EP1041173B1 - Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens - Google Patents

Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP1041173B1
EP1041173B1 EP00105126A EP00105126A EP1041173B1 EP 1041173 B1 EP1041173 B1 EP 1041173B1 EP 00105126 A EP00105126 A EP 00105126A EP 00105126 A EP00105126 A EP 00105126A EP 1041173 B1 EP1041173 B1 EP 1041173B1
Authority
EP
European Patent Office
Prior art keywords
laser beam
powder
alloyed
aluminum
cylinder block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00105126A
Other languages
English (en)
French (fr)
Other versions
EP1041173A1 (de
Inventor
Franz Josef Dr. Feikus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Aluminium Deutschland GmbH
Original Assignee
Hydro Aluminium Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Aluminium Deutschland GmbH filed Critical Hydro Aluminium Deutschland GmbH
Publication of EP1041173A1 publication Critical patent/EP1041173A1/de
Application granted granted Critical
Publication of EP1041173B1 publication Critical patent/EP1041173B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/4927Cylinder, cylinder head or engine valve sleeve making

Definitions

  • the invention relates to a light metal cylinder block with at least a wear-resistant and tribologically optimized Cylinder tread, comprising a light metal matrix alloy and a carbide-containing powder material that is used as a finely dispersed, Primary silicon excretions contain surface layer is present on the light metal matrix.
  • EP 0 837 152 A1 (Bayerische Motoren Werke AG) is a method for coating an existing aluminum alloy Known component of an internal combustion engine. In doing so, a Laser beam directed so that it is not directly on the surface of the component to be coated, but previously on one Powder jet hits. Because of the energy of the laser beam Powder completely transferred from the solid to the liquid phase, so that when it hits the component surface in shape fine droplets are deposited on it as layer material, which partially solidify amorphously due to the solidification conditions.
  • silicon crystals should be used be produced in the order of 1 to 5 microns.
  • the substrate surface is therefore very hot and can therefore heat the impacting Si melt not dissipate quickly enough so that no crystalline Phase and no primary crystals but amorphous phases.
  • a applied layer thickness of 3 mm to achieve a smooth, flat surface of the layer material removed about 50% (Column 6, lines 10 to 15). This means a high loss of stock, to which is still an unused edge zone by a high Waviness of the droplet applied material as disadvantageous must be added.
  • EP 0 411 322 A1 describes a method for producing more wear-resistant Surfaces on components made of an AlSi alloy described, which is based on the aforementioned EP 0 221 276, however, the layer prior to laser melting a vaccine (Nucleating agent) added for primary silicon crystals becomes.
  • the following substances are used as inoculants or nucleating agents called: silicon nitride, silicon carbide, titanium carbide, titanium nitride, Boron carbide and titanium boride.
  • the coating produced in the form of screen printing technology as a peel-off film applied the surface of the component in question.
  • the fat the layer can preferably be 200 ⁇ m and the melting depth 400 up to 600 ⁇ m. It becomes a line-focused laser beam used in an inert atmosphere to melt down with a melting depth of 400 ⁇ m.
  • the silicon content in the alloyed zone was 25% in the example a nickel content of 8% (hardness above 250 HV).
  • EP 0 622 476 A1 describes a metal substrate with a laser-induced one MMC coating known.
  • the MMC layer has one Layer thickness between 200 ⁇ m and 3 mm and contains homogeneous distributed SIC particles, preferably up to 40 percent by weight SiC as homogeneously distributed SIC particles in the MMC layer are included.
  • the powder mixture is included for production. SiC powder and pre-alloyed AlSi powder in one laser beam heated, the for the preparation of a homogeneous Alloy from the powder mixture required heat content the powder impinging on the substrate is brought about. Products with hard metal materials such as SiC have a very high Hardness that is unfavorable for the wear behavior of the piston rings are.
  • the processing is very complex because the top layer of the ceramic particles has to be removed, to achieve a functional, splinter-free tread.
  • the object of the present invention is therefore to develop a light metal cylinder block with at least one wear-resistant tribologically loadable running surface, in which the surface layer consists of 5 to 20% finely dispersed primary silicon, which has a small edge zone width in the transition to the matrix alloy and which is free of defects in the transition zone and is oxide inclusions.
  • the process used to manufacture the light metal cylinder block should manage with fewer process steps, and chemical post-processing should be completely dispensed with.
  • a device for coating the interior of a Light metal engine block made of aluminum or a magnesium alloy described, with a probe in the cylinder of a Engine blocks are sunk and at the same time pure silicon powder can be supplied.
  • the probe has a powder feed and a laser beam device.
  • the purpose of this device is to alloy hard particles in the form of silicon over a spiral over the tread rotating laser beam with silicon particles fed in parallel respectively. So that the laser energy is spread over a wide range
  • the laser beam has a track on the matrix surface a linear focus with a track width of preferably 2 to 4 mm. Compared to one with point laser generated surface does not form a wavy at the focus Profile, but a flat band with finely dispersed primary silicon particles out.
  • the band is called the Alloy Zone, being just a narrow transition zone (the peripheral zone) between has alloyed zone and the matrix metal (see Figure 1).
  • the powder just before it hits the metal matrix alloy has a grain structure and only in contact with the metal matrix alloy in the area of the laser beam melted within a contact time of 0.1 to 0.5 sec and is alloyed, can be in the linear focus achieve a low edge zone share of approx. 10%.
  • the laser track is lowered spirally in the cylinder bore, if necessary an overlap can be dispensed with, so that the useful parts practically collide. Thus arises a smooth, completely homogeneous surface layer that only still by finishing to remove a slight Ripple must be finished.
  • an alloy zone containing primary silicon with an average layer thickness of 300 to 750 ⁇ m in the matrix alloy generated.
  • the exact values of the layer thickness depend of various influencing factors, such as process parameters, accuracy the device positioning and dimensional tolerance of the casting from. It is therefore in the following for all thicknesses of spoken of an "average" layer thickness, the tolerance range can be kept very close since the device on Component can be centered.
  • the initial layer thickness of 300 to 750 microns is then in one further processing step to the desired final layer thickness by fine machining with a removal of up to 150 ⁇ m, such as e.g. by honing etc.
  • the according to the invention The final layer thickness achieved in the process is in the range from 150 to 650 ⁇ m. It is a pure diffusion layer, that defined by a special one in claims 1 and 2 Structure is marked.
  • the feed of the laser beam and the supplied laser energy can be the excretion variables adjust the hard phases.
  • excrement sizes less than 10 ⁇ m reduces the depth of destruction in the mechanical finishing of the hard phases, so that the previously required processing allowances for the removal of the destroyed Hard phases can be significantly reduced. (The depth of destruction is contained in the top layer, hard phases not firmly integrated.)
  • the surface is created by alloying with the laser beam hardened, with hardness values of the surface layer of at least 160 HV can be reached. As a result of the good hardening, honing the laser surfaces directly. Additional required so far mechanical or chemical processing steps for exemption the hard phases are also no longer required. This is the previously required drilling of the cylinder coatings no longer required because of the surface ripple depending on the overlap of the striped alloy zone negligible because it is very low.
  • the coating device designed according to the invention from a powder feeder 1 at its end 1a has a nozzle 1b directed towards the tread 5.
  • the energy is supplied via a laser beam device 2, a focusing system 3 and a deflecting mirror 4, the ensures that the laser beam 6 only on the tread surface 7 hits with the powder.
  • the laser beam 6 linear, preferably focused as X, I or 8 and then for example by tilting the mirror on the tread surface 7 shown. Due to the shape of the illustration, the Energy input can be controlled so that the excretion structure can be influenced in its expression at the edges.
  • the laser beam 6 travels over the Tread surface 7, so that there is a strip-like band results. If at the same time a feed movement in the direction the cylinder axis 8 takes place, results from superimposition a spiral coating of the tread surface of the two movements 7.
  • the rotating and the translational Movement in the direction of the cylinder axis 8 should be one on the other be tuned so that the turns of the spiral are tight abut each other so that there is a closed alloy zone results.
  • FIG. 2 shows the alloy zone 10, which is produced according to the invention with a line focus, consisting of a zone 11 rich in excretion and two zones 12, 13 arranged on the side with little precipitation.
  • FIG. 2 shows the state of the alloying zone immediately after the laser coating, it being evident that the proportion of the low-precipitation zone L AL , based on the usable length L NL of the precipitation-rich zone, is relatively small.
  • the corresponding areas in FIG. 3 are designated L AK , which belong to the edge zones 15, 16, 17.
  • FIG. 3 three alloy zones produced with a conventional circular focus are shown as a comparative example, the coating width approximately matching in the method with line focus and in the method with circular focus. It can be seen that the usable length L NK of the structure rich in excretions in the method with circular focus is considerably less than the usable length in the line focus L NL . In addition, the usable depth of the hardened surface layer in the circular focus is considerably less than in the line focus, since in the circular focus a structure with little elimination extends into deeper zones of the cylinder block structure. This is illustrated in the cross section according to FIG. 3 by the wide edge zones 15, 16, 17.
  • the usable depth in the comparative example according to FIG. 3 is less than the same depth of penetration in the example according to the invention according to FIG. 2, the quality of the coating according to the comparative example is less favorable. Furthermore, the required removal ⁇ H WK in the comparative example with the same machining depth as in the inventive example is significantly higher ( ⁇ H WL ), since the circular focus creates a wavy surface layer which has a lower usable material proportion M K in the area of the tread than a corresponding tread section according to FIG. 2 ( L NL ).
  • the usable material fraction is L NL
  • M K is formed as the sum of the individual values L NK1 , L NK2 , L NK3 .
  • the light alloy cylinder block according to the invention therefore has a more wear-resistant cylinder running surface thanks to uniform Distribution of the fine primary Si precipitates optimized tribologically is and by linear focus and overlapping Coating can be produced with significantly reduced production costs is.
  • FIG. 4 It is illustrated using the microstructure in FIG. 4. It is a micrograph with a magnification of 200: 1, in the right part of the picture A a casting alloy of the type AlSi9Cu3 and in the left part B a tribologically optimized surface layer with finely dispersed primary silicon precipitates is recognizable.
  • the primary silicon content here Example 10%, the primary phase diameter 4.4 ⁇ m and the distance the Si primary phases 13 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Extrusion Of Metal (AREA)
  • Coating With Molten Metal (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laser Beam Processing (AREA)

