EP0815077A1 - Titandioxidkatalysierte cyclisierung in flüssiger phase von 6-aminocapronsäurenitril zu caprolactam - Google Patents

Titandioxidkatalysierte cyclisierung in flüssiger phase von 6-aminocapronsäurenitril zu caprolactam

Info

Publication number
EP0815077A1
EP0815077A1 EP96919687A EP96919687A EP0815077A1 EP 0815077 A1 EP0815077 A1 EP 0815077A1 EP 96919687 A EP96919687 A EP 96919687A EP 96919687 A EP96919687 A EP 96919687A EP 0815077 A1 EP0815077 A1 EP 0815077A1
Authority
EP
European Patent Office
Prior art keywords
titanium dioxide
caprolactam
liquid phase
water
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96919687A
Other languages
English (en)
French (fr)
Inventor
Eberhard Fuchs
Tom Witzel
Klemens Flick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0815077A1 publication Critical patent/EP0815077A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/08Preparation of lactams from carboxylic acids or derivatives thereof, e.g. hydroxy carboxylic acids, lactones or nitriles

Definitions

  • the present invention relates to a new process for the preparation of cyclic lactams by reacting aminocarbonitriles with water in the presence of catalysts.
  • US Pat. No. 2,301,964 relates to the uncatalyzed conversion of 6-aminocapronitrile to caprolactam in aqueous solution at 285 ° C. The yields are below 80%.
  • FR-A 2 029 540 describes a process for the cyclization of 6-aminocapronitrile to caprolactam by means of homogeneous metal catalysts from the zinc and copper group in aqueous solution, with caprolactam being obtained in yields of up to 83%.
  • caprolactam being obtained in yields of up to 83%.
  • the complete separation of the catalyst from the valuable product caprolactam poses problems since this forms complexes with the metals used.
  • the object of the present invention was therefore to provide a process for the preparation of cyclic lactams by reacting aminocarbonitriles with water which does not have the disadvantages described above.
  • the starting materials in the process according to the invention are aminocarbonitriles, preferably those of the general formula I.
  • n and m can each have the values 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and the sum of n + m is at least 3, preferably at least 4.
  • R 1 and R 2 can in principle be substituents of any kind, it should only be ensured that the desired cyclization reaction is not influenced by the substituents.
  • R 1 and R 2 are independently Ci-C ⁇ -alkyl or C 5 -C 7 cycloalkyl groups or C 6 -Ci 2 ⁇ aryl groups.
  • Particularly preferred starting compounds are aminocarboxylic acid nitriles of the general formula
  • m has a value of 3, 4, 5 or 6, in particular 5.
  • the starting compound is 6-aminocaproic acid nitrile.
  • the reaction is carried out in the liquid phase at temperatures of generally 140 to 320 ° C, preferably 160 to 280 ° C; the pressure is generally in the range from 1 to 250 bar, preferably from 5 to 150 bar, care being taken that the reaction mixture under the conditions used is predominantly, i.e. without the catalyst present in the solid phase, is liquid.
  • the residence times are generally in the range from 1 to 120, preferably 1 to 90 and in particular 1 to 60 minutes. In some cases, dwell times of 1 to 10 minutes have proven to be completely sufficient.
  • At least 0.01 mol, preferably 0.1 to 20 and in particular 1 to 5 mol, of water are used per mol of aminocarbonitrile.
  • the aminocarbonitrile is advantageously in the form of a 1 to 50% by weight, in particular 5 to 50% by weight, particularly preferably 5 to 30% by weight solution in water (in which case the solvent is also the reactant) or used in water / solvent mixtures.
  • solvents are alkanols such as methanol, ethanol, n- and i-propanol, n-, i- and t-butanol and polyols such as diethylene glycol and tetraethylene glycol, hydrocarbons such as petroleum ether, benzene, toluene, xylene, lactams such as pyrrolidone or caprolactam or alkyl-substituted lactams such as N-methylpyrrolidone, N-methylcaprolactam or N-ethylcaprolactam and carboxylic acid esters, preferably called carboxylic acids having 1 to 8 carbon atoms.
