EP1015426A1 - Als katalysator geeignete formmassen - Google Patents

Als katalysator geeignete formmassen

Info

Publication number
EP1015426A1
EP1015426A1 EP98947448A EP98947448A EP1015426A1 EP 1015426 A1 EP1015426 A1 EP 1015426A1 EP 98947448 A EP98947448 A EP 98947448A EP 98947448 A EP98947448 A EP 98947448A EP 1015426 A1 EP1015426 A1 EP 1015426A1
Authority
EP
European Patent Office
Prior art keywords
acid
titanium dioxide
pyrogenic titanium
molding compositions
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98947448A
Other languages
English (en)
French (fr)
Inventor
Eberhard Fuchs
Klemens Flick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1015426A1 publication Critical patent/EP1015426A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/08Preparation of lactams from carboxylic acids or derivatives thereof, e.g. hydroxy carboxylic acids, lactones or nitriles

Definitions

  • the present invention relates to molding compositions which are suitable as a catalyst for the preparation of cyclic lactams by reacting aminocarbonitriles with water, comprising essentially titanium dioxide.
  • shaped bodies made of titanium dioxide which are obtained by shaping titanium dioxide and calcining the shaped bodies at 300 to 800 ° C., the titanium dioxide being produced by hydrolysis of a titanium salt and before or after shaping with 0, 01 to 50 wt .-% based on titanium dioxide is treated with a mineral acid or an organic acid.
  • Shaped bodies of this type have the disadvantage, however, that the titanium dioxide produced by hydrolysis has only a purity which is unsatisfactory for catalytic purposes. In reactions in which such shaped bodies are used as catalysts, this leads to losses in the yield and the selectivity.
  • suitable compacts are known as catalysts which consist of up to 99% by weight of pyrogenically produced titanium dioxide with an SiO content of 0 to 1% by weight and an accessible pore volume of 45-55%. of the compact volume and a breaking strength of at least 1.630 N.
  • Such compacts have the disadvantage that the use of a pressing aid, sieving the batch and converting the sifted mixture into a flowable powder must be used to produce tablets in order to produce tablets with the aid of a tablet press.
  • suitable molding compositions which have no soluble constituents under the reaction conditions and contain, as an essential constituent, pyrogenic titanium dioxide, the molding compositions being obtainable by molding the pyrogenic titanium dioxide into shaped articles and treating the pyrogenic titanium dioxide before or after molding with 0, 1 to 30% by weight based on the pyrogenic titanium dioxide of an acid in which the pyrogenic titanium dioxide is sparingly soluble.
  • the pyrogenic titanium dioxide can exist in various modifications such as amorphous, as anatase or as rutile or their phase mixtures.
  • the above-mentioned titanium dioxide can, with compounds of the 1st to 7th, in particular 2nd, 3rd or 4th main group of the periodic table, preferably aluminum oxide, such as alpha or gamma aluminum oxide, or tin oxide, the 1st to 7th subgroup of Periodic table, the elements of the iron group or the lanthanides, preferably cerium oxide, or actinides, as well as mixtures of such compounds, or contain them.
  • aluminum oxide such as alpha or gamma aluminum oxide, or tin oxide
  • the 1st to 7th subgroup of Periodic table the elements of the iron group or the lanthanides, preferably cerium oxide, or actinides, as well as mixtures of such compounds, or contain them.
  • these catalysts can be up to
  • catalytically active oxides can be prepared in a manner known per se, for example by hydrolysis of the corresponding organyl, alcoholates, salts with organic or inorganic acids and subsequent tempering or calcining, and pyrogenically and are generally commercially available.
  • the oxides are treated with an acid before or after molding.
  • Organic acids such as oxalic acid, propionic acid, butyric acid, maleic acid or inorganic acids such as isopoly acids, heteropoly acids, sulfuric acid or hydrochloric acid come as the acid.
  • Particularly suitable catalysts can be obtained by treatment with acetic acid, formic acid, nitric acid, in particular phosphoric acid.
  • Mixtures of acids can also be used.
  • the treatment can be carried out continuously or batchwise in one or more stages, the same acid, different acids or the same or different mixtures of acids being able to be used in the individual stages.
  • the oxides can be treated with an acid in the manner mentioned before and after molding.
  • the oxides are treated with an acid before molding.
  • 0.1 to 30, preferably 0.1 to 10, in particular 0.1 to 5% by weight of acid, calculated as pure acid, based on the pyrogenic titanium dioxide, is used.
  • the acid can be mixed with a liquid diluent such as water.