Description

Die Erfindung betrifft einen Leichtmetallzylinderblock mit mindestens einer verschleißfesten und tribologisch optimierten Zylinderlauffläche, umfassend eine Leichtmetallmatrixlegierung und ein hartmetallhaltiges Pulvermaterial, das als feindisperser, Primär-Silizium-Ausscheidungen enthaltene Oberflächenschicht auf der Leichtmetallmatrix vorliegt.
Nach EP 0 837 152 A1 (Bayerische Motoren Werke AG) ist ein Verfahren zum Beschichten eines aus einer Aluminiumlegierung bestehenden Bauteils einer Brennkraftmaschine bekannt. Dabei wird ein Laserstrahl so gelenkt, daß er nicht direkt auf die Oberfläche des zu beschichtenden Bauteils gelangt, sondern zuvor auf einen Pulverstrahl trifft. Durch die Energie des Laserstrahls wird das Pulver vollständig vom festen in die flüssige Phase überführt, so daß es beim Auftreffen auf die Bauteiloberfläche in Form feiner Tröpfchen als Schichtmaterial darauf abgeschieden wird, die aufgrund der Erstarrungsbedingungen teilweise amorph erstarren.
Bei dem bekannten Verfahren erfolgt daher kein Einlegieren des Pulvers in die Oberflächenschicht des Bauteils, sondern es wird eine Phasenumwandlung des Beschichtungsmaterials auf dem Weg zur Oberfläche durchgeführt, wobei das Aluminium-Siliziumpulver im Laserstrahl verflüssigt wird. Beim Erstarren auf der Oberfläche soll fein disperses Silizium, sogenanntes Primärsilizium, freigesetzt werden.
Je nach Abkühlgeschwindigkeit sollen hierbei Siliziumkristalle in der Größenordnung von 1 bis 5 µm erzeugt werden. Die dazu erforderliche schnelle Abkühlung kann aber in der Praxis nicht erreicht werden, da die Energie des Laserstrahls auf das zu beschichtende Bauteil einwirkt. Die Substratoberfläche wird somit sehr heiß und kann daher die Wärme der auftreffenden Si-Schmelze nicht schnell genug abführen, so daß keine kristalline Phase und keine Primärkristalle sondern amorphe Phasen entstehen.
Gemäß dem Ausführungsbeispiel des BMW-Patents werden bei einer aufgetragenen Schichtdicke von 3 mm zur Erzielung einer glatten, ebenen Oberfläche des Schichtmaterials etwa 50 % abgetragen (Spalte 6, Zeilen 10 bis 15). Dies bedeutet einen hohen Abtragsverlust, zu dem noch eine ungenutzte Randzone durch eine hohe Welligkeit des tröpfchenförmig aufgetragenen Materials als nachteilig hinzugerechnet werden muß.
Aus der EP-A-0 221 276 ist es ferner bekannt, eine Aluminiumlegierung durch Umschmelzen ihrer Randschichten mit Laserenergie verschleißbeständiger auszubilden. Dabei wird auf die Oberfläche eine Schicht aus einem Binder, pulverförmigen Silizium, Kupfer und Titancarbid aufgebracht und anschließend mit dem Laser in die Oberfläche eingeschmolzen. Die Zugaben an TIC betragen in den Ausführungsbeispielen zwischen 5 bis 30 % und bewirken eine beträchtliche Zunahme in der Oberflächenhärte.
Unter tribologischen Aspekten ist jedoch durch die extrem hohe Abkühlgeschwindigkeit beim Laserumschmelzen zwar eine hohe Kornfeinheit, jedoch keine ausreichende Ausbildung des Primärsiliziums bei diesem Verfahren erreichbar. Daher ist das Laserumschmelzen für die Herstellung von Zylinderlaufflächen von Hubkolbenmaschinen aus AlSi-Legierungen mit tragenden Plateaus aus Primärsilizium und zurückgesetzten, Schmierstoffen enthaltenden Bereichen ungeeignet.
In der EP 0 411 322 A1 wird ein Verfahren zum Herstellung verschleißfester Oberflächen an Bauteilen aus einer AlSi-Legierung beschrieben, das von der zuvor erwähnten EP 0 221 276 ausgeht, wobei jedoch der Schicht vor dem Lasereinschmelzen ein Impfmittel (Keimbildner) für primäre Siliziumkristalle zugegeben wird. Als Impfmittel bzw. Keimbildner werden folgende Substanzen genannt: Siliziumnitrid, Siliziumcarbid, Titancarbid, Titannitrid, Borcarbid und Titanborid.
In einem bevorzugten Ausführungsbeispiel wird die Beschichtung in Form der Siebdrucktechnik als Abziehfolie hergestellt und auf die Oberfläche des betreffenden Bauteiles aufgebracht. Die Dicke der Schicht kann vorzugsweise 200 µm und die Einschmelztiefe 400 bis 600 µm betragen. Es wird ein linienförmig fokussierter Laserstrahl in inerter Atmosphäre verwendet, um das Einschmelzen mit einer Einschmelztiefe von 400 µm zu verwirklichen. Der Siliziumanteil in der legierten Zone betrug im Beispiel 25 % bei einem Nickelanteil von 8 % (Härte über 250 HV).
Wie schon zuvor beschrieben ist es bei den letztgenannten Verfahren des Umschmelzens bzw. Einschmelzens erforderlich, eine Kühlung während des Auftragens einer Schicht auf die Matrixlegierung durchzuführen, um die gewünschten feindispersen Ausscheidungen des Primärsiliziums zu erreichen. Wegen der zugesetzten Impfmittel können Reaktionen mit der Aluminiumoberfläche erfolgen. Außerdem sind die Beschichtungsmaßnahmen bei gekrümmten Oberflächen nicht immer anwendbar.
Aus der EP 0 622 476 A1 ist ein Metallsubstrat mit laserinduzierter MMC-Beschichtung bekannt. Die MMC-Schicht weist eine Schichtdicke zwischen 200 µm und 3 mm auf und enthält homogen verteilte SIC-Partikel, wobei bevorzugt bis zu 40 Gewichtsprozent SiC als homogen verteilte SIC-Partikel in der MMC-Schicht enthalten sind. Zur Herstellung wird das Pulvergemisch, enthalten. SiC-Pulver und vorlegiertes AlSi-Pulver in einem Laserstrahl erhitzt, wobei der für die Herstellung einer homogenen Legierung aus dem Pulvergemisch erforderliche Wärmegehalt durch das auf die Substrat auftreffende Pulver herbeigeführt wird. Produkte mit Hartmetallstoffen wie SiC weisen eine sehr hohe Härte auf, die für das Verschleißverhalten der Kolbenringe ungünstig sind. Außerdem ist die Bearbeitung sehr aufwendig, da die oberste Schicht der Keramikpartikel abgetragen werden muß, um eine funktionsfähige, splitterfreie Lauffläche zu erreichen.