  • Ammonia can also be present in the reaction.
  • Mixtures of organic solvents can of course also be used.
  • Mixtures of water and alkanols in a water / alkanol weight ratio of 1 to 75 to 25 to 99, preferably 1 to 50 50 to 99 have proven to be particularly advantageous in some cases.
  • the process according to the invention is carried out in the presence of titanium dioxide catalysts which have a rutile content in the range from 0.1 to 95, preferably from 1 to 90% by weight and an anatase content in the range from 99.9 to 5, preferably from 99 to 10 wt .-%, each based on the total content of titanium dioxide.
  • the reaction is carried out in a fixed bed, the catalysts being used in the form of strands or tablets, the tablets and strands preferably having a diameter between 1 and 10 mm.
  • titanium dioxide powder which already has the desired content of anatase and rutile or which is obtained by pyrolysis either starting from a pure anatase modification or a mixed form is used
  • Anatase and rutile phases or a mixture of pure anatase and rutile modifications are obtained by using the appropriate temperature and residence time (both are known to the person skilled in the art, for example from Catalysis Today 14, (1992) 225-242). pyrolyzed until the desired anatase to rutile ratio is reached.
  • Corresponding powders are available on the market, for example the titanium dioxide powders P25® (20 to 30% by weight of rutile and 80 to 70% by weight of anatase) from Degussa as well as S150® and S140® (each 100% by weight). % Anatas) by Finti-Kemira.
  • the titanium dioxide can be used as such or as a supported catalyst, whereby it can usually be applied to a mechanically and chemically stable support, usually with a high surface area.
  • the titanium dioxide can have been produced by precipitation from aqueous solutions, e.g. after the sulfate process or by other methods such as the pyrogenic production of fine titanium dioxide powders, which are commercially available.
  • the rutile / anatase-containing titanium dioxide can be mixed with other oxides such as aluminum oxide, zirconium oxide or cerium oxide.
  • oxides or their precursor compounds which can be converted into the oxides by calcining, can be prepared from solution, for example, by co-precipitation. In general, a very good distribution of the two oxides used is obtained.
  • the oxide or Precursor mixtures can also be precipitated by precipitation of one oxide or precursor in the presence of the second oxide or precursor, which is present as a suspension of finely divided particles.
  • Another method consists in mechanical mixing of the oxide or precursor powder, this mixture being able to be used as a starting material for the production of strands or tablets.
  • a ceramic support can be coated with titanium dioxide in a thin layer by hydrolysis of titanium isopropylate or other Ti alkoxides.
  • Another suitable compound is TiCl.
  • Suitable carriers are powders, extrudates or tablets of titanium dioxide itself or other stable oxides such as silicon dioxide. The carriers used can be designed to be macroporous in order to improve the mass transport. It is important that care is taken in the pyrolysis of the titanium dioxide that both rutile and anatase phases occur in the above-mentioned areas.
  • the process according to the invention gives cyclic lactams, in particular caprolactam, in high yield with good selectivities and good constancy of the catalyst activity.
  • a solution of 6-aminocapronitrile (ACN) in water and ethanol was introduced into the in a heated tubular reactor of 25 ml (diameter 6 mm; length 800 mm) filled with titanium dioxide in the form of tablets or strands at 100 bar weight ratios given in the table.
  • the product stream leaving the reactor was analyzed by gas chromatography. The results are also shown in the table. table
  • Example catalyst form sulfate content rutile anatase BET A U S [%] [%] [m / g]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Polyamides (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

Herstellung cyclischer Lactame durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser, wobei in flüssiger Phase in Gegenwart heterogener Katalysatoren auf der Basis von Titandioxid mit einem Rutil-Gehalt im Bereich von 0,1 bis 95 Gew.-% und einem Anatas-Gehalt im Bereich von 99,9 bis 5 Gew.-%, jeweils bezogen auf den Gesamtgehalt an Titandioxid, gearbeitet wird.

Description

TITANDIOXIDKATALYSIERTE CYCLISIERUNG IN FLÜSSIGER PHASE VON 6-A IN0CAPR0NSAURENITRIL ZU CAPROLACTAM
Beschreibung
Die vorliegende Erfindung betrifft ein neues Verfahren zur Her¬ stellung von cyclischen Lactämen durch Umsetzung von Aminocarbon- säurenitrilen mit Wasser in Gegenwart von Katalysatoren.
Aus der US-A 4 628 085 ist die Umsetzung von 6-Aminocapronsäure- nitril mit Wasser in der Gasphase an saurem Kieselgel bei 300°C bekannt. Als Produkt der quantitativ verlaufenden Umsetzung wird mit einer anfänglichen Selektivität von 95 % Caprolactam er¬ halten, doch ist ein schneller Produktivitäts- und Selektivitäts- rückgang festzustellen. Ein ähnliches Verfahren wird in der
US-A 4 625 023 beschrieben, nach der ein hochverdünnter Gasstrom aus 6-Aminocapronsäurenitril, Adipinsäuredinitril, Ammoniak, Wasser und Trägergas über ein Kieselgel- und ein Kupfer/Chrom/ Barium-Titanoxid Katalysatorbett geleitet wird. Bei 85 % Umsatz wird Caprolactam mit einer Selektivität von 91 % erhalten. Auch hier ist eine schnelle Katalysatordesaktivierung zu beobachten.
Gegenstand der US-A 2 301 964 ist die nicht katalysierte Um¬ setzung von 6-Aminocapronsäurenitril zu Caprolactam in wäßriger Lösung bei 285°C. Die Ausbeuten liegen unter 80 %.
Die FR-A 2 029 540 beschreibt ein Verfahren zur Cyclisierung von 6-Aminocapronsäurenitril zu Caprolactam mittels homogener Metall¬ katalysatoren aus der Zink- und Kupfergruppe in wäßriger Lösung, wobei Caprolactam in Ausbeuten bis zu 83 % erhalten wird. Die vollständige Abtrennung des Katalysators vom Wertprodukt Capro¬ lactam bereitet jedoch Probleme, da dieses Komplexe mit den ver¬ wendeten Metallen bildet.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung cyclischer Lactame durch Umsetzung von Amino- carbonsäurenitrilen mit Wasser zur Verfügung zu stellen, das die vorstehend beschriebenen Nachteile nicht mit sich bringt.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Um¬ setzung in flüssiger Phase in Gegenwart heterogener Katalysatoren auf der Basis von Titandioxid mit einem Rutil-Gehalt im Bereich von 0,1 bis 95 Gew.-% und einem Anatas-Gehalt von 99,9 bis 5 Gew.-%,. jeweils bezogen auf den Gesamtgehalt an Titandioxid, durchgeführt wird. Bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens sind den Unteransprüchen zu entnehmen.
Als Ausgangsstoffe im erfindungsgemäßen Verfahren werden Amino- carbonsäurenitrile, vorzugsweise solche der allgemeinen Formel I
eingesetzt, wobei n und m jeweils die Werte 0, 1, 2, 3, 4, 5, 6, 7, 8 und 9 haben können und die Summe aus n + m mindestens 3, vorzugsweise mindestens 4 beträgt.
R1 und R2 können prinzipiell Substituenten jeglicher Art sein, wobei lediglich sichergestellt sein sollte, daß die gewünschte Cyclisierungsreaktion durch die Substituenten nicht beeinflußt wird. Vorzugsweise sind R1 und R2 unabhängig voneinander Ci-Cβ-Alkyl- oder C5-C7-Cycloalkylgruppen oder C6-Ci2~Arylgruppen.
Besonders bevorzugte Ausgangsverbindungen sind Aminocarbonsäure- nitrile der allgemeinen Formel
H2N—(CH2)rπ—C=N
wobei m einen Wert von 3, 4, 5 oder 6, insbesondere 5 aufweist. Für m = 5 ergibt sich als Ausgangsverbindung 6-Aminocapronsäure- nitril.
Nach dem erfindungsgemäßen Verfahren werden die vorstehend be- schriebenen A inocarbonsäurenitrile mit Wasser in flüssiger Phase unter Verwendung heterogener Katalysatoren zu cyclischen Lactämen umgesetzt. Bei Verwendung von Aminocarbonsäurenitrilen der Formel I erhält man die entsprechenden cyclischen Lactame der Formel II
wobei n, m, R1 und R2 die vorstehend genannte Bedeutung haben. Besonders bevorzugte Lactame sind solche, in denen n = 0 ist und m einen Wert von 4,5 oder 6 hat, insbesondere 5 (im letzteren Fall erhält man Caprolactam) .
Die Umsetzung wird in flüssiger Phase bei Temperaturen von im allgemeinen 140 bis 320°C, vorzugsweise 160 bis 280°C, durch¬ geführt; der Druck liegt im allgemeinen im Bereich von 1 bis 250 bar, vorzugsweise von 5 bis 150 bar, wobei darauf zu achten ist, daß das Reaktionsgemisch unter den angewandten Bedingungen zum überwiegenden Teil, d.h. ohne den in fester Phase vorliegen¬ den Katalysator, flüssig ist. Die Verweilzeiten liegen im allge¬ meinen im Bereich von 1 bis 120, vorzugsweise 1 bis 90 und ins¬ besondere 1 bis 60 min. In einigen Fällen haben sich Verweilzei¬ ten von 1 bis 10 min als völlig ausreichend erwiesen.
Pro mol Aminