EP1038329B1 - Pile secondaire au lithium - Google Patents

Pile secondaire au lithium Download PDF

Info

Publication number
EP1038329B1
EP1038329B1 EP99932835A EP99932835A EP1038329B1 EP 1038329 B1 EP1038329 B1 EP 1038329B1 EP 99932835 A EP99932835 A EP 99932835A EP 99932835 A EP99932835 A EP 99932835A EP 1038329 B1 EP1038329 B1 EP 1038329B1
Authority
EP
European Patent Office
Prior art keywords
holes
separator
positive electrode
pattern
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99932835A
Other languages
German (de)
English (en)
Other versions
EP1038329A1 (fr
Inventor
Rifat A. M. Hikmet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to EP99932835A priority Critical patent/EP1038329B1/fr
Publication of EP1038329A1 publication Critical patent/EP1038329A1/fr
Application granted granted Critical
Publication of EP1038329B1 publication Critical patent/EP1038329B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a lithium secondary battery comprising a stack of:
  • the invention also relates to a method of manufacturing a lithium secondary battery comprising a stack of a negative electrode, a separator, and a positive electrode, which method comprises applying negative electrode material onto a negative current collector so as to form the negative electrode, applying positive electrode material onto a positive current collector so as to form the positive electrode, and arranging a separator between the negative and the positive electrode so as to be contiguous therewith.
  • high-energy density secondary (i.e. rechargeable) batteries is increasing, due to a growing market for lightweight, portable cordless consumer products, e.g. CD-players, mobile telephones, laptop computers and video cameras.
  • these batteries should contain the necessary amount of energy at the smallest possible.weight and volume.
  • the present rechargeable batteries on the market e.g. nickelcadmium (NiCd) and nickel-metalhydride (NiMH), do not meet all these requirements.
  • NiCd nickelcadmium
  • NiMH nickel-metalhydride
  • the use of cadmium as the negative electrode material should be avoided for environmental reasons.
  • Lithium is the lightest of all metals, which promises an extremely high theoretical energy density of metallic lithium. Lithium is a leading contender in the field of a battery negative electrode materials, since it has a large negative thermodynamic potential. The use of lithium has no negative environmental consequences. Therefore, rechargeable lithium batteries are very promising, especially when weight is an important factor.
  • a rechargeable lithium battery consists of a positive and a negative electrode separated by a polymeric film to prevent electronic contact in an organic electrolyte.
  • a lithium transition metal oxide can be used as the positive electrode, and metallic lithium as the negative electrode.
  • the electrolyte is a lithium salt in a non-aqueous organic solvent with good ionic conductivity and negligible electric conductivity.
  • a battery using lithium metal for the negative electrode encounters the problem of short-circuits in the battery caused by the repetition of the charge/discharge cycles. Repetition of charge/discharge cycles leads to a repetition of the dissolution and precipitation of lithium metal, and dendrites of lithium metal can grow on the surface of the negative electrode. The dendrite grows penetrating through the separator between the negative and the positive electrode, and comes into contact with the positive electrode, resulting in a short-circuit.
  • Li-Al lithium metal alloy
  • Use of a lithium metal alloy, e.g. Li-Al, for the negative electrode instead of lithium metal decreases such growth of dendrites, and improves the charge/discharge cycle characteristic.
  • a more advanced and safer approach to lithium rechargeable batteries consists of replacing a lithium metal or alloy-type negative electrode by a lithium intercalating compound.
  • a lithium intercalating compound When another lithium intercalating compound is used as a positive electrode, this leads to a lithium metal-free rechargeable battery; such a battery is called a Li-ion battery.
  • Li-ion battery During charging, lithium ions deintercalate from the positive electrode, and move into the non-aqueous electrolyte. Then the negative electrode intercalates these ions. During discharging the process is reversed.
  • Both electrodes exhibit the so-called intercalation reaction, also known as the host-guest reaction. It does not involve an electrolyte concentration change, nor any dissolution of the active materials into the electrolyte.
  • Li-ion batteries sometimes bear the name "rocking-chair batteries”.
  • Carbon materials are good hosts for use as a negative electrode, because they are able to intercalate and deintercalate lithium ions during charging and discharging, respectively, of the battery. In such a negative electrode of carbon the growth of dendrites is prevented, and the problem of a short-circuit in the battery is solved.
  • the sheets servings as the negative electrode, separator, and positive electrode, all of polymeric composition, are laminated together by applying heat and pressure to form a single sheet of battery material.
  • the permeable laminate is immersed in an electrolyte salt solution.
  • a lithium secondary battery of the type mentioned in the opening paragraph is known from United States patent US 5,478,668.
  • the known battery is a unitary planar laminated structure comprising a polymeric anode layer, a polymeric cathode layer and a polymeric separator layer.
  • the polymer in the three layers is the same, e.g. a copolymer of vinylidene fluoride and hexafluoropropylene.
  • Lamination of the layers is carried out by applying heat and pressure.
  • the polymer in the layers also comprises a plasticizer, which is extracted by a solvent.
  • the laminate thus treated is then activated by penetration of an electrolyte solution.
  • the use of the same (co)polymer in the three layers ensures a good adhesion, and therefore a good contact, between these layers.
  • the battery obtained is composed of one continuous polymeric phase in which in the electrode regions the active electrode materials are homogeneously dispersed.
  • the negative electrode material and the positive electrode material are provided with a pattern of holes, the holes being filled with a polymeric material which sticks and presses the negative electrode, the positive electrode and the separator contiguously together.
  • the holes in the electrode materials are macroscopic holes having a diameter of e.g. 1 mm.
  • the pattern of the holes forms a rectangular two-dimensional array with a mutual hole distance of 5 mm.
  • the holes, at least those facing the separator, are filled with polymeric material, which contacts the separator.
  • the dimensions of the holes and the pattern are chosen in such a way that the active surface of the electrodes amounts preferably to at least 90%, because the holes filled with polymeric material reduces the capacity of the electrodes: in these filled holes the active electrode material is absent.
  • the bottom of the holes is formed by the current collector.
  • the current collector is necessary for collecting current from the electrode material.
  • the current collector is a metal foil or metal mesh onto which the electrode material is applied.
  • the polymeric material in each of the holes acts as a plug, and sticks to the separator, the electrode material and the current collector, causing these parts to be bonded together. For this reason, the selected polymeric material must be compatible with the materials of these parts.
  • the polymeric material may be an adhesive, or a meltable polymer having a melting point below that of the material of the separator.
  • a particular embodiment of the battery is characterized in that the current collectors are provided with a pattern of holes substantially overlapping the holes in the electrode materials, and that the holes of both patterns are filled with the polymeric material.
  • the holes in the electrode materials coincide with the holes in the current collectors.
  • a polymeric material can be introduced from the side of the electrodes opposite the separator, e.g. by melting a polymeric foil and pressing it onto the electrodes. The melting polymer penetrates the holes, solidifies and forms a continuous plug.
  • a preferential embodiment of the battery is characterized in that the separator is provided with a pattern of holes substantially overlapping the holes in the electrode materials, and that the holes of all patterns are filled with the polymeric material.
  • the holes in the electrode materials and the current collectors coincide with the holes in the separator.
  • the polymeric material introduced into the holes forms a kind of rivets, which bond together the electrodes and the separator.
  • the battery according to the invention is a laminate of both electrodes and the separator, forming a layered cell structure.
  • the holes in the electrode material and the current collector can be made by punching or laser cutting.
  • the electrode material can also be directly provided with holes by means of a suitable application method, e.g. by means of patternwise screen printing a paste comprising the electrode active material onto the current collector.
  • the negative electrode in a rechargeable battery according to the present invention basically comprises negative electrode active material for the battery reaction and a negative current collector serving to transmit electrons upon charging and discharging.
  • the negative electrode material is an intercalatable material, preferably carbon, such as amorphous carbon or graphite, dispersed in a polymeric binder matrix.
  • Lithium can be intercalated between crystal layers of carbon in a quantity of maximally 1 lithium atom per 6 carbon atoms, in other words LiC 6 at most.
  • the positive electrode also called cathode
  • the positive electrode comprises positive electrode active material and a positive current collector.
  • the positive electrode material is a lithium intercalation compound, such as LiMn 2 O 4 , LiCoO 2 or LiNiO 2 dispersed in a polymeric binder matrix.
  • the mixture also comprises a powdery conductive material, such as carbon black (acetylene black, thermal black for example), graphite powder, metal powder or the like.
  • the amount of conductive material is in the range of 2 to 15 % by weight.
  • binder matrix polymers which include polysaccharide, thermoplastic polymers and polymers having rubber-like elasticity. Examples include carboxymethyl cellulose, polytetrafluoroethylene, polyethylene, polypropylene and styrenebutadiene rubber. The polymers may be used singly or in combination.
  • the polymeric binder serves to bind together active material powders to prevent cracks and fix such powdery materials to the surface of the current collector. The amount of the polymeric binder is in the range of 2 to 30 % by weight.
  • the current collector use can be made of any electronic conductor provided that it does not induce chemical reactions in the battery.
  • materials for the positive current collector (cathode) include stainless steel, aluminium and nickel.
  • materials for the negative current collector (anode) include stainless steel, copper and nickel.
  • the collector may be in the shape of a foil, film or sheet, and may be porous, punched or mesh-like.
  • the thickness of the collector generally is in the range of 1 to 500 a m.
  • the separator provided between the positive and negative electrode is an insulated film having both high ion permeability and desired mechanical strength. It prevents short-circuits between the negative and the positive electrode, and holds the electrolytic solution.
  • a generally used separator is made of glass fibre, or a porous sheet or non-woven fabric made of olefinic polymers such as polyethylene or polypropylene. The diameter of the pores generally is in the range of 0.01 to 10 a m. The thickness of the separator generally is in the range of 5 to 300 a m.