  • the oxides can be used without additives to produce the catalysts. It is also possible, additives, such as binders, for example, titania sols, salts of the oxides used, soluble titanium salt compounds, hydrolyzable titanium compounds such as titanium alkoxides or aluminum salts such as P orentruckner, for example methyl cellulose, Kohlebstoffasern, fibers of organic polymers Add melamine, starch powder preferably before molding.
  • additives such as binders, for example, titania sols, salts of the oxides used, soluble titanium salt compounds, hydrolyzable titanium compounds such as titanium alkoxides or aluminum salts such as P orenbildner, for example methyl cellulose, Kohlebstoffasern, fibers of organic polymers Add melamine, starch powder preferably before molding.
  • the shaped bodies can be in various forms, for example as a ball, tablet, cylinder, hollow cylinder, pellet, granulate or strand. Shaped bodies of this type can be produced in a manner known per se using appropriate molding machines such as tableting machines, extrusion molding machines, rotary granulators, pelletizers or combinations of such machines.
  • the shaped material if appropriate after an acid treatment, is advantageously dried, in particular at temperatures from 20 to 120 ° C., preferably in an inert gas atmosphere or in air and then calcined, in particular at 400-750 ° C., preferably in an inert gas atmosphere or in air
  • the molding compositions can advantageously be used as a catalyst for the preparation of cyclic lactams by reacting aminocarbonitriles with water in the liquid phase in a fixed bed reactor.
  • the heterogeneous catalysts can be arranged in a fixed bed.
  • the reaction can be carried out in a manner known per se, for example in a trickle or preferably in a bottoms mode, in particular continuously, by bringing the reaction mixture into contact with the catalyst bed.
  • the starting materials in the process mentioned are aminocarbonitriles, preferably those of the general formula I.
  • n and m can each have the values 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and the sum of n + m is at least 3, preferably at least 4.
  • R 1 and R 2 may be substituents of any kind in principle, it merely being necessary to ensure that the desired C yclmaschinesretress is not influenced by the substituents.
  • R 1 and R 2 are each independently Ci-C ß alkyl or C 5 -C 7 -cycloalkyl or C 6 -C 2 aryl groups.
  • Particularly preferred starting compounds are aminocarboxylic acid nitriles of the general formula
  • m has a value of 3, 4, 5 or 6, in particular 5.
  • the starting compound is 6-aminocaproic acid nitrile.
  • the aminocarbonitriles described above can be reacted with water in the liquid phase using heterogeneous catalysts to form cyclic lactams.
  • the corresponding cyclic lactams of the formula II are obtained
  • the reaction can be carried out in the liquid phase at temperatures of generally 140 to 320 ° C, preferably 160 to 280 ° C; the pressure should generally be in the range from 1 to 250 bar, preferably from 5 to 150 bar, care being taken that the reaction mixture is predominantly liquid under the conditions used.
  • the residence times are generally in the range from 1 to 120, preferably 1 to 90 and in particular 1 to 60 minutes. In some cases residence times of 1 to 10 minutes proved to be completely sufficient.
  • At least 0.01 mol, preferably 0.1 to 20 and in particular 1 to 5 mol, of water are used per mol of aminocarbonitrile.
  • the aminocarbonitrile can advantageously be in the form of a 1 to 50% by weight, in particular 5 to 50% by weight, particularly preferably 5 to 30% by weight solution in water (in which case the solvent is also the reactant) or be used in water / solvent mixtures.
  • solvents are alkanols such as methanol, ethanol, n- and i-propanol, n-, i- and t-butanol and polyols such as diethylene glycol and tetraethylene glycol, hydrocarbons such as petroleum ether,
  • the advantage of the process mentioned lies in the possibility of operating the cyclization continuously in a simple manner with high yields and selectivities and short residence times with very high throughputs. Since the catalysts used have a long lifespan according to previous observations, the catalyst consumption is extremely low.
  • Example 1 Production of strands from pyrogenic titanium dioxide
  • the product stream essentially contains ⁇ -aminocaproic acid ethyl ester and ⁇ -aminocaproic acid amide. Both can also be cyclized to caprolactam. In addition there are 5 to 8% caprolactam oligomers which can be cleaved to caprolactam.
  • Catalysts 1 and 2 were produced in accordance with catalyst example 1:
  • Catalyst 1 Pyrogenic titanium dioxide with 3% phosphoric acid
  • Catalyst 2 Pyrogenic titanium dioxide with 0.5% formic acid extruded to 4 mm strands and then to 1.6 - 2.0 mm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)

Abstract

Zur Herstellung cyclischer Lactame durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser in flüssiger Phase in einem Festbettreaktor als Katalysator geeignete Formmassen, welche unter den Reaktionsbedingungen keine löslichen Bestandteile aufweisen, enthaltend als wesentlichen Bestandteil pyrogenes Titandioxid, wobei die Formmassen erhältlich sind durch Formen des pyrogenen Titandioxids zu Formkörpern und Behandeln des pyrogenen Titandioxids vor oder nach dem Formen mit 0,1 bis 30 Gew.-% bezogen auf das pyrogene Titandioxid einer Säure, in der das pyrogene Titandioxid schwerlöslich ist.

Description

Als Katalysator geeignete Formmassen
Beschreibung
Die vorliegende Erfindung betrifft Formmassen, die als Katalysator zur Herstellung von cyclischen Lactamen durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser geeignet sind, enthaltend im wesentlichen Titandioxid.
Aus der DE-B 25 54 198 sind Formkörper aus Titandioxid bekannt, die durch Formen von Titandioxid und Calcinieren der Formkörper bei 300 bis 800°C erhalten werden, wobei das Titandioxid durch Hydrolyse eines Titansalzes hergestellt wird und vor oder nach dem Formen mit 0,01 bis 50 Gew.-% bezogen auf Titandioxid mit einer Mineralsäure oder einer organischen Säure behandelt wird.
Derartige Formkörper weisen aber den Nachteil auf, daß das durch Hydrolyse hergestellte Titandioxid nur eine für katalytische Zwecke unbefriedigende Reinheit aufweist. Dies führt bei Reaktionen, bei denen solche Formkörper als Katalysator eingesetzt werden, zu Einbußen in der Ausbeute und der Selektivität.
Aus der DE-C 32 17 751 sind als Katalysator geeignete Preßlinge bekannt, die bis zu 99 Gew.-% aus pyrogen hergestelltem Titandioxid bestehen mit einem Si0-Gehalt von 0 bis 1 Gew.-% und einem zugänglichen Porenvolumen von 45-55 % des Preßlingvolumens und einer Bruchfestigkeit von mindestens 1,630 N. Derartige Preßlinge weisen den Nachteil auf, daß zu ihrer Herstellung die Verwednung eines Preßhilfsmittels, Sieben des Gemenges und Überführen des geseibeten Gemisches in ein fließfähiges Pulver angewandt werden müssen, um Tabletten mit Hilfe einer Tablettenpresse herzustellen.
Aufgabe der voliegenden Erfindung war es daher, als Katalysator geeignete Formmassen enthaltend als wesentlichen Bestandteil Titandioxid bereitzustellen, die die gennanten Nachteile nicht aufweisen und auf technisch einfache und wirtschaftliche Weise hergestellt werden können.
Demgemäß wurden als Katalysator geeignete Formmassen, welche unter den Reaktionsbedingungen keine löslichen Bestandteile aufweisen, enthaltend als wesentlichen Bestandteil pyrogenes Titan- dioxid, wobei die Formmassen erhältlich sind durch Formen des pyrogenen Titandioxids zu Formkörpern und Behandeln des pyrogenen Titandioxids vor oder nach dem Formen mit 0,1 bis 30 Gew.-% bezogen auf das pyrogene Titandioxid einer Säure, in der das pyrogene Titandioxid schwerlöslich ist, gefunden.
Das pyrogene Titandioxid, kann in verschiedenen Modifikationen wie amorph, als Anatas oder als Rutil oder deren Phasenmischungen vorliegen.
Das vorstehend genannte Titandioxid kann mit Verbindungen der 1. bis 7., insbesondere 2., 3. oder 4. Hauptgruppe des Perioden- Systems vorzusweise Aluminiumoxid, wie alpha- oder gamma- Aluminiumoxid, oder Zinnoxid, der 1. bis 7. Nebengruppe des Periodensystems, der Elemente der Eisengruppe oder der Lantha- niden, vorzugsweise Ceroxid, oder Aktiniden sowie Gemischen solcher Verbindungen dotiert sein bzw. diese enthalten.
Gegebenenfalls können diese Katalysatoren bis zu jeweils
50 Gew.-% an Kupfer, Zinn, Zink, Mangan, Eisen, Kobalt, Nickel,
Ruthenium, Palladium, Platin, Silber oder Rhodium enthalten.
Diese katalytisch aktiven Oxide können in sich bekannter Weise, beispielsweise durch Hydrolyse der entsprechenden Organyle, Alkoholate, Salze mit organischen oder anorganischen Säuren und anschließendem Tempern oder Calcinieren sowie pyrogen hergestellt werden und sind allgemein kommerziell verfügbar.
