparation of metals and in particular steels.
  • the most used method at present consists in projecting a gas jet on the liquid, that this one is contained in a crucible or that it comes from a molten electrode.
  • Such a process generally using a neutral gas avoids parasitic chemical reactions and allows, in the case of pulverulent materials, to store energy for subsequent sintering: it is thus possible to reduce the temperature and the duration of this operation.
  • Another advantage of tempering is that it makes it possible to freeze an abnormal or metastable state of the material, which may be advantageous for certain applications.
  • Document GB-A-1 413 651 describes a process of this type in which a gas is sent onto a liquid metal which flows from an orifice provided at the bottom of a crucible.
  • the object of the present invention is an improvement to current methods allowing even more efficient cooling and therefore greater speed of operation, which leads to better purity of the products treated and to a much wider range of applications.
  • the liquefied gas is usually nitrogen or argon.
  • the saturation temperature of a liquid is defined as the temperature at which the vapor contained in solution in the liquid is released: the saturation temperature is generally close to the boiling temperature, but different from it, especially in the case of liquefied gases.
  • the droplets of the liquid must be very fine and not be mixed with steam, which would have the effect of reducing the cooling capacity.
  • the fact that the liquid is in monophasic form also makes it possible to avoid jolts in the pipes and makes it easier to obtain droplets having homogeneous dimensions. Since liquefied gases are generally stored at temperatures close to their boiling point, therefore close to their saturation temperature, the operating temperature is lower than the saturation temperature without the difference exceeding 15 ° C: the expression "temperature close to the saturation temperature" used in the present text designates a temperature whose deviation from the saturation temperature does not exceed 15 ° C. This prevents vapor from being released before the liquid mixes with the carrier gas.
  • the operation is carried out at -206 ° C for a saturation temperature of approximately -196 ° C, the latter being determined experimentally.
  • the table below shows the temperatures used as a function of the pressure for nitrogen and argon.
  • the carrier gas As for the carrier gas, it has the effect not only of entraining the droplets of liquefied gas, but also of promoting heat exchanges and of lowering the surface tension of the liquid, which improves the contact with the material to be cooled.
  • the carrier gas which can be a pure gas such as helium or a mixture (helium and argon for example) will be chosen by those skilled in the art according to each particular case.
  • the "particulate" material means that the material is in divided form or in the form of particles: it can therefore s 'act either of grains if the material is solid and is in the form of powder, or drops or liquid particles if the material is in liquid form.
  • the dimensions of the first pipe are such that the coolant is in single-phase form at its entry into the nozzle.
  • This first pipe may optionally be jacketed and must have, for the coolant to be in monophasic form at its entry into the nozzle, a length less than or equal to 5 meters and a diameter of the coolant passage less than or equal at 12 mm when the pressure of the latter is between 1 and 1.5 bars.
  • the nozzle and the material to be treated are movable relative to each other.
  • the device is arranged so that the distance between the orifice of the nozzle and the material to be treated is constant throughout the duration of the relative movement of the nozzle and the material. It has been found that the best results are obtained when this distance is between 5 and 100 mm and, preferably, between 5 and 50 mm.
  • the device which is the subject of the invention, it comprises means making it possible to bring the material to be treated in front of the nozzle.
  • said means for bringing the material to be produced in front of the nozzle comprise a crucible containing this material in liquid form and allowing it to flow by gravity in front of the nozzle.
  • the means making it possible to bring the material to be produced in front of the nozzle comprise a plasma torch capable of sending a jet of molten particles of this material in front of the nozzle.
  • the means making it possible to bring the material to be produced in front of the nozzle comprise a cylindrical tank movable in rotation about its axis and consisting of two parallel flat disks connected by a side wall, the material to be produced being introduced in this reservoir in liquid form and said side wall being pierced with a number of holes to allow the liquid to exit in the form of particles by centrifugation, these particles then passing in front of the nozzle.
  • FIGS. 1 to 5 are schematic vertical sections illustrating five embodiments possible device of the invention and Figure 6 is a schematic sectional view of the nozzle used to project the coolant.
  • FIG. 1 represents a first embodiment of the device, this consisting of a sealed enclosure 1 inside which is a crucible 2 containing the material to be produced 3, for example boron in liquid form. The fusion of the latter is obtained thanks to an electrode 4 connected to an electrical circuit which makes it possible to make an arc between itself and the material 3.
  • the cooling device proper consists of a nozzle 6 having an orifice 8 for the exit of the droplets of liquefied gas, the nozzle 6 being connected on the one hand to a tank of liquefied gas 10 by a first pipe 12, and on the other hand to a tank 14 of carrier gas by a second pipe 16.
  • the liquefied gas is preferably a neutral gas such as nitrogen or argon and the carrier gas can be the same as liquefied gas, but this is not compulsory.
  • the enclosure 1 is scanned using a neutral gas, for example argon, the latter entering the enclosure by a pipe 18 connected to a reservoir 20 and leaving the enclosure by an outlet orifice 22 located at the upper part of the latter.
  • a neutral gas for example argon
  • the composition of the atmosphere prevailing inside the enclosure 1 is regularly analyzed, possibly continuously, and the scanning conditions are adjusted according to the results of the analysis.
  • the operation of the device is as follows: when the material 3 contained in the crucible 2 is melted, it is made to flow through the spout 5 of the crucible. For this, one can either tilt the crucible 2 gradually so that the flow is regular, or permanently introduce new quantities of material, the latter flowing naturally by the effect of overflow. This is how the liquid passes in front of the nozzle 6 before falling into the receptacle 24 provided at the bottom of the enclosure 1. The cooling takes place by spraying droplets of liquefied gas onto the liquid when the latter passes. in front of the orifice 8 of the nozzle 6. This has the effect of solidifying the material 3 which falls in the form of powder in the receptacle 24.
  • the droplets of liquefied gas are obtained by introducing into the nozzle 6 on the one hand the liquefied gas coming from the tank 10 through the line 12 and, on the other hand, a carrier gas coming from the tank 14 through the line 16