Aufgabe der vorliegenden Erfindung ist es daher, einen Leichtmetallzylinderblock mit mindestens einer verschleißfesten tribologisch beanspruchbaren Lauffläche zu entwickeln, bei der die Oberflächenschicht aus 5 bis 20 % feindispersem Primärsilizium besteht, das im Übergang zur Matrixlegierung eine geringe Randzonenbreite aufweist und das in der Übergangszone frei von Fehlstellen und Oxideinschlüssen ist.
Das zur Herstellung des Leichtmetallzylinderblocks eingesetzte Verfahren soll mit weniger Verfahrensschritten auskommen, wobei auf eine chemische Nachbearbeitung vollständig verzichtet werden soll.
Die Aufgabe wird durch die in den Patentansprüchen angegebenen Merkmale gelöst. Im folgenden werden mehrere Ausführungsbeispiele angegeben, wobei es sich um bevorzugte Anwendungsfälle des erfindungsgemäßen Laserlegierens handelt.
Zunächst wird eine Vorrichtung zur Innenraumbeschichtung eines Leichtmetallmotorblockes aus Aluminium oder einer Magnesiumlegierung beschrieben, wobei eine Sonde in den Zylinder eines Motorblocks eingesenkt wird und gleichzeitig reines Siliziumpulver zugeführt werden kann. Die Sonde weist eine Pulverzuführung und eine Laserstrahleinrichtung auf.
Durch einen an der Sonde angeordneten Drehantrieb werden eine Pulverausbringungsdüse und ein Energiestrahl auf den Innenraum bzw. die Lauffläche des Leichtmetallmotorblockes gelenkt.
Mit dieser Vorrichtung soll das Einlegieren von Hartstoffteilchen in Form von Silizium über einen über die Lauffläche spiralig rotierenden Laserstrahl mit parallel zugeführten Siliziumteilchen erfolgen. Damit die Laserenergie sich über eine breite Spur auf die Matrixoberfläche verteilt, hat der Laserstrahl einen linienförmigen Fokus mit einer Spurbreite von vorzugsweise 2 bis 4 mm. Im Vergleich zu einer durch punktförmigen Laser erzeugten Oberfläche bildet sich beim Fokus kein wellenförmiges Profil, sondern ein flaches Band mit feindispersen Primärsiliziumteilchen aus. Das Band wird als Auflegierungszone bezeichnet, wobei es nur eine schmale Übergangszone (der Randzone) zwischen auflegierter Zone und dem Matrixmetall aufweist (siehe Figur 1).
Da das Pulver im Zeitpunkt kurz vor dem Auftreffen auf die Metallmatrixlegierung eine Kornstruktur besitzt und erst im Kontakt mit der Metallmatrixlegierung im Bereich des Laserstrahls innerhalb einer Kontaktzeit von 0,1 bis 0,5 sec aufgeschmolzen und einlegiert wird, läßt sich bei dem linienförmigen Fokus ein geringer Randzonenanteil von ca. 10 % erreichen. Die Laserspur wird in der Zylinderbohrung spiralisch abgesenkt, wobei im Bedarfsfalle auf eine Überlappung verzichtet werden kann, so daß die Nutzanteile praktisch gegeneinanderstoßen. Somit entsteht eine glatte, vollständig homogene Oberflächenschicht, die nur noch durch eine Feinbearbeitung zur Beseitigung einer leichten Welligkeit fertig bearbeitet werden muß.
Als Beispiel für die erfindungsgemäße Bearbeitung bei der Herstellung eines Leichtmetallzylinderblocks mit mindestens einer verschleißfesten, tribologisch optimierten Zylinderlauffläche wird von folgenden Bearbeitungsschritten ausgegangen:
Zunächst wird eine Auflegierungszone enthaltend Primärsilizium mit einer mittleren Schichtdicke von 300 bis 750 µm in der Matrixlegierung erzeugt. Die exakten Werte der Schichtdicke hängen von verschiedenen Einflußgrößen, wie Verfahrensparameter, Genauigkeit der Vorrichtungspositionierung und Maßtoleranz des Gußteils ab. Es wird daher im folgenden bei allen Dickenangaben von einer "mittleren" Schichtdicke gesprochen, wobei der Toleranzbereich sehr eng gehalten werden kann, da die Vorrichtung am Bauteil zentriert werden kann.
Die Ausgangsschichtdicke von 300 bis 750 µm wird dann in einem weiteren Bearbeitungsschritt auf die gewünschte Endschichtdicke durch eine Feinbearbeitung mit einem Abtrag bis zu 150 µm, wie z.B. durch Honen etc., gebracht. Die nach dem erfindungsgemäßen Verfahren erreichte Endschichtdicke liegt im Bereich von 150 bis 650 µm. Dabei handelt es sich um eine reine Diffusionsschicht, die durch eine besondere in den Ansprüchen 1 und 2 definierte Gefügestruktur gekennzeichnet ist.
Mit der Steuerung der Pulverzufuhr, dem Vorschub des Laserstrahls und der zugeführten Laserenergie lassen sich die Ausscheidungsgrößen der Hartphasen einstellen. Bei Ausscheidungsgrößen kleiner 10 µm verringert sich die Zerstörungstiefe in der mechanischen Endbearbeitung der Hartphasen, so daß die bisher erforderlichen Bearbeitungszugaben für die Entfernung der zerstörten Hartphasen sich deutlich reduzieren lassen. (Die Zerstörungstiefe wird durch die in der obersten Schicht enthaltenden, nicht fest eingebundenen Hartphasen bestimmt.)
Durch das Einlegieren mit dem Laserstrahl wird die Oberfläche gehärtet, wobei Härtewerte der Oberflächenschicht von mindestens 160 HV erreicht werden. Infolge der guten Härtung lassen sich die Laseroberflächen direkt honen. Bisher erforderliche zusätzliche mechanische oder chemische Bearbeitungsschritte zur Freistellung der Hartphasen sind ebenfalls nicht mehr erforderlich. Damit ist das bisher erforderliche Ausbohren der Zylinderbeschichtungen nicht mehr erforderlich, da die Oberflächenwelligkeit je nach Überlappung der streifenförmigen Auflegierungszone vernachlässigbar da sehr gering ist.
Im folgenden wird die erfindungsgemäß erzielbare Oberflächenstruktur auf einer Motorblock-Lauffläche anhand eines Vergleichsbeispieles näher erläutert. Es zeigen:
Fig. 1
Prinzipbild einer erfindungsgemäß ausgebildeten Beschichtungseinrichtung im Teilquerschnitt;
Fig. 2
Prinzipbild einer erfindungsgemäß erzeugten Oberflächenschicht;
Fig. 3
Vergleichsbeispiel mit einer anderen Oberflächenstruktur;
Fig. 4
Querschnitt an einem Gußteil im Bereich der laserlegierten Zone.
Nach Figur 1 besteht die erfindungsgemäß ausgebildete Beschichtungseinrichtung aus einer Pulverzuführung 1, die an ihrem Ende 1a eine auf die Lauffläche 5 gerichtete Düse 1b aufweist.
Die Energiezufuhr erfolgt über eine Laserstrahleinrichtung 2, einem Fokussiersystem 3 und einem Umlenkspiegel 4, die dafür sorgt, daß der Laserstrahl 6 erst auf der Laufflächenoberfläche 7 zusammen mit dem Pulver auftrifft.
Nach den bekannten optischen Gesetzen wird der Laserstrahl 6 linienförmig, vorzugsweise als X, I oder 8 fokussiert und dann beispielsweise durch Kippen des Spiegels auf der Laufflächenoberfläche 7 abgebildet. Durch die Form der Abbildung kann der Energieeintrag gesteuert werden, so daß das Ausscheidungsgefüge in seiner Ausprägung an den Rändern beeinflußbar ist.
Durch Drehung des Spiegels 4 wandert der Laserstrahl 6 über die Laufflächenoberfläche 7, so daß sich ein streifenförmiges Band ergibt. Wenn dabei gleichzeitig eine Vorschubbewegung in Richtung der Zylinderachse 8 erfolgt, ergibt sich durch Überlagerung der beiden Bewegungen eine spiralförmige Beschichtung der Laufflächenoberfläche 7. Die rotierende und die translatorische Bewegung in Richtung der Zylinderachse 8 sollten dabei so aufeinander abgestimmt werden, daß die Windungen der Spirale dicht aneinanderliegen, so daß sich eine geschlossene Auflegierungszone ergibt.
In Figur 2 ist die erfindungsgemäß mit einem Linienfokus erzeugte Auflegierungszone 10, bestehend aus einer ausscheidungsreichen Zone 11 und zwei seitlich angeordneten ausscheidungsarmen Zonen 12, 13, dargestellt. Figur 2 zeigt den Zustand der Auflegierungszone unmittelbar nach der Laserbeschichtung, wobei zu erkennen ist, daß der Anteil der ausscheidungsarmen Zone LAL, bezogen auf die nutzbare Länge LNL der ausscheidungsreichen Zone, relativ gering ist. Die entsprechenden Bereiche in Figur 3 sind mit LAK bezeichnet, die zu den Randzonen 15, 16, 17 gehören.
In Figur 3 sind als Vergleichsbeispiel drei mit herkömmlichem Kreisfokus hergestellte Auflegierungszonen dargestellt, wobei die Beschichtungsbreite bei dem Verfahren mit Linienfokus und bei dem Verfahren mit Kreisfokus annähernd übereinstimmen. Man erkennt, daß die nutzbare Länge LNK des ausscheidungsreichen Gefüges bei dem Verfahren mit Kreisfokus wesentlich geringer ist als die nutzbare Länge beim Linienfokus LNL. Ferner ist die nutzbare Tiefe der gehärteten Oberflächenschicht beim Kreisfokus wesentlich geringer als beim Linienfokus, da beim Kreisfokus ein ausscheidungsarmes Gefüge bis in tiefere Zonen des Zylinderblockgefüges reicht. Dies ist im Querschnitt nach Figur 3 durch die breiten Randzonen 15, 16, 17 veranschaulicht.
Da bei gleicher Eindringtiefe die nutzbare Tiefe im vergleichsbeispiel nach Figur 3 geringer ist als im erfindungsgemäßen Beispiel nach Figur 2 ist die Qualität der Beschichtung nach dem Vergleichsbeispiel ungünstiger. Ferner ist der erforderliche Abtrag ΔHWK im Vergleichsbeispiel bei gleicher Bearbeitungstiefe wie im Erfindungsbeispiel wesentlich höher (ΔHWL), da der Kreisfokus eine wellige Oberflächenschicht erzeugt, die im Bereich der Lauffläche einen geringeren nutzbaren Materialanteil MK aufweist als ein entsprechender Laufflächenabschnitt gemäß Figur 2 (LNL).
Der nutzbare Materialanteil ist im Erfindungsbeispiel LNL, während MK als Summe der Einzelwerte LNK1, LNK2, LNK3 gebildet wird.
Der erfindungsgemäße Leichtmetallzylinderblock hat daher eine verschleißfestere Zylinderlauffläche, die durch gleichmäßige Verteilung der feinen Si-Primärausscheidungen tribologisch optimiert ist und durch linienförmige Fokussierung und überlappende Beschichtung mit deutlich reduziertem Fertigungsaufwand herstellbar ist.
Es wird anhand des Gefügebildes in Figur 4 verdeutlicht. Es handelt sich um ein Schliffbild mit der Vergrößerung 200 : 1, wobei im rechten Bildteil A eine Gußlegierung vom Typ AlSi9Cu3 und im linken Bildteil B eine tribologisch optimierte Oberflächenschicht mit feindispersen Primär-Silizium-Ausscheidungen zu erkennen ist. Der Primärsiliziumanteil beträgt im vorliegenden Beispiel 10 %, der Primärphasendurchmesser 4,4 µm und der Abstand der Si-Primärphasen 13 µm.
Für die Belastungsfähigkeit des neuen Werkstoffs ist besonders von Bedeutung die Anbindung der Auflegierungszone B an das Matrixgefüge A. Am Schliffbild 4 ist erkennbar, daß in der Übergangszone C keine Oxide oder andere Fehlstellen vorliegen. Dieses beruht darauf, daß die Auflegierungszone quasi "insitu" aus dem Matrixgefüge gebildet wurde und somit ein einheitlicher Werkstoff mit unterschiedlichen Zusammensetzungen im Bereich A, B entstanden ist.
Bezugszeichenliste
1
Pulverzuführung
1a
Ende der Pulverzuführung
1b
Düse
2
Laserstrahleinrichtung
3
Fokussiersystem
4
Umlenkspiegel
5
Lauffläche
6
Laserstrahl
7
Laufflächenoberfläche
8
Zylinderachse
9
-
10
Auflegierungszone
11
Ausscheidungsreiche Zone
12,13
Ausscheidungsarme Zone
14
-
15,16,17
Randzonen
MK
Materialanteil
LNK
Nutzbare Länge des ausscheidungsreichen Gefüges
LNL
Nutzbare Länge der ausscheidungsreichen Zone
LAL
Anteil der ausscheidungsarmen Zone
LAK
Bereiche, die zu den Randzonen gehören
ΔHWK
Abtrag Vergleichsbeispiel
ΔHWL
Abtrag Erfindungsbeispiel
A
Matrixgefüge
B
Auflegierungszone
C
Übergangszone

Claims (16)

  1. Aluminiumzylinderblock mit mindestens einer verschleißfesten, eine Mindesthärte von 160 HV aufweisenden und tribologisch optimierten Zylinderlauffläche, wobei
    der Aluminiumzylinderblock aus einer Aluminiummatrixlegierung (Matrixgefüge A) besteht und eine im nachbearbeiteten Zustand 150 µm bis 650 µm dicke Oberflächenschicht (Matrixgefüge B) aufweist, die als Auflegierungszone aus dem Matrixgefüge (Matrixgefüge A) der Aluminiummatrixlegierung durch in situ erfolgendes Einlegieren von feindispersen Primär-Silizium-Ausscheidungen gebildet ist, indem ein Laserstrahl in einer quer zur Vorschubrichtung gemessenen Streifenbreite von mindestens 2 mm linienförmig fokussiert über die Aluminiummatrixoberfläche geführt und das Si-Pulver erst im Auftreffpunkt des Laserstrahls in einer Kontaktzeit von 0,1 bis 0,5 Sekunden auf Schmelztemperatur aufgeheizt und dabei in die Aluminiummatrix einlegiert worden ist,
    das Primärsilizium aus gleichmäßig verteilten, rundlich geformten Körnern mit einem mittleren Korndurchmesser, der zwischen 1 µm und 10 µm liegt, besteht und
    die Oberflächenschicht 10 % bis 14 % AlSi-Eutektikum, 5 % bis 20 % Primärsilizium, Rest reine Al-Phase enthält.
  2. Aluminiumzylinderblock nach Anspruch 1, dadurch gekennzeichnet, daß die Si-Primärphasen in einem Abstand von 1 bis 5 Primärphasendurchmessern in der Oberfläche verteilt vorliegen.
  3. Aluminiumzylinderblock nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß das Primärsilizium in einer streifenförmigen Auflegierungszone in der Matrixlegierung einlegiert ist, wobei die Streifen spiralförmig über die Zylinderlauffläche verlaufen.
  4. Aluminiumzylinderblock nach Anspruch 3, dadurch gekennzeichnet, daß die Streifendicke 2 bis 4 mm beträgt.
  5. Aluminiumzylinderblock nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß bei mehreren nebeneinander angeordneten Auflegierungszonen eine Überlappung der Streifen vorgesehen ist und die Breite der Überlappung 5 % bis 10 % beträgt.
  6. Aluminiumzylinderblock nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die feindisperse Oberflächenschicht, in die die Primär-Silizium-Ausscheidungen einlegiert sind, aus einer ausscheidungsreichen Auflegierungszone (11) und einer ausscheidungsarmen Randzone (12,13) besteht.
  7. Verfahren zum Herstellen eines Aluminiumzylinderblocks mit mindestens einer verschleißfesten und tribologisch optimierten Zylinderlauffläche,
    bei dem in einem-Schwerkraft-, Niederdruck- oder Druckgußverfahren der Aluminiumblock aus einer Aluminiummatrixlegierung gegossen wird, und
    bei dem anschließend eine Oberflächenbearbeitung in Form von parallel zueinander erfolgendem Laser- und Pulverstrahlen unter Bildung einer Oberflächenschicht durch Einlegieren von Si-Pulver in die Aluminiummatrix derart durchgeführt wird, daß eine feindisperse, Primär-Silizium-Ausscheidungen enthaltende Auflegierungszone entsteht,
    wobei der Laserstrahl in einer quer zur Vorschubrichtung gemessenen Streifenbreite von mindestens 2 mm linienförmig fokussiert über die Aluminiummatrixoberfläche geführt wird und das Si-Pulver erst im Auftreffpunkt des Laserstrahls in einer Kontaktzeit von 0,1 bis 0,5 Sekunden auf Schmelztemperatur aufgeheizt und dabei in die Aluminiummatrix einlegiert wird, und
    wobei die Vorschubgeschwindigkeit von Laserstrahl und Pulverstrahl derart gesteuert wird, daß das Primärsilizium über eine mittlere Schichtdicke von 300 µm bis 750 µm in der Oberflächenschicht vorhanden ist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Aluminiummatrixlegierung im Auftreffpunkt in einer Tiefe von mindestens 350 µm vollständig aufgeschmolzen und an der Aluminiummatrixoberfläche in den Plasmazustand überführt wird.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß das Siliziumpulver im Zeitpunkt kurz vor dem Auftreffen auf die Metallmatrixlegierung eine Kornstruktur besitzt und erst im Kontakt mit der Metallmatrixlegierung im Bereich des Laserstrahls innerhalb einer Kontaktzeit von 0,1 bis 0,5 Sekunden aufgeschmolzen und einlegiert wird.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß bei einer fokussierten Auftreffläche des Laserstrahls von 1 mm2 bis 10 mm2 und einer Laserlichtleistung von 3 bis 4 kW die Vorschubgeschwindigkeit von Laserstrahl und Pulverstrahl 0,8 m bis 4,0 m pro Minute beträgt.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß der Laserstrahl mit seinem Fokus auf der Innenlauffläche eines Hohlzylinders spiralig rotiert und dabei durch Zugabe eines Si-Pulvers eine streifenförmige Primärsilizium enthaltende Auflegierungszone gebildet wird.
  12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die mittlere Bearbeitungstiefe in der Auflegierungszone 750 µm beträgt.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß die Hartphasen der Auflegierungszone durch eine mechanische Bearbeitung freigelegt werden, wobei der Abtrag der obersten Schicht kleiner als 30 % der Gesamtschichtdicke ist.
  14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß die Auflegierungszone ohne Zwischenbearbeitung direkt gehont wird.
  15. Vorrichtung zur Durchführung des Verfahrens einer Laufflächenbeschichtung von Hohlzylindern, mit einer Pulverzuführvorrichtung (1), mit einer Laserstrahleinrichtung (2) und mit einem einen Umlenkspiegel (4) aufweisenden Fokussiersystem (3), dadurch gekennzeichnet,
    daß Pulverzuführung (1) und Laserstrahleinrichtung (2) parallel zueinander in radialer und axialer Richtung des Hohlzylinders geführt sind,
    daß das Fokussiersystem (3) einen linienförmigen Strahlaustritt mit einer Strahlbreite von 2,0 mm bis 2,5 mm aufweist und
    daß die Pulverzuführung mit einer Dosiereinrichtung versehen ist, über die der Volumenstrom des Pulvers in Abhängigkeit von der Vorschubgeschwindigkeit des Laserstrahls einstellbar ist.
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß das Fokussiersystem (3) eine X-, I- oder 8-förmige Fokusform aufweist, die an den oberen und unteren Randzonen im Vergleich zum mittleren Fokusbereich einen erhöhten Energieaustritt ermöglicht.
EP00105126A 1999-04-01 2000-03-10 Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens Expired - Lifetime EP1041173B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19915038A DE19915038A1 (de) 1999-04-01 1999-04-01 Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
DE19915038 1999-04-01