Die Oxide werden erfindungsgemäß vor oder nach dem Formen mit einer Säure behandelt. Als Säure kommen organische Säuren wie Oxalsäure, Propionsäure, Buttersäure, Maleinsäure oder anorganische Säuren wie Isopolysäuren, Heteropolysäuren, Schwefelsäure oder Salzsäure. Besonders geeignete Katalysatoren sind erhältlich durch eine Behandlung mit Essigsäure, Ameisensäure, Salpetersäure, insbesondere Phosphorsäure.
Es können auch Gemische von Säuren eingesetzt werden.
Die Behandlung kann in einer oder in mehreren Stufen kontinier- lich oder diskontinuierlich erfolgen, wobei in den einzelnen Stufen die gleiche Säure, verschiedene Säuren oder gleiche oder verschiedene Gemische von Säuren eingesetzt werden können.
Ebenso können die Oxide vor und nach dem Formen in der genannten Art mit einer Säure behandelt werden.
Vorzugsweise werden die Oxide vor dem Formen mit einer Säure behandelt. Erfindungsgemäß setzt man 0,1 bis 30, vorzugsweise 0,1 bis 10, insbesondere 0,1 bis 5 Gew.-% Säure, berechnet als reine Säure, bezogen auf das pyrogene Titandioxid, ein. Man kann die Säure mit einem flüssigen Verdünnungsmittel, wie Wasser, mischen.
Zur Herstellung der Katalysatoren können die Oxide ohne Zusatzstoffe verwendet werden. Es ist ebenso möglich, Zusatzstoffe, wie Bindemittel, beispielsweise Titandioxid-Sole, Salze der verwendeten Oxide, lösliche Titan-Salz-Verbindungen, hydrolysierbare Titanverbindungen wie Titan-Alkoholate oder Aluminium-Salze, wie Porenbildner, beispielsweise Methylcellulose, Kohlebstoffasern, Fasern organischer Polymere, Melamin, Stärkepulver vorzugsweise vor dem Formen zuzugeben.
Die Formkörper können in verschiedenen Formen vorliegen, beispielsweise als Kugel, Tablette, Zylinder, Hohlzylinder, Pellet, Granulat oder Strang. Derartige Formkörper können in an sich bekannter Weise unter Verwendung zweckentsprechender Formmaschinen wie Tablettiermacshinen, Extrudierformmaschinen, Drehgranulato- ren, Pelletisatoren oder Kombinationen solcher Maschinen hergestellt werden.
Das geformte Material wird, gegebenenfalls nach einer Säurebehandlung, vorteilhaft getrocknet, insbesondere bei Temperaturen von 20 bis 120°C, vorzugsweise in einer Inertgasatmosphäre oder an Luft und anschließend calciniert, insbesondere bei 400 - 750°C, vorzugsweise in einer Inertgasatmosphäre oder an Luft
Die Formmassen können vorteilhaft als Katalysator zur Herstellung cyclischer Lactame durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser in flüssiger Phase in einem Festbettreaktor eingesetzt werden.
Dazu kann man die heterogenen Katalysatoren in einem Festbett an- ordnen. Die Umsetzung kann in an sich bekannter Weise beispielsweise in Riesel- oder vorzugsweise in Sumpffahrweise insbesondere kontinuierlich erfolgen, indem das Reaktionsgemisch mit dem Katalysatorbett in Kontakt gebracht wird.
Als Ausgangsstoffe im genannten Verfahren werden Aminocarbon- säurenitrile, vorzugsweise solche der allgemeinen Formel I
eingesetzt, wobei n und m jeweils die Werte 0, 1, 2, 3, 4, 5, 6, 7, 8 und 9 haben können und die Summe aus n + m mindestens 3, vorzugsweise mindestens 4 beträgt.
R1 und R2 können prinzipiell Substituenten jeglicher Art sein, wobei lediglich sichergestellt sein sollte, daß die gewünschte Cyclisierungsreaktion durch die Substituenten nicht beeinflußt wird. Vorzugsweise sind R1 und R2 unabhängig voneinander Ci-Cß-Alkyl- oder C5-C7-Cycloalkylgruppen oder C6-Ci2-Arylgruppen.
Besonders bevorzugte Ausgangsverbindungen sind Aminocarbonsäure- nitrile der allgemeinen Formel
H2N— (CH2)m—C≡N
wobei m einen Wert von 3, 4, 5 oder 6, insbesondere 5 aufweist. Für m = 5 ergibt sich als AusgangsVerbindung 6-Aminocapronsäure- nitril .
Nach dem genannten Verfahren können die vorstehend beschriebenen Aminocarbonsäurenitrile mit Wasser in flüssiger Phase unter Verwendung heterogener Katalysatoren zu cyclischen Lactamen umgesetzt werden. Bei Verwendung von Aminocarbonsäurenitrilen der Formel I erhält man die entsprechenden cyclischen Lactame der Formel II
wobei n, m, R1 und R2 die vorstehend genannte Bedeutung haben. Besonders bevorzugte Lactame sind solche, in denen n = 0 ist und m einen Wert von 4,5 oder 6 hat, insbesondere 5 (im letzteren Fall erhält man Caprolactam) .