  • the pressure and the flow rate of the liquefied gas and of the carrier gas as well as the distance between the orifice 8 of the nozzle 6 and the material to be cooled must be carefully adjusted. It has been found that, in order to avoid troublesome phenomena in the formation of droplets, the liquefied gas coming from the reservoir 10 must be in monophasic form when it enters the nozzle 6, that is to say be found only in liquid form and not be mixed with its vapor.
  • the line 12 is advantageously a double-walled line, that is to say consisting of two concentric pipes between which a vacuum has been created in order to ensure good insulation .
  • the pressure of the liquefied gas is between 1 and 1.5 bar, so that it is in single-phase form at its entry into the nozzle 6, the length of the pipe 12 must not exceed 5 meters and that the liquid passage diameter is less than or equal to 12 millimeters.
  • the droplets of liquefied gas projected from the nozzle 6 must be spherical and have a diameter less than or equal to 40 microns.
  • the distance between the orifice 8 of the nozzle 6 and this material must be sufficiently small. In the case of liquefied gases such as argon or nitrogen, it has been determined that this distance should be between 5 and 100 millimeters and preferably between 5 and 50 millimeters.
  • FIG. 6 shows in more detail the constitution of the nozzle used in the device of the invention.
  • This consists of a body 54 on which are mounted an inlet connection 56 for the liquefied cooling gas and an inlet connection 58 for the carrier gas.
  • a head 60 on which the orifice 8 for the outlet of the coolant is located, is mounted at one end of the body 54.
  • the inlet connection 56 for the liquefied gas has an orifice 62 which places it in communication with a trigger 64 formed in the body 54 of the nozzle.
  • a conduit 66 which puts the chamber 64 in communication with a second orifice 68 which opens into a cavity 70 formed in the head 60 of the nozzle.
  • a conduit 72 which places the inlet connection 58 of the carrier gas in communication with the cavity 70.
  • this nozzle The operation of this nozzle is as follows: the liquid arriving in the inlet connector 56 passes through the first orifice 62 and arrives in the chamber 64 where it undergoes a first expansion. It then flows along the conduit 66, passes through the orifice 68 and arrives in the cavity 70 where it undergoes a second expansion.
  • the carrier gas arrives through the connector 58, circulates along the conduit 72 and opens into the cavity 70: this has the effect not only of entraining the liquefied gas in the form of droplets, but also of breaking the droplets in order to make them more small and homogeneous in size.
  • the invention also applies to the quenching of a material appearing in solid form .
  • the nozzle 6 and the material are movable relative to each other, for example the nozzle being fixed and the material to be treated moving past the orifice 8 or being driven in a rotational movement s' it is a part presenting a symmetry of revolution.
  • a confinement screen can be provided in order to thermally protect the area of the material in which the quenching is carried out.
  • Figures 2 to 5 show other embodiments of the device object of the invention in which the nozzle is fixed, but where there is provided means for bringing the material to be treated in liquid form in front of this nozzle.
  • the enclosure 1 traversed by a current of neutral gas entering through the pipe 18 and leaving through the orifice 22.
  • the electrode 26 is formed by the material which one wants to treat. The spurting of the arc between these two electrodes has the effect of melting the material at the end 27 of the electrode 26.
  • a blowing device 30 makes it possible to project a gas, preferably a neutral gas, onto the molten part 27 of the electrode 26 and thus project liquid particles of the material to be produced 3 in front of the orifice 8 of the nozzle 6, the latter being as previously connected by the pipes 12 and 16 to the tanks of liquefied gas and of carrier gas respectively .
  • the nozzle 6 is arranged above the jet of particles 3 so as to project droplets of liquefied gas onto these particles, which has the effect of cooling them sufficiently so that they solidify, and causing them to fall in the form of powder in container 24.
  • the nozzle 6 and the receptacle 24 are arranged as in Figure 2, but the liquid particles of the material to be treated 3 are obtained using a plasma torch 32 connected to a control and production of plasma not shown.
  • the operation of the device in FIG. 3 is identical to the operation of the device in FIG. 2.
  • FIG. 4 illustrates another means making it possible to bring the material to be treated in the form of liquid particles in front of the cooling nozzle.
  • the sealed enclosure 1 has the form of a cylindrical envelope 34, the lower part 36 of which has a truncated cone shape, thus constituting a receptacle for the solidified particles of the material to be treated.
  • a reservoir 38 having the shape of a cylinder bounded by two horizontal flat disks 39 and 40 connected by a side wall 42.
  • the reservoir 38 is movable in rotation around a vertical axis thanks to a motor 44 and the material to be produced can be introduced therein in liquid form via the pipe 46.
  • FIG. 5 represents a last embodiment of the device of the invention in which the material to be treated 3 is placed in solid form inside a crucible 50.
  • the device comprises a source of electrons 52, by example an electron gun, arranged so as to send an electron beam to the surface of the material contained in the crucible 5 to melt this material on the surface.
  • a blowing device which can be the same as the device 30 described with reference to FIG. 2, makes it possible to send a jet of gas to the surface of the material contained in the crucible 50 and to project liquid particles of this material in front of the orifice 8 of the nozzle 6, the latter being placed in the same manner as in the case of FIGS. 2 and 3.
  • the operation is the same as in the case of these two figures, the liquid droplets coming from the orifice 8 vanant strike the liquid particles of the material 3, which has the effect of cooling and solidifying them before they fall into the receptacle 24.
  • the method and the device which are the subject of the invention have numerous advantages since they allow quenching operations with very efficient cooling, which therefore reduces the duration of this operation and allows savings to be made over the entire material development process.
  • the fact of cooling with droplets of a liquefied neutral gas in a controlled atmosphere avoids any parasitic chemical reaction with the material to be treated, which makes it possible to obtain greater purity.
  • the process of the invention applies to the quenching of substoichiometric oxides which can be used for photography or catalysis or for the quenching of metal powders or of metallic compounds in a metastable state for obtaining actice powders for sintering.
  • the device comprising a plasma gun such as that of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Claims (20)

1. Verfahren zur Kühlung eines Material (3) mit Hilfe eines verflüssigten Gases, dadurch gekennzeichnet, daß es die folgenden Schritte umfaßt, die bestehen in:
(a) - Zuführen des verflüssigten Gases in eine Düse (8), wobei dieses verflüssigte Gas eine niederere Temperatur als seine Sättigungstemperatur aufweist und wobei der Unterschied zu dieser 15°C nicht Überschreitet
(b) - Entspannen dieses verflüssigten Gases, um Tröpfchen zu erhalten,
(c) - Zerschlagen dieser Tröpfchen, indem auf sie ein Trägergas geschickt wird, wobei die Durchflußleistung und der Druck der Kühlflüssigkeit und des Trägergases derart geregelt werden, daß die erhaltenen Tröpfchen einen Durchmesser von kleiner oder gleich 40 um aufweisen, und
(d) - Aufschleudern der beim Schritt (c) erhaltenen Tröpfchen auf das Material (3), um letzteres zu kühlen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das verflüssigte Gas aus der Stickstoff und Argon enthaltenden Gruppe ausgewählt wird.
3. Verfahren nach irgendeinem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man bei einer gesteuerten Atmosphäre arbeitet.
4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man das zu bearbeitende Material (3) in Teilchenform vorbereitet, bevor man es der Wirkung der Kühflüssigkeit aussetzt.
5. Verfahren zur Herstellung eines feuerfesten Materials, welches wenigstens einen Schritt umfaßt, bei dem das herzustellende Material einer Abschreckbehandlung ausgesetzt wird, dadurch gekennzeichnet, daß dieses Abschrecken durch das Kühlverfahren nach irgendeinem der Ansprüche 1 bis 4 durchgeführt wird.
6. Vorrichtung zur Durchführung des Verfahrens nach irgendeinem der Ansprüche 1 bis 4, mit wenigstens einer Düse (6), die mit wenigstens einer Kühlflüssigkeitsquelle (10) über eine erste Leitung (12) und mit wenigstens einer Trägergasquelle (14) über eine zweite Leitung (16) verbunden ist, wobei die Düse (6) umfaßt:
- eine Öffnung (8) für den Austritt der Kühlflüssigkeit,
- einen Einlaßanschluß (56) für das verflüssigte Gas,
- eine erste Öffnung (62), die den Einlaßanschluß (56) für das verflüssigte Gas mit einer Entspannungskammer (64) verbindet,
- einen Durchlaß (66), der die Entspannunskammer (64) mit einer zweiten Öffnung (68) verbindet,
- eine Kammer (70), in die die zweite Öffnung (68) mündet, wobei diese Kammer (70) mit dem Äußeren über die Austrittsöffnung (8) für die Kühlflüssigkeit in Verbindung steht,
- ein Einlaßanschluß (58) für das Tägergas, und
- ein Durchlaß (72), der den Einlaßanschluß (58) für das Tägergas mit der Kammer (70) verbindet,

dadurch gekennzeichnet, daß die Abmessungen der ersten Leitung (12) derart sind, daß sich die Kühlflüssigkeit bei ihrem Eintritt in die Düse (6) in einphasiger Form befindet.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die erste Leitung (12) eine Leitung mit einem doppelten Mantel ist.
8. Vorrichtung nach irgendeinem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die erste Leitung (12) eine Länge kleiner oder gleich 5 m und einen Durchtrittsdurchmesser für die Kühlflüssigkeit kleiner oder gleich 12 mm aufweist, wenn der Druck der letzteren zwischen 1 und 1,5 Bar liegt.
9. Vorrichtung nach irgendeinem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Düse (6) und das zu behandelnde Material (3) relativ zueinander bewegbar sind.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß sie derart ausgestaltet ist, daß der Abstand zwischen der Öffnung (8) der Düse (6) und dem zu behandelnden Material (3) während der gesamten Dauer der relativen Bewegung zwischen der Düse (6) und des Materials (3) konstant ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der Abstand zwischen der ffnung (8) der Düse (6) und dem zu behandelnden Material zwischen 5 und 100 mm liegt.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß der Abstand zwischen der Offnung (8) der Düse (6) und dem zu behandelnden Material zwischen 5 und 50 mm liegt.
13. Vorrichtung nach irgendeinem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß sie ferner eine Abschirmungswand umfaßt, die das herzustellende Material in dem Bereich wärmemäßig schützen soll, wo man die Kühlung durchführt.
14. Vorrichtung nach irgendeinem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß sie ferner eine dichte Umschließung (1) aufweist, in deren Inneren sich die Düse (6) und das zu behandelnde Material (3) befinden.
15. Vorrichtung nach irgendeinem der Ansprüche 6 bis 14, dadurch gekennzeichnet, daß sie Einrichtungen umfaßt, die ermöglichen, das zu behandelnde Material (3) vor die Düse (6) zu bringen.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen, die ermöglichen, das herzustellende Material (3) vor die Düse (6) zu bringen, einen Behälter (2) umfassen, der das Material im flüssigen Zustand enthält und ihm ermöglicht, durch die Schwerkraft vor die Düse (6) zu strömen.
17. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen, die ermöglichen, das herzustellende Material vor die Düse (6) zu bringenumfassen:
- eine erste, aus diesem Material hergestellte Elektrode (26),
- eine zweite Elektrode (28), die so angeordnet ist, daß sie einen Bogen zwischen sich selbst und der ersten Elektrode (26) überschlagen läßt, um einen Teil (27) des diese erste Elektrode (26) bildenden Materials zu schmelzen, und
- Blaseinrichtungen (30), um den von der ersten Elektrode (26) geschmolzenen Teil (27) in der Form von Flüssigkeitsteilchen vor die Düse (6) zu schleudern.
18. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen, die ermöglichen, das herzustellende Material vor die Düse (6) zu bringen, einen Plasmabrenner (32) umfassen, mit dem ein Strom geschmolzener Teilchen dieses Materials vor die Düse (6) geschickt werden kann.
19. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen, die ermöglichen, das herzustellende Material vor die Düse (6) zu bringen, einen zylindrischen Behälter (38) umfassen, der um seine Achse drehbeweglich ist und von zwei ebenen, parallelen Scheiben (39,40) gebildet ist, die durch eine Seitenwand (42) miteinander verbunden sind, das herzustellende Material in diesen Behälter im flüssigen Zustand eingebracht wird und die Seitenwand (42) mit einer gewissen Anzahl von Löchern (48) durchbohrt ist, um den Austritt der Flüssigkeit in Teilchenform durch Zentrifugierung zur ermöglichen, wobei diese Teilchen anschließend vor die Düse (6) gelangen.
20. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen, die ermöglichen, das zu behandelnde Material vor die Düse (6) zu bringen, umfassen:
- einen Tiegel (50), der dieses Material im festen Zustand enthält,
- eine Elektronenquelle (52), die einen Elektronenstrahl auf das in diesem Tiegel (50) enthaltene Material (3) schicken kann, um es an der Oberfläche zu schmelzen, und
- Blaseinrichtungen (30), um den geschmolzenen Teil des herzustellenden Materials vor die Düse (6) zu schleudern.
EP84400824A 1983-04-29 1984-04-24 Verfahren und Vorrichtung zur Kühlung eines Materials und Verwendung für die Herstellung von feuerfesten Materialien durch Härtung Expired EP0125964B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84400824T ATE32628T1 (de) 1983-04-29 1984-04-24 Verfahren und vorrichtung zur kuehlung eines materials und verwendung fuer die herstellung von feuerfesten materialien durch haertung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8307164 1983-04-29
FR8307164A FR2545202B1 (fr) 1983-04-29 1983-04-29 Procede et dispositif de refroidissement d'un materiau et application a l'elaboration de materiaux refractaires par trempe