Publications (2)

Publication Number Publication Date
EP1041173A1 EP1041173A1 (de) 2000-10-04
EP1041173B1 true EP1041173B1 (de) 2004-05-26

Family

ID=7903361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00105126A Expired - Lifetime EP1041173B1 (de) 1999-04-01 2000-03-10 Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens

Country Status (16)

Country Link
US (3) US6390050B2 (de)
EP (1) EP1041173B1 (de)
JP (1) JP3467744B2 (de)
KR (1) KR100388150B1 (de)
AT (1) ATE267891T1 (de)
AU (1) AU775660B2 (de)
BR (1) BR0006013B1 (de)
CA (1) CA2332944C (de)
CZ (1) CZ294043B6 (de)
DE (2) DE19915038A1 (de)
ES (1) ES2222122T3 (de)
HU (1) HU222858B1 (de)
PL (1) PL193699B1 (de)
RU (1) RU2212472C2 (de)
WO (1) WO2000060136A1 (de)
ZA (1) ZA200006437B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201809A (zh) * 2014-06-20 2015-12-30 中联重科股份有限公司 混凝土泵车及检测其泵送效率的检测装置、系统、方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19907105A1 (de) * 1999-02-19 2000-08-31 Volkswagen Ag Verfahren und Vorrichtung zum Herstellen von verschleißfesten, tribologischen Zylinderlaufflächen
DE19915038A1 (de) * 1999-04-01 2000-10-26 Vaw Ver Aluminium Werke Ag Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
ES2202283T3 (es) * 2000-02-28 2004-04-01 Hydro Aluminium Deutschland Gmbh Componente en forma de cilindro, cilindro parcial o cilindro hueco, con aleacion superficial.
JP2003525351A (ja) * 2000-02-28 2003-08-26 ファーアーベー アルミニウム アクチェンゲゼルシャフト 表面が合金とされた円筒形、部分円筒形又は中空円筒形の構成要素を製造する方法とこの方法を実施する装置
DE10116720A1 (de) * 2001-04-04 2002-10-10 Bayerische Motoren Werke Ag Gerät zur Laser-Pulverbeschichtung
US6702908B1 (en) * 2002-01-16 2004-03-09 Hamilton Sundstrand Corporation Method of making a cylinder block with unlined piston bores
US6732699B2 (en) * 2002-10-04 2004-05-11 General Motors Corporation Cast iron cylinder liner with laser-hardened flange fillet
DE10257213B4 (de) * 2002-12-07 2010-06-10 Volkswagen Ag Verfahren zur Aufbereitung einer Zylinderlauffläche eines Kurbelgehäuses
DE102004039306A1 (de) * 2004-08-12 2006-02-23 Bayerische Motoren Werke Ag Verfahren zum Herstellen eines Verbundgussteils
GB2421207A (en) * 2004-12-16 2006-06-21 Cosworth Technology Ltd Casting with a halogen containing compound provided on the mould surface
US7466291B2 (en) * 2005-03-15 2008-12-16 Niranjan Damera-Venkata Projection of overlapping single-color sub-frames onto a surface
US7443364B2 (en) * 2005-03-15 2008-10-28 Hewlett-Packard Development Company, L.P. Projection of overlapping sub-frames onto a surface
US9282335B2 (en) 2005-03-15 2016-03-08 Hewlett-Packard Development Company, L.P. System and method for coding image frames
DE102005019756A1 (de) * 2005-04-28 2006-11-02 Sms Elotherm Gmbh Vorrichtung und Verfahren zum Behandeln von zylindrisch geformten Flächen mittels Laserstrahls
DE102005019757A1 (de) * 2005-04-28 2006-11-02 Sms Elotherm Gmbh Vorrichtung und Verfahren zum Behandeln von Flächen metallischer Bauelemente mittels Laserstrahls
US7407295B2 (en) * 2005-07-26 2008-08-05 Niranjan Damera-Venkata Projection of overlapping sub-frames onto a surface using light sources with different spectral distributions
US7387392B2 (en) * 2005-09-06 2008-06-17 Simon Widdowson System and method for projecting sub-frames onto a surface
US20070091277A1 (en) * 2005-10-26 2007-04-26 Niranjan Damera-Venkata Luminance based multiple projector system
US7470032B2 (en) * 2005-10-27 2008-12-30 Hewlett-Packard Development Company, L.P. Projection of overlapping and temporally offset sub-frames onto a surface
US20070097017A1 (en) * 2005-11-02 2007-05-03 Simon Widdowson Generating single-color sub-frames for projection
US20070132967A1 (en) * 2005-12-09 2007-06-14 Niranjan Damera-Venkata Generation of image data subsets
US20070133794A1 (en) * 2005-12-09 2007-06-14 Cloutier Frank L Projection of overlapping sub-frames onto a surface
US20070133087A1 (en) * 2005-12-09 2007-06-14 Simon Widdowson Generation of image data subsets
US7559661B2 (en) 2005-12-09 2009-07-14 Hewlett-Packard Development Company, L.P. Image analysis for generation of image data subsets
US20070132965A1 (en) * 2005-12-12 2007-06-14 Niranjan Damera-Venkata System and method for displaying an image
US7499214B2 (en) * 2006-03-20 2009-03-03 Hewlett-Packard Development Company, L.P. Ambient light absorbing screen
CN100417746C (zh) * 2006-04-14 2008-09-10 清华大学 一种分布式激光点状合金化方法
US7665440B2 (en) * 2006-06-05 2010-02-23 Slinger Manufacturing Company, Inc. Cylinder liners and methods for making cylinder liners
US7854518B2 (en) * 2006-06-16 2010-12-21 Hewlett-Packard Development Company, L.P. Mesh for rendering an image frame
US9137504B2 (en) * 2006-06-16 2015-09-15 Hewlett-Packard Development Company, L.P. System and method for projecting multiple image streams
US7800628B2 (en) * 2006-06-16 2010-09-21 Hewlett-Packard Development Company, L.P. System and method for generating scale maps
US20070291184A1 (en) * 2006-06-16 2007-12-20 Michael Harville System and method for displaying images
US7907792B2 (en) * 2006-06-16 2011-03-15 Hewlett-Packard Development Company, L.P. Blend maps for rendering an image frame
US20080002160A1 (en) * 2006-06-30 2008-01-03 Nelson Liang An Chang System and method for generating and displaying sub-frames with a multi-projector system
US20080001977A1 (en) * 2006-06-30 2008-01-03 Aufranc Richard E Generating and displaying spatially offset sub-frames
US20080024389A1 (en) * 2006-07-27 2008-01-31 O'brien-Strain Eamonn Generation, transmission, and display of sub-frames
US20080024683A1 (en) * 2006-07-31 2008-01-31 Niranjan Damera-Venkata Overlapped multi-projector system with dithering
US20080024469A1 (en) * 2006-07-31 2008-01-31 Niranjan Damera-Venkata Generating sub-frames for projection based on map values generated from at least one training image
US20080043209A1 (en) * 2006-08-18 2008-02-21 Simon Widdowson Image display system with channel selection device
US20080095363A1 (en) * 2006-10-23 2008-04-24 Dicarto Jeffrey M System and method for causing distortion in captured images
US20080101711A1 (en) * 2006-10-26 2008-05-01 Antonius Kalker Rendering engine for forming an unwarped reproduction of stored content from warped content
US7742011B2 (en) * 2006-10-31 2010-06-22 Hewlett-Packard Development Company, L.P. Image display system
DE102006062502B4 (de) 2006-12-28 2010-09-30 Sms Elotherm Gmbh Verwendung einer Vorrichtung zur Behandlung von Laufbahnen von Zylinderräumen von Motorblöcken für Verbrennungsmotoren
DE102007012845A1 (de) * 2007-03-17 2008-09-18 Ks Kolbenschmidt Gmbh Erzeugung eines partiellen Faserverbundgefüges in einem Bauteil über eine Laserumschmelzbehandlung
US7986356B2 (en) * 2007-07-25 2011-07-26 Hewlett-Packard Development Company, L.P. System and method for determining a gamma curve of a display device
US20090027504A1 (en) * 2007-07-25 2009-01-29 Suk Hwan Lim System and method for calibrating a camera
US8328365B2 (en) 2009-04-30 2012-12-11 Hewlett-Packard Development Company, L.P. Mesh for mapping domains based on regularized fiducial marks
US9235575B1 (en) 2010-03-08 2016-01-12 Hewlett-Packard Development Company, L.P. Systems and methods using a slideshow generator
JP2011220150A (ja) * 2010-04-06 2011-11-04 Honda Motor Co Ltd シリンダボアおよびその製造方法
DE102010025375B4 (de) * 2010-06-28 2016-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser-Bearbeitungsvorrichtung und Verfahren zum Laser-Bearbeiten zumindest eines Bauteils
DE102010048550A1 (de) * 2010-10-14 2012-04-19 Man Truck & Bus Ag Verfahren zur Bearbeitung, insbesondere zur mechanischen Bearbeitung, wenigstens eines abgasführenden Oberflächenbereichs eines Brennkraftmaschinen- oder Kurbelgehäusebestandteils sowie Brennkraftmaschinen-Kurbelgehäuse und Zylinderlaufbuchse
DE102011114420A1 (de) * 2011-09-26 2013-03-28 Audi Ag Verfahren zum Herstellen eines Zylinderrohrs einer Brennkraftmaschine sowie entsprechendes Zylinderrohr
DE102012212791B4 (de) * 2012-07-20 2014-02-27 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
BR102012023013A2 (pt) * 2012-09-12 2014-06-10 Mahle Metal Leve Sa Membro metálico de um sistema móvel de um motor a combustão interna e processo de fabricação deste membro metálico
DE102012222172A1 (de) * 2012-12-04 2014-06-05 Robert Bosch Gmbh Axialkolbenmaschine mit kegelförmigem Kolben
KR102087664B1 (ko) * 2014-10-30 2020-03-11 닛폰세이테츠 가부시키가이샤 레이저 용접 조인트 및 그 제조 방법
CN105798268B (zh) * 2016-03-25 2018-05-01 杨洪彬 双金属复合发动机缸体及其制作方法
RU2638267C1 (ru) * 2017-01-09 2017-12-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Способ лазерной сварки внахлест листов конструкционной стали и сплавов алюминия

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
FR2537654B2 (fr) * 1982-06-17 1987-01-30 Pechiney Aluminium Perfectionnement des chemises de moteurs a base d'alliages d'aluminium et de grains de silicium calibres et leurs procedes d'obtention
DE3447784C2 (de) * 1984-12-20 1987-03-12 Gebrüder Sulzer AG, Winterthur Kolbenbrennkraftmaschine
JPS6254588A (ja) 1985-08-30 1987-03-10 Toyota Motor Corp セラミツク粒子分散アルミニウム合金複合層の形成方法
US5287622A (en) * 1986-12-17 1994-02-22 Canon Kabushiki Kaisha Method for preparation of a substrate for a heat-generating device, method for preparation of a heat-generating substrate, and method for preparation of an ink jet recording head
US5041340A (en) * 1987-09-03 1991-08-20 Honda Giken Kogyo Kabushiki Kaisha Fiber-reinforced light alloy member excellent in heat conductivity and sliding properties
JPH0621309B2 (ja) * 1988-10-31 1994-03-23 本田技研工業株式会社 耐熱性、耐摩耗性、高靭性Al−Si系合金及びそれを使用したシリンダ−ライナ−
DE3922378A1 (de) 1989-07-07 1991-01-17 Audi Ag Verfahren zum herstellung verschleissfester oberflaechen an bauteilen aus einer aluminium-silicium-legierung
DE4009714A1 (de) * 1990-03-27 1991-10-02 Kolbenschmidt Ag Einzelzylinder bzw. mehrzylinderblock
FR2667811B1 (fr) * 1990-10-10 1992-12-04 Snecma Dispositif d'apport de poudre pour revetement par traitement au faisceau laser.
DE4040436A1 (de) * 1990-12-18 1992-06-25 Simson Fahrzeug Gmbh I L Verfahren zur herstellung von verschleissschutzschichten
CH686187A5 (de) 1993-03-30 1996-01-31 Alusuisse Lonza Services Ag Metallsubstrate mit laserinduzierter MMC-Beschichtung.
GB9517045D0 (en) * 1995-08-19 1995-10-25 Gkn Sankey Ltd Method of manufacturing a cylinder block
DE19630197C2 (de) * 1996-07-26 1999-10-14 Kolbenschmidt Ag Verfahren zur Herstellung von verschleißbeständigen Oberflächen an Bauteilen aus Aluminiumwerkstoffen sowie Vorrichtung zu seiner Durchführung; Kolben für Brennkraftmaschinen
DE19643029A1 (de) 1996-10-18 1998-04-23 Bayerische Motoren Werke Ag Verfahren zum Beschichten eines aus einer Aluminium-Legierung bestehenden Bauteils einer Brennkraftmaschine mit Silicium
DE19711756A1 (de) * 1997-03-21 1998-09-24 Audi Ag Verfahren zum Beschichten von Oberflächen
JP3409631B2 (ja) * 1997-04-15 2003-05-26 日産自動車株式会社 レーザビームによる肉盛り方法及び肉盛り構造
DE19915038A1 (de) * 1999-04-01 2000-10-26 Vaw Ver Aluminium Werke Ag Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201809A (zh) * 2014-06-20 2015-12-30 中联重科股份有限公司 混凝土泵车及检测其泵送效率的检测装置、系统、方法
CN105201809B (zh) * 2014-06-20 2017-06-09 中联重科股份有限公司 混凝土泵车及检测其泵送效率的检测装置、系统、方法

Also Published As

Publication number Publication date
US6575130B2 (en) 2003-06-10
AU3288200A (en) 2000-10-23
US6390050B2 (en) 2002-05-21
EP1041173A1 (de) 2000-10-04
BR0006013A (pt) 2001-03-06
PL193699B1 (pl) 2007-03-30
JP3467744B2 (ja) 2003-11-17
US20020153359A1 (en) 2002-10-24
WO2000060136A1 (de) 2000-10-12
CA2332944C (en) 2005-05-24
JP2002541322A (ja) 2002-12-03
US20010003227A1 (en) 2001-06-14
CA2332944A1 (en) 2000-10-12
PL339334A1 (en) 2000-10-09
HU0001361D0 (en) 2000-06-28
HUP0001361A2 (hu) 2000-12-28
DE50006550D1 (de) 2004-07-01
HU222858B1 (hu) 2003-12-29
HUP0001361A3 (en) 2001-02-28
CZ294043B6 (cs) 2004-09-15
CZ20001135A3 (cs) 2000-12-13
RU2212472C2 (ru) 2003-09-20
KR20010043633A (ko) 2001-05-25
KR100388150B1 (ko) 2003-06-19
ZA200006437B (en) 2001-05-21
US6797916B2 (en) 2004-09-28
US20020033160A1 (en) 2002-03-21
DE19915038A1 (de) 2000-10-26
BR0006013B1 (pt) 2011-02-22
AU775660B2 (en) 2004-08-12
ATE267891T1 (de) 2004-06-15
ES2222122T3 (es) 2005-02-01

Similar Documents

Publication Publication Date Title
EP1041173B1 (de) Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
DE2926879C2 (de) Verfahren zum Beschichten der Oberfläche von Metallsubstraten mit verschleißfesten Materialien
EP1157147B1 (de) Verfahren und vorrichtung zum herstellen von verschleissfesten, tribologischen zylinderlaufflächen
DE3506302C2 (de)
DE3202788C2 (de) Zylinderlaufbüchse
DE3780131T2 (de) Verfahren zur herstellung von verbundwerkstoffen durch aufspruehen von geschmolzenem metall.
DE69902449T2 (de) Verfahren zur herstellung einer gleitlagerbeschichtung
DE69401543T2 (de) Zerkleinerungs- oder Raffinationsscheibe für Papierfaserbrei sowie Verfahren zu seiner Herstellung
DE102020106823A1 (de) Vorrichtung und Verfahren zum Herstellung und ggf. Nachbearbeiten von Schichten aufgetragen durch Laserauftragschweißen
EP1173304B1 (de) Verfahren zur herstellung eines oberflächenlegierten zylindrischen, teilzylindrischen oder hohlzylindrischen bauteils
EP1157141B1 (de) Verfahren und vorrichtung zum bearbeiten einer oberfläche eines bauteils
EP0837152B1 (de) Verfahren zum Beschichten eines aus einer Aluminium-Legierung bestehenden Bauteils einer Brennkraftmaschine mit Silicium
DE19549403C2 (de) Verfahren zum Herstellen einer Gleitfläche auf einer Aluminiumlegierung
DE2651946A1 (de) Verfahren zum aufbringen eines abriebbestaendigen zusammengesetzten ueberzugs auf einen gegenstand
EP1161569B2 (de) Verfahren und anordnung zum herstellen verschleissfester oberflächen
DE19941564A1 (de) Verfahren zum Bearbeiten einer Oberfläche eines Bauteils
DE102006057940B4 (de) Verfahren zum Behandeln von Gleitflächen von Eisen-Werkstücken, insbesondere Grauguss-Werkstücken
DE2937108C2 (de)
EP1127958B1 (de) Verfahren zum Laserbeschichten einer Oberfläche
DE19941563A1 (de) Verfahren und Vorrichtung zum Bearbeiten einer Oberfläche eines Bauteils
DE19518552C2 (de) Kolben für Verbrennungsmotoren
EP1173689B1 (de) Oberflächenlegiertes zylindrisches, teilzylindrisches oder hohlzylindrisches bauteil
DE3346206A1 (de) Rotations-atomisier-vorrichtung und verfahren zur herstellung von metallteilchen
EP1161571B1 (de) Verfahren zum bearbeiten einer oberfläche eines bauteils
DE2161453A1 (de) Mit einem Überzug versehene Teile, insbesondere Reibelemente für Bremsen und Kupplungen sowie Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000921

17Q First examination report despatched

Effective date: 20001025

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HYDRO ALUMINIUM DEUTSCHLAND GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50006550

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040826

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040825

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2222122

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050310

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050310

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050301

BERE Be: lapsed

Owner name: *HYDRO ALUMINIUM DEUTSCHLAND G.M.B.H.

Effective date: 20050331

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070316

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070329

Year of fee payment: 8

BERE Be: lapsed

Owner name: *HYDRO ALUMINIUM DEUTSCHLAND G.M.B.H.

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070319

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160310

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170328

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180310