Die Umsetzung kann in flüssiger Phase bei Temperaturen von im allgemeinen 140 bis 320°C, vorzugsweise 160 bis 280°C, durchgeführt weden; der Druck sollte im allgemeinen im Bereich von 1 bis 250 bar, vorzugsweise von 5 bis 150 bar liegen, wobei darauf zu achten ist, daß das Reaktionsgemisch unter den angewandten Bedingungen zum überwiegenden Teil flüssig ist. Die Verweilzeiten liegen im allgemeinen im Bereich von 1 bis 120, vorzugsweise 1 bis 90 und insbesondere 1 bis 60 min. In einigen Fällen haben sich Verweilzeiten von 1 bis 10 min als völlig ausreichend erwiesen.
Pro mol Aminocarbonsäurenitril werden im allgemeinen mindestens 0,01 mol, vorzugsweise 0,1 bis 20 und insbesondere 1 bis 5 mol Wasser eingesetzt.
Vorteilhaft kann das Aminocarbonsäurenitril in Form einer 1 bis 50 gew.- igen, insbesondere 5 bis 50 gew.-%igen, besonders vor- zugsweise 5 bis 30 gew.-%igen Lösung in Wasser (wobei dann das Lösungsmittel gleichzeitig Reaktionspartner ist) oder in Wasser/ Lösungsmittel-Gemischen eingesetzt werden. Als Lösungsmittel seien beispielhaft Alkanole wie Methanol, Ethanol, n- und i- Propanol, n-, i- und t-Butanol und Polyole wie Diethylenglykol und Tetraethylenglykol , Kohlenwasserstoffe wie Petrolether,
Benzol, Toluol, Xylol, Lactame wie Pyrrolidon oder Caprolactam oder alkylsubstituierte Lactame wie N-Methylpyrrolidon, N-Methyl- caprolactam oder N-Ethylcaprolactam sowie Carbonsäureester, vorzugsweise von Carbonsäuren mit 1 bis 8 C-Atomen genannt. Auch Ammoniak kann bei der Reaktion anwesend sein. Selbstverständlich können auch Mischungen organischer Lösungsmittel Anwendung finden. Mischungen aus Wasser und Alkanolen im Gewichtsverhältnis Wasser/Alkanol 1-75/25-99, vorzugsweise 1-50/50-99 haben sich in einigen Fällen als besonders vorteilhaft herausgestellt.
Es ist prinzipiell genauso möglich, die Aminocarbonsäurenitrile als Reaktand und gleichzeitig Lösungsmittel anzuwenden.
Der Vorteil des genannten Verfahrens liegt in der Möglichkeit, die Cyclisierung auf einfache Weise kontinuierlich zu betreiben bei hohen Ausbeuten und Selektivitäten und kurzen Verweilzeiten mit sehr hohen Durchsätzen. Da die verwendeten Katalysatoren nach bisherigen Beobachtungen eine hohe Lebensdauer aufweisen, ergibt sich ein extrem geringer Katalysator-Verbrauch.
Beispiel
Beispiel 1: Herstellung von Strängen aus pyrogenem Titandioxid
8350 g pyrogenes Titandioxid- Pulver mit einem Rutil/Anatas -Verhältnis von 80/20 wurden mit 47 g 85 %iger Ameisensäure und 3750 g Wasser 3 Stunden geknetet und danach in der Strangpresse mit einem Pressdruck von 70 bar zu 4 mm Stangen verformt. Die Stränge wurden für 16 Stunden bei 120°C getrocknet und anschlie- ßend für 3 Stunden bei 500°C calziniert. Analytik der Stränge:
Litergewicht 989 g/1
Wasseraufnahme 0,31 ml/g Schneidhärte 25 N
Oberfläche 37 m2/g
Beispiel 2 bis 7: Umsetzung von 6 -Aminocapronitril zu Caprolactam
In einen beheizten Rohrreaktor von 25 ml Inhalt (Durchmesser 6 mm; Länge 800 mm) , der mit einem aus der Tabelle aufgeführten Katalysatoren 1 2 als Splitt gefüllt war, wurde bei 80 bar eine Lösung von 6 -A inocapronsäurenitril (ACN) in Wasser und Ethanol in den in der Tabelle angegebenen Gewichtsverhältnissen geleitet. Der den Reaktor verlassende Produktstrom wurde gaschromato- graphisch analysiert. Die Ergebnisse sind in der Tabelle als Beispiele aufgeführt.
Neben Caprolactam enthält der Produktstrom im wesentlichen ε-Aminocapronsäureethylester und ε-Aminocapronsäureamid. Beide lassen sich ebenfalls zu Caprolactam cyclisieren. Zusätzlich findet man 5 bis 8 % Caprolactamoligomere, welche zu Caprolactam gespalten werden können.
Tabelle
Die Katalysatoren 1 und 2 sind entsprechend dem Katalysatorbeispiel 1 hergestellt worden:
Katalysator 1: Pyrogenes Titandioxid mit 3 % Phosphorsäure zu
4 mm Strängen verstrangt und dann zu 1,6 - 2,0 mm Splitt vermählen
Katalysator 2: Pyrogenes Titandioxid mit 0,5 % Ameisensäure zu 4 mm Strängen verstrangt und dann zu 1,6 - 2,0 mm
Splitt vermählen

Claims

Patentansprüche
1. Zur Herstellung cyclischer Lactame durch Umsetzung von Amino- carbonsäurenitrilen mit Wasser in flüssiger Phase in einem
Festbettreaktor als Katalysator geeignete Formmassen, welche unter den Reaktionsbedingungen keine löslichen Bestandteile aufweisen, enthaltend als wesentlichen Bestandteil pyrogenes Titandioxid, wobei die Formmassen erhältlich sind durch For- men des pyrogenen Titandioxids zu Formkörpern und Behandeln des pyrogenen Titandioxids vor oder nach dem Formen mit 01, bis 30 Gew.-% bezogen auf das pyrogene Titandioxid einer Säure, in der das pyrogene Titandioxid schwerlöslich ist.
2. Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß die Formmassen zusätzlich Aluminiumoxid, Zinnoxid, Ceroxid oder deren Gemische enthält.
3. Formmassen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als Säure Phosphorsäure einsetzt.
4. Formmassen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man als Säure Salpetersäure, Essigsäure oder Ameisensäure einsetzt.
EP98947448A 1997-09-03 1998-08-24 Als katalysator geeignete formmassen Withdrawn EP1015426A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19738462 1997-09-03
DE19738462 1997-09-03
PCT/EP1998/005356 WO1999011615A1 (de) 1997-09-03 1998-08-24 Als katalysator geeignete formmassen

Publications (1)

Publication Number Publication Date
EP1015426A1 true EP1015426A1 (de) 2000-07-05

Family

ID=7841047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98947448A Withdrawn EP1015426A1 (de) 1997-09-03 1998-08-24 Als katalysator geeignete formmassen

Country Status (9)

Country Link
US (1) US6663844B1 (de)
EP (1) EP1015426A1 (de)
JP (1) JP2001514076A (de)
KR (1) KR20010023544A (de)
CN (1) CN1269787A (de)
AU (1) AU9436498A (de)
BR (1) BR9811613A (de)
CA (1) CA2302441A1 (de)
WO (1) WO1999011615A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334489A1 (de) * 2003-07-29 2005-02-24 Basf Ag Verfahren zur hydrierenden Zersetzung von Ammoniumformiaten in polyolhaltigen Reaktionsgemischen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021454A (en) * 1971-08-19 1977-05-03 Shell Oil Company Olefin epoxidation
BE836165A (fr) * 1974-12-02 1976-06-01 Procede de preparation d'un support conforme en oxyde de titane
US4061596A (en) 1974-12-02 1977-12-06 Mitsubishi Chemical Industries Ltd. Process for preparing titanium oxide shaped carrier
DE3217751A1 (de) 1982-05-12 1983-11-17 Degussa Ag, 6000 Frankfurt Presslinge aus pyrogen hergestelltem titandioxid, verfahren zu ihrer herstellung sowie ihre verwendung
DE4138982A1 (de) * 1991-11-27 1993-06-03 Degussa Verfahren zur herstellung von 3-hydroxyalkanalen
DE4339648A1 (de) 1993-11-20 1995-05-24 Basf Ag Verfahren zur Herstellung von Caprolactam
DE4422610A1 (de) * 1994-06-28 1996-01-04 Basf Ag Verfahren zur Herstellung von cyclischen Lactamen
FR2735471B1 (fr) * 1995-06-16 1997-08-22 Rhone Poulenc Chimie Procede de preparation de lactames

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9911615A1 *

Also Published As

Publication number Publication date
BR9811613A (pt) 2000-08-08
JP2001514076A (ja) 2001-09-11
WO1999011615A1 (de) 1999-03-11
KR20010023544A (ko) 2001-03-26
AU9436498A (en) 1999-03-22
CA2302441A1 (en) 1999-03-11
US6663844B1 (en) 2003-12-16
CN1269787A (zh) 2000-10-11

Similar Documents

Publication Publication Date Title
EP0729453B1 (de) Verfahren zur herstellung von caprolactam
DE69621491T2 (de) Verfahren zur Herstellung von Epsilon-Caprolactam
WO1996020923A1 (de) Verfahren zur kontinuierlichen reinigung von aus 6-aminocapronitril hergestelltem roh-caprolactam
DE68902770T2 (de) Verfahren zur herstellung von phenol.
EP0912508B1 (de) Verfahren zur herstellung von caprolactam aus 6-aminocapronitril
DE19843693A1 (de) Trägerkatalysator für die Produktion von Vinylacetatmonomer
EP0800421A1 (de) Verfahren zur herstellung eines hydrierkatalysators
WO1996020931A1 (de) Verfahren zur gleichzeitigen herstellung von caprolactam und hexamethylendiamin
EP0761630B1 (de) Verfahren zur Herstellung von Alkylphenolen
EP1015424B1 (de) Verwendung von formkörpern als katalysator zur herstellung von caprolactam
EP1015425B1 (de) Verfahren zur herstellung von caprolactam
EP1015426A1 (de) Als katalysator geeignete formmassen
EP1049669A1 (de) Verfahren zur herstellung von lactamen
DE19517823A1 (de) Verfahren zur Herstellung von Caprolactam
DE69914606T2 (de) Verfahren zur herstellung von lactamen durch cyclisierende hydrolyse von aminonitrilen
EP0815077A1 (de) Titandioxidkatalysierte cyclisierung in flüssiger phase von 6-aminocapronsäurenitril zu caprolactam
EP0930293B1 (de) Verfahren zur Herstellung von N-Alkenylcarbonsäureamiden
DE1443811A1 (de) Verfahren zur Herstellung von C8-bis C12-alpha,omega-Dicarbonsaeuren
DE2552652C3 (de) Verfahren zum Herstellen von Dibenzofuran
DE1542392C (de) Verfahren zur Herstellung von Platinmetallkatalysatoren auf basischen Carbonatträgern
DE2053065B2 (de) Verfahren zur Herstellung von e -Caprolactam
MXPA00001477A (en) Use of shaped bodies as a catalyst for the production of caprolactam
MXPA00001481A (en) Mouldable materials which can be used as a catalyst
DE2056344B2 (de) Verfahren zur Herstellung von e-Caprolactam
MXPA00001478A (en) Caprolactam production process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20010711

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20021102