Publications (2)

Publication Number Publication Date
EP0125964A1 EP0125964A1 (de) 1984-11-21
EP0125964B1 true EP0125964B1 (de) 1988-02-24

Family

ID=9288403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400824A Expired EP0125964B1 (de) 1983-04-29 1984-04-24 Verfahren und Vorrichtung zur Kühlung eines Materials und Verwendung für die Herstellung von feuerfesten Materialien durch Härtung

Country Status (4)

Country Link
EP (1) EP0125964B1 (de)
AT (1) ATE32628T1 (de)
DE (1) DE3469456D1 (de)
FR (1) FR2545202B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE921308A1 (en) * 1992-04-23 1993-11-03 Schwan Ltd A method and apparatus for reducing the temperature of a¹flue gas stream
FR2766738B1 (fr) * 1997-08-01 1999-09-03 Air Liquide Procede et dispositif de pulverisation sequentielle d'un liquide cryogenique, procede et installation de refroidissement en comportant application

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1475340A (en) * 1922-10-21 1923-11-27 James D Davis Atomizer
DE460898C (de) * 1924-10-21 1928-06-07 Hartstoff Metall Akt Ges Hamet Herstellung feiner Koernungen aus geschmolzenem Metall
US2020719A (en) * 1934-06-12 1935-11-12 Girdler Corp Process and apparatus for solidifying material in finely subdivided form
US2460992A (en) * 1946-02-06 1949-02-08 Federal Mogul Corp Method of atomizing metal
GB713009A (en) * 1951-08-21 1954-08-04 Glacier Co Ltd Improvements in or relating to the manufacture of metallic powders
US3041672A (en) * 1958-09-22 1962-07-03 Union Carbide Corp Making spheroidal powder
US3111011A (en) * 1960-07-01 1963-11-19 Bar Rup Corp Apparatus for preserving liquids by freezing
FR1395562A (fr) * 1963-08-14 1965-04-16 Reynolds Metals Co Préparation et laminage de particules alumineuses
FR2098951A5 (en) * 1970-07-31 1972-03-10 Anvar Spheroidal granules of refractory material prodn - by two-stage pulverization of molten raw material
GB1413651A (en) * 1971-11-04 1975-11-12 Singer A R E Atomising of metals
DE2528999C2 (de) * 1975-06-28 1984-08-23 Leybold-Heraeus GmbH, 5000 Köln Verfahren und Vorrichtung zur Herstellung von hochreinem Metallpulver mittels Elektronenstrahlbeheizung
SE7704410L (sv) * 1976-04-23 1977-10-23 Bp Chem Int Ltd Treatment of latices
CH645455A5 (de) * 1979-02-20 1984-09-28 Linde Ag Spruehsystem zur abgabe eines kryogenen kaeltemittels.
US4284394A (en) * 1980-09-19 1981-08-18 United Technologies Corporation Gas manifold for particle quenching
US4374075A (en) * 1981-06-17 1983-02-15 Crucible Inc. Method for the plasma-arc production of metal powder

Also Published As

Publication number Publication date
ATE32628T1 (de) 1988-03-15
EP0125964A1 (de) 1984-11-21
FR2545202B1 (fr) 1989-04-07
DE3469456D1 (en) 1988-03-31
FR2545202A1 (fr) 1984-11-02

Similar Documents

Publication Publication Date Title
EP0524887B1 (de) Verfahren und Vorrichtung zur Herstellung von Pulver, insbesondere Metallpulver durch Atomisierung
CH648062A5 (fr) Procede et installation pour la preparation de metaux.
FR2471827A1 (fr) Dispositif pour la production de granules metalliques uniformes
EP0408453A1 (de) Vorrichtung für eine elektromagnetische Giessdüse zum Regeln eines Flüssigmetallstrahles
EP1742870B1 (de) Verfahren und vorrichtung zur herstellung von blöcken aus halbleitermaterial
FR2548937A1 (fr) Procede et appareil de fabrication d'un alliage en poudre
EP0125964B1 (de) Verfahren und Vorrichtung zur Kühlung eines Materials und Verwendung für die Herstellung von feuerfesten Materialien durch Härtung
FR2799194A1 (fr) Billes d'un fluorure d'alcalin ou d'alcalino-terreux polycristallin, leur preparation et leur utilisation pour preparer des monocristaux
FR3083465A1 (fr) Procede et dispositif de granulation
EP2419380A1 (de) Verfahren und vorrichtung zur aufreinigung von rohsilicium
FR2777688A1 (fr) Poudres d'alliage d'uranium et procede de fabrication de combustible nucleaire a l'aide de telles poudres
FR2634758A1 (fr) Procede et dispositif de reparation d'un corps refractaire
EP1324846B1 (de) Verfahren zur herstellung von pulver aus kernbrennstoffmetall oder -metalllegierung
EP0766595B1 (de) Verfahren zur zerstäubung einer dispergierbaren flüssigkeit
EP3052444B1 (de) Verfahren zur desoxidation von silicium
EP0009433A1 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver aus der Schmelze eines Metalls oder einer Legierung
FR2607492A1 (fr) Procede et appareil pour la production de poudres d'alliages ceramiques solidifiees rapidement
EP3489196A1 (de) Verfahren und vorrichtung zur zuführung von festen siliziumteilchen in ein flüssiges siliziumbad
EP0397565B1 (de) Verfahren zum Abtrennen von Einschlüssen in Metallen durch Umschmelzen
EP0125173A1 (de) Verfahren zur Herstellung erstarrter Metallkörper aus der Schmelze eines Metalls
EP3864399B1 (de) Vorrichtung zur charakterisierung eines flüssigen materials
EP0158563B1 (de) Verfahren zur nichtverunreinigenden Herstellung von massivem Silicium aus feinteiligem Silicium
FR2522555A1 (fr) Appareil de fabrication de fines particules metalliques
EP0457674B1 (de) Verfahren und Vorrichtung zur Herstellung von Pulverlegierungen durch schnelle Erstarrung
FR2607829A1 (fr) Procede de traitement d'acier en poche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19850503

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI SE

REF Corresponds to:

Ref document number: 32628

Country of ref document: AT

Date of ref document: 19880315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3469456

Country of ref document: DE

Date of ref document: 19880331

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84400824.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960326

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960401

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960412

Year of fee payment: 13

Ref country code: AT

Payment date: 19960412

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970424

Ref country code: AT

Effective date: 19970424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970430

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19970430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970424

EUG Se: european patent has lapsed

Ref document number: 84400824.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990426

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990503

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201