  • the battery structure of the present invention may be activated with any of the numerous compositions used as liquid electrolyte solutions.
  • an ester such as ethylene carbonate, propylene carbonate, methylethylcarbonate; an ether, such as tetrahydrofurane; dimethyl sulfoxide, and mixtures thereof may be used.
  • the solute include salts composed of lithium ions (Li + ) and Lewis acid ions (BF 4 - , PF 6 - , AsF 6 - , ClO 4 - , CF 3 SO 3 - ) and mixed salts thereof.
  • the concentration of the salt is between 0.5 and 2 mol/l.
  • the battery according to the invention may be in the form of a flat flexible sheet-like product or it may be folded in zig-zag fashion, or wound into a cylindrical or rectangular prismatic shape.
  • the battery may be of the single-layer or multi-layer type.
  • the flat battery structure may be die-punched into coins for use in the familiar button batteries.
  • Batteries of various size, capacity, and voltage range can be obtained from the layered cell structure by overlaying a number of cells or manifolding a single cell of extended dimension. Batteries of higher capacity can be constructed by repeating the sequences of cell elements.
  • the voltage output of a battery may be increased by series multiplexing of a plurality of the basic laminate of the layered cell structure; in that case, the negative electrode layer of the first cell structure is placed in electrical contact with the positive electrode layer of a second similar cell structure.
  • the battery comprises a multilayer stack of layers of a negative electrode, a separator and a positive electrode.
  • the battery is enclosed in a battery case, which may be a plastic metallic or a plastic resin case. Examples of these materials include stainless steel and plastics like polypropylene.
  • the sealing may be made by an adhesive, welding or soldering.
  • a flat flexible battery may be enclosed in an air and moisture-proof bag of polymer-coated aluminium foil. Sheets of such foil are commercially available, and can be sealed together at their edges.
  • the sheets typically comprise an outer 15 ⁇ m polyester or polyethylene film, a 50 ⁇ m aluminium foil, and an inner 15 ⁇ m polyester or polyethylene film, bearing a 90 ⁇ m layer of heat sealing adhesive.
  • the battery according to the invention may be provided with a layer, behind the negative electrode and facing away from the separator, having a spring function.
  • This layer may be useful if the negative electrode material undergoes a large volume change due to charging and discharging, e.g. if the negative electrode material is lithium metal. The layer will compensate for the change in volume.
  • This layer having a spring function is made of a resilient material and is e.g. an elastic foam, such as polyurethane or crosslinked polyolefin.
  • the negative electrode gets thinner and the foam layer expands to maintain the pressure.
  • lithium is deposited and the volume of the negative electrode expands, while compressing the foam layer.
  • the object to provide a method of manufacturing a lithium secondary battery is achieved by a method as specified in the opening paragraph, characterized in that the method comprises the following steps:
  • patterns of holes are made in the electrodes, i.e. through the electrode materials and the current collectors, by techniques such as mechanical punching or laser cutting.
  • the holes are macroscopic holes having a diameter of e.g. 1 mm.
  • the pattern of the holes forms a rectangular two-dimensional array with a mutual hole distance of 5 mm.
  • the separator is provided with holes of the same pattern and dimensions.
  • the patterns of the electrodes and the separator are aligned so that the holes overlap.
  • the stack comprising a negative electrode, a separator and a positive electrode is placed on a structured polymer film.
  • the structure of the polymer film consists of a pattern of piles, corresponding to the pattern of the holes.
  • the piles will penetrate the holes, and project beyond the stack.
  • the ends of the piles are then subjected to heat and pressure to flatten out the projected piles.
  • the piles introduced into the holes form a kind of rivets, which bond together the electrodes and the separator under pressure. In this way, a good contact is ensured between the electrodes and the separator, which will comprise the electrolyte.
  • the stack of the negative electrode, the separator, and the positive electrode is placed between two films of polymeric material.
  • the polymeric material melts and penetrates into the holes in the electrodes.
  • the polymeric material will stick to the separator. It is important to use a polymeric material which has a lower melting point than the material of the separator.
  • a further refinement of the last-mentioned method is characterized in that in step b) the pattern of holes in the positive electrode is made so as to be the same as in a), and that before step c) the separator is provided with a pattern of holes, the pattern being the same as in a).
  • the holes are preferably aligned so that they overlap. After applying heat and pressure, the polymeric material of the two polymer films melts and penetrates into the holes of the electrodes and the separator. In the aligned mode, the polymeric material introduced into the holes will form a kind of rivets, which bond together the electrodes and the separator under pressure.
  • the separator is made of a polymeric material. After applying heat and pressure, the polymeric material melts and penetrates into the holes in the electrodes. In this way also a multi battery stack can be made which is held together by separators.
  • a polymeric material is polyethylene filled with inorganic particles, such as silica or alumina.
  • porous polymeric material for the polymer films and the separator through which ions are movable, e.g. porous polyethylene.
  • the polymeric material is elastic.
  • the electrode materials can be made by mixing negative or positive active material, conductive material, and binder material, which are all in the form of powder, in a dry process, or in a wet process in which water or an organic solvent is further added. Materials which can be used are mentioned above.
  • the paste-like mixture obtained is then coated onto the current collector, dried and compressed.
  • coating methods can be generally employed: screen printing, roller coating, doctor blade coating, knife coating, extrusion coating, bar coating, dip coating and squeeze coating.
  • the thickness of the coated layer, which is compressed after drying, generally is in the range of 1 to 1000 ⁇ m.
  • Pressing of the stack in the above mentioned methods is accomplished by simply pressing it for a short period of time between metal plates at a pressure of about 5.10 4 Pa in an oven at about 110°C to 150°C.
  • the operation may also be carried out using calender rollers.
  • the stack is cooled down to room temperature. Heating and cooling down may also be carried out in a mould with a particular shape, e.g. the shape of the appliance into which the battery should be fitted.
  • a multilayer stack of layers can be bonded together in one step, thereby obtaining a battery of increased capacity or voltage.
  • the nonaqueous secondary battery of the invention can be used in various (cordless) applications, for example, notebook personal computers, portable CD-players, portable telephones, paging equipment, video cameras, electric shavers, electric tools, and hearing aids.
  • a mixture for the negative electrode material is prepared by mixing 6 g graphite particles having a particle size of 10 ⁇ m as the active positive material, 4.5 g carboxymethyl cellulose (1% aqueous solution) and 0.5 g styrene butadiene rubber (60% dispersion in water) as a binder, and formed into a paste to be applied as a coating onto both surfaces of a copper foil current collector.
  • the thickness of the coating is 200 ⁇ m.
  • the thickness of the copper foil amounts to 14 ⁇ m.
  • the pasted current collector is pre-dried at 85°C for 15 minutes, heat-treated at 110°C for 3 hours and then pressed until the thickness becomes 110 ⁇ m.
  • the positive electrode is cut out so as to be a square of 2 x 2 cm 2 .
  • a mixture for the positive electrode material is prepared by mixing 6 g LiCoO 2 as the active positive material, 0.18 g acetylene black as a conductive material, 5 g carboxymethyl cellulose (1% aqueous solution) and 0.7 g polytetrafluoroethylene (60% dispersion in water) as a binder, and formed into a paste to be applied as a coating onto both surfaces of an aluminium foil current collector.
  • the thickness of the coating is 420 ⁇ m.
  • the thickness of the aluminium foil amounts to 20 ⁇ m.
  • the pasted current collector is pre-dried at 85°C for 15 minutes, heat-treated at 250°C for 4 hours and then pressed until the thickness becomes 100 ⁇ m.
  • the negative electrode is cut out so as to be a square of 2 x 2 cm 2 .
  • a 25 ⁇ m thick porous polyethylene foil is used as a separator.
  • the negative electrode, the positive electrode, and the separator are all provided with a pattern of holes by mechanical punching.
  • the diameter of the holes is 1 mm.
  • the holes are provided in a two-dimensional array with a mutual hole distance of 5 mm.
  • FIGS. 1A to 1C schematically show a number of method steps in the manufacture of a lithium secondary battery in accordance with the invention.
  • the electrode materials are prepared as indicated above.
  • the dimensions are not drawn to scale.
  • Figure 1A shows the negative electrode 1 comprising the negative electrode material 2 on both sides of the copper current collector 3.
  • a positive electrode 4 comprises positive electrode material 5 on both sides of the aluminium current collector 6.
  • the separator 7 is placed between both electrodes 1 and 4.
  • the negative electrode comprises holes 8, the positive electrode comprises holes 9, and the separator comprises holes 10.
  • the electrodes 1 and 4, and the separator 7 are stacked in such a manner that the patterns of the holes 8,9,10 are aligned so that the holes overlap.
  • the aligned stack is placed on a structured microporous polyethylene film 11 having piles 12.
  • the piles 12 have the same pattern as the holes 8,9,10 and just fit in these holes.
  • the piles 12 penetrate the holes 8,9,10 and project beyond the stack ( Figure 1B).
  • the stack is heated between two metal plates at a pressure of 5.10 4 Pa and 130°C for 5 seconds.
  • the projecting piles 12 are flattened ( Figure 1C), and a self-supporting battery stack with a surface area of 4 cm 2 is produced.
  • the battery is immersed in an electrolyte containing 1.5 mol/l LiPF 6 in a mixture of ethylene carbonate and methylethylcarbonate (1:3).
  • the battery containing the electrolyte is packaged in a bag consisting of polyethylene-coated aluminium foil and sealed.
  • the battery is charged at a 0.2 C rate, wherein C is the battery capacity in mAh.
  • Figure 2 shows the relationship between the battery voltage V and the capacity C in Mah.
  • curve A represents the battery voltage V during charging at a 0.2 C rate.
  • Figure 2 also shows the discharge curves at various discharge rates: 0.2 C, 1.5 C, 2 C and 3 C.
  • the capacity of the battery decreases with increasing discharge rate. However, at a discharge rate of 2 C the battery can still be discharged to almost 80% of its capacity.
  • a lithium secondary battery which may be made so as to be flexible and thin, and in which a good contact between the electrodes and the electrolyte is ensured.
  • the invention also provides a number of simple methods for manufacturing such a battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Steroid Compounds (AREA)
  • Cell Separators (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Claims (11)

  1. Pile secondaire au lithium comprenant un empilage :
    d'une électrode négative ayant un matériau d'électrode négative et un collecteur de courant négatif,
    d'une électrode positive ayant un matériau d'électrode positive et un collecteur de courant positif,
    d'un séparateur pris en sandwich entre l'électrode négative et l'électrode positive,
    d'une solution d'électrolyte non aqueuse entre l'électrode négative et l'électrode positive,
    caractérisée en ce que le matériau d'électrode négative et le matériau d'électrode positive sont munis d'une configuration de trous, les trous étant remplis d'un matériau polymère qui a été au moins partiellement fondu au cours de l'application sur l'empilage et qui colle et comprime ensemble l'électrode négative, l'électrode positive et le séparateur de manière contiguë.
  2. Pile secondaire au lithium selon la revendication 1, caractérisée en ce que les collecteurs de courant sont munis d'une configuration de trous recouvrant sensiblement les trous dans les matériaux d'électrodes et en ce que les trous des deux configurations sont remplis du matériau polymère.
  3. Pile secondaire au lithium selon la revendication 1 ou 2, caractérisée en ce que le séparateur est muni d'une configuration de trous recouvrant sensiblement les trous dans les matériaux d'électrodes et en ce que les trous de toutes les configurations sont remplis du matériau polymère.
  4. Pile secondaire au lithium selon la revendication 1, caractérisée en ce que le matériau polymère est un adhésif.
  5. Pile secondaire au lithium selon la revendication 1, caractérisée en ce que le matériau polymère est le polyéthylène.
  6. Pile secondaire au lithium selon la revendication 1, caractérisée en ce que la pile comprend un empilage multicouches de couches d'une électrode négative, d'un séparateur et d'une électrode positive.
  7. Pile secondaire au lithium selon la revendication 1, caractérisée en ce qu'une surface de l'électrode négative opposée au séparateur est munie d'une couche de mousse élastique.
  8. Procédé de fabrication d'une pile secondaire au lithium comprenant un empilage d'une électrode négative, d'un séparateur et d'une électrode positive, ledit procédé comprenant l'application de matériau d'électrode négative sur un collecteur de courant négatif de manière à former l'électrode négative, l'application de matériau d'électrode positive sur un collecteur de courant positif de manière à former l'électrode positive et l'aménagement d'un séparateur entre l'électrode négative et l'électrode positive de manière à être contigu avec celles-ci, caractérisé en ce que le procédé comprend les étapes suivantes :
    a) une configuration de trous est ménagée à travers l'électrode négative,
    b) une configuration de trous est ménagée à travers l'électrode positive, la configuration étant la même que dans a),
    c) une configuration de trous est ménagée dans le séparateur, la configuration étant la même que dans a),
    d) les trous des configurations de a), b) et c) dans l'empilage sont alignés pour former des trous qui se chevauchent,
    e) on aménage un film de polymère qui a une configuration de piles sur au moins l'une de ses surfaces, la configuration correspondant aux configurations de a), b) et c); la longueur des piles étant au moins égale à l'épaisseur de l'empilage,
    f) l'empilage est placé sur le film de polymère, de sorte que les piles pénètrent à travers les trous et fassent saillie au-delà de l'empilage,
    g) l'empilage et le film de polymère sont soumis à de la chaleur et à une pression pour aplatir les piles saillantes de manière à former une structure laminée du film de polymère, de l'électrode négative, du séparateur et de l'électrode positive.
  9. Procédé de fabrication d'une pile secondaire au lithium comprenant un empilage d'une électrode négative, d'un séparateur et d'une électrode positive, ledit procédé comprenant l'application de matériau d'électrode négative sur un collecteur de courant négatif de manière à former l'électrode négative, l'application de matériau d'électrode positive sur un collecteur de courant positif de manière à former l'électrode positive et l'aménagement d'un séparateur entre l'électrode négative et l'électrode positive de manière à être contigu avec celles-ci, caractérisé en ce que le procédé comprend les étapes suivantes :
    a) une configuration de trous est ménagée dans l'électrode négative,
    b) une configuration de trous est ménagée dans l'électrode positive,
    c) un film de matériau polymère est appliquée sur les deux faces de l'empilage, le matériau polymère ayant une température de fusion inférieure à celle du matériau du séparateur,
    d) l'empilage et les films de polymère sont soumis à de la chaleur et à une pression pour faire fondre les films de polymère, de sorte que le matériau polymère pénètre dans les trous et vienne en contact avec le séparateur pour former une structure laminée des films de polymère, de l'électrode négative, du séparateur et de l'électrode positive.
  10. Procédé selon la revendication 7, caractérisé en ce que, à l'étape b), la configuration de trous dans l'électrode positive est ménagée de manière à être la même que dans a) et en ce que, avant l'étape c), le séparateur est muni d'une configuration de trous, la configuration étant la même que dans a).
  11. Procédé de fabrication d'une pile secondaire au lithium comprenant un empilage d'une électrode négative, d'un séparateur et d'une électrode positive, ledit procédé comprenant l'application de matériau d'électrode négative sur un collecteur de courant négatif de manière à former l'électrode négative, l'application de matériau d'électrode positive sur un collecteur de courant positif de manière à former l'électrode positive et l'aménagement d'un séparateur entre l'électrode négative et l'électrode positive de manière à être contigu avec celles-ci, caractérisé en ce que le procédé comprend les étapes suivantes :
    a) une configuration de trous est ménagée à travers l'électrode négative,
    b) une configuration de trous est ménagée à travers l'électrode positive,
    c) le séparateur est formé d'un matériau polymère, et
    d) l'empilage est soumis à de la chaleur et à une pression, ce qui provoque la pénétration du matériau polymère dans les trous, reliant de la sorte ensemble les électrodes et le séparateur.
EP99932835A 1998-07-16 1999-07-02 Pile secondaire au lithium Expired - Lifetime EP1038329B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99932835A EP1038329B1 (fr) 1998-07-16 1999-07-02 Pile secondaire au lithium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98202387 1998-07-16
EP98202387 1998-07-16
EP99932835A EP1038329B1 (fr) 1998-07-16 1999-07-02 Pile secondaire au lithium
PCT/EP1999/004716 WO2000004601A1 (fr) 1998-07-16 1999-07-02 Pile secondaire au lithium

Publications (2)

Publication Number Publication Date
EP1038329A1 EP1038329A1 (fr) 2000-09-27
EP1038329B1 true EP1038329B1 (fr) 2002-02-06

Family

ID=8233938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99932835A Expired - Lifetime EP1038329B1 (fr) 1998-07-16 1999-07-02 Pile secondaire au lithium

Country Status (9)

Country Link
US (1) US6432576B1 (fr)
EP (1) EP1038329B1 (fr)
JP (1) JP2002520803A (fr)
AT (1) ATE213098T1 (fr)
DE (1) DE69900860T2 (fr)
DK (1) DK1038329T3 (fr)
ES (1) ES2172340T3 (fr)
HK (1) HK1032853A1 (fr)
WO (1) WO2000004601A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002680A1 (de) 2009-04-28 2010-11-04 Evonik Litarion Gmbh Herstellung und Verwendung keramischer Kompositmaterialien basierend auf Polymer-Trägerfolie

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1183750A2 (fr) 1999-11-11 2002-03-06 Koninklijke Philips Electronics N.V. Pile au lithium comprenant un electrolyte en gel
CN1236517C (zh) 2000-02-29 2006-01-11 皇家菲利浦电子有限公司 锂电池
CN1213500C (zh) * 2000-03-03 2005-08-03 皇家菲利浦电子有限公司 制造薄的锂电池的方法
WO2001067535A1 (fr) * 2000-03-06 2001-09-13 Koninklijke Philips Electronics N.V. Procede de fabrication d'une batterie a lithium
JP2002063938A (ja) * 2000-08-18 2002-02-28 Sony Corp 二次電池及びその製造方法
KR100337707B1 (ko) 2000-09-25 2002-05-22 정근창 포케팅 전극체 및 그 제조방법과 이를 이용한 리튬이온이차전지
JP2002148743A (ja) * 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd 蓄積性蛍光体シート用カセッテ並びに放射線画像撮影装置、撮影情報登録装置および放射線画像情報読取装置
EP1402592A1 (fr) * 2001-06-20 2004-03-31 Koninklijke Philips Electronics N.V. Procede de fabrication d'une pile au lithium et pile resultante
KR100936411B1 (ko) * 2001-08-24 2010-01-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 리튬 배터리 제조 방법, 리튬 배터리 및 전기 기기
US7118828B2 (en) 2002-03-11 2006-10-10 Quallion Llc Implantable battery
GB0211164D0 (en) * 2002-05-16 2002-06-26 Accentus Plc Electrochemical cell assembly
BR0316051A (pt) * 2002-11-08 2005-09-20 Colgate Palmolive Co Conjunto de escova de dente, e, dispositivo para cuidado pessoal
DE10343535C5 (de) * 2003-09-19 2009-01-29 Dilo Trading Ag Separatoren für Lithium-Polymer-Batterien, Verfahren zu ihrer Herstellung und ihre Verwendung
KR100705738B1 (ko) * 2005-09-16 2007-04-09 강봉섭 전해질이 분할된 리튬 전지
KR100840849B1 (ko) * 2006-01-27 2008-06-23 마쯔시다덴기산교 가부시키가이샤 리튬이온 2차전지 및 그 충전시스템
DE102006038362A1 (de) * 2006-08-11 2008-02-14 KREUTZER, André Flaches galvanisches Element und Verfahren zur Herstellung flacher galvanischer Elemente
DE102006062407A1 (de) * 2006-12-20 2008-06-26 Varta Microbattery Gmbh Galvanisches Element mit einem geklebten Verbund aus Elektroden und Separator
JP2008159332A (ja) * 2006-12-21 2008-07-10 Toyota Motor Corp 蓄電装置
DE202007018823U1 (de) 2007-04-26 2009-06-10 Dilo Trading Ag Separatoren für Lithium-Batterien
KR101147255B1 (ko) 2007-06-04 2012-05-18 에스케이이노베이션 주식회사 고출력 리튬 전지의 적층 방법
DE102007036653A1 (de) * 2007-07-25 2009-02-05 Varta Microbattery Gmbh Elektroden und Lithium-Ionen-Zellen mit neuartigem Elektrodenbinder
DE102007000718A1 (de) 2007-09-10 2009-03-19 Dilo Trading Ag Strukturierte Polymerabmischungen, Herstellung und Verwendung
DE102008001191B4 (de) 2008-04-15 2012-10-18 Dilo Trading Ag Strukturmodifizierter Separator für Lithium-Ionen-Zellen, Verfahren zu dessen Herstellung und Verwendung
US8669010B2 (en) * 2008-04-24 2014-03-11 Sharp Kabushiki Kaisha Nonaqueous secondary battery
DE102008055161A1 (de) * 2008-12-29 2010-07-01 Robert Bosch Gmbh Batteriemodul
WO2010131650A1 (fr) * 2009-05-13 2010-11-18 シャープ株式会社 Batterie secondaire à électrolyte non aqueux
EP2546917B1 (fr) * 2010-03-08 2018-04-25 Toyota Jidosha Kabushiki Kaisha Dispositif pour le traitement de batterie rechargeable à électrolyte non aqueux, et procédé de production de batterie rechargeable à électrolyte non aqueux
US9368830B2 (en) 2010-11-04 2016-06-14 Samsung Sdi Co., Ltd. Battery
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US20130309535A1 (en) * 2012-05-21 2013-11-21 Htc Corporation Electronic apparatus and electronic component thereof
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US9577259B2 (en) 2014-08-21 2017-02-21 Johnson & Johnson Vision Care, Inc. Cathode mixture for use in a biocompatible battery
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9923177B2 (en) 2014-08-21 2018-03-20 Johnson & Johnson Vision Care, Inc. Biocompatibility of biomedical energization elements
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9383593B2 (en) * 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US9899700B2 (en) * 2014-08-21 2018-02-20 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and deposited separators
WO2016127122A1 (fr) * 2015-02-06 2016-08-11 The Board Of Trustees Of The Leland Stanford Junior University Composites de stockage d'énergie multifonction
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US11211606B2 (en) 2017-12-28 2021-12-28 The Hong Kong Polytechnic University Electrode for battery and fabrication method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR917676A (fr) * 1945-07-19 1947-01-17 Pile à éléments plats
JPS59148280A (ja) * 1983-02-14 1984-08-24 Tomoyuki Aoki 電池
JPH02119066A (ja) * 1988-10-27 1990-05-07 Brother Ind Ltd シート状電池及びその穴明け方法
US5019468A (en) * 1988-10-27 1991-05-28 Brother Kogyo Kabushiki Kaisha Sheet type storage battery and printed wiring board containing the same
US4996128A (en) * 1990-03-12 1991-02-26 Nova Manufacturing, Inc. Rechargeable battery
US5547780A (en) * 1993-01-18 1996-08-20 Yuasa Corporation Battery precursor and a battery
US5518836A (en) * 1995-01-13 1996-05-21 Mccullough; Francis P. Flexible carbon fiber, carbon fiber electrode and secondary energy storage devices
US6103417A (en) * 1997-07-22 2000-08-15 U.S. Philips Corporation Flat elementary electrochemical cell and precursor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002680A1 (de) 2009-04-28 2010-11-04 Evonik Litarion Gmbh Herstellung und Verwendung keramischer Kompositmaterialien basierend auf Polymer-Trägerfolie
WO2010124892A1 (fr) 2009-04-28 2010-11-04 Evonik Litarion Gmbh Fabrication et utilisation de matériaux composites céramiques placés sur des films porteurs polymères

Also Published As

Publication number Publication date
DK1038329T3 (da) 2002-05-27
DE69900860D1 (de) 2002-03-21
WO2000004601A1 (fr) 2000-01-27
EP1038329A1 (fr) 2000-09-27
US6432576B1 (en) 2002-08-13
ATE213098T1 (de) 2002-02-15
JP2002520803A (ja) 2002-07-09
DE69900860T2 (de) 2002-10-02
ES2172340T3 (es) 2002-09-16
HK1032853A1 (en) 2001-08-03

Similar Documents

Publication Publication Date Title
EP1038329B1 (fr) Pile secondaire au lithium
US6680141B2 (en) Lithium battery
JP5670626B2 (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
US6232014B1 (en) Lithium ion secondary battery and manufacture thereof
US8785047B2 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
EP3965215A1 (fr) Séparateur destiné à un appareil électrochimique, appareil électrochimique et appareil électronique
EP1115166A1 (fr) Separateur de cellule, cellule, et procede de production dudit separateur
US6291102B1 (en) Lithium ion secondary battery
JP2008210810A (ja) 双極リチウムイオン再充電可能電池
JP3405380B2 (ja) 非水電解質二次電池およびその製造方法
JP2006310033A (ja) 蓄電池
JP2000030742A (ja) リチウムイオン二次電池要素
WO2005067079A1 (fr) Batterie auxiliaire au lithium
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
CA2017571C (fr) Batterie alcaline non aqueuse a cathode amelioree
JP5702873B2 (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
KR20190039450A (ko) 전지의 제조 방법
US6352797B1 (en) Lithium ion battery and method for forming the same
JP6417270B2 (ja) 電気化学素子用セパレータ、および電気化学素子の製造方法
JP2000048639A (ja) 複合構造ゲル電解質シート積層体
JPH10261386A (ja) 電池用外装体および電池
JPH11154534A (ja) リチウムイオン二次電池要素
JPH11135130A (ja) 二次電池集電体用金属箔、その製造方法、及び二次電池
EP1402592A1 (fr) Procede de fabrication d'une pile au lithium et pile resultante
JP2001155777A (ja) リチウム電池

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20001113

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020206

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020206

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020206

REF Corresponds to:

Ref document number: 213098

Country of ref document: AT

Date of ref document: 20020215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69900860

Country of ref document: DE

Date of ref document: 20020321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020506

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2172340

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20021209

26N No opposition filed

Effective date: 20021107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090730

Year of fee payment: 11

Ref country code: ES

Payment date: 20090820

Year of fee payment: 11

Ref country code: DK

Payment date: 20090725

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090731

Year of fee payment: 11

Ref country code: FI

Payment date: 20090729

Year of fee payment: 11

Ref country code: CH

Payment date: 20090731

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090929

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090727

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69900860

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100702

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100702

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100702

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110818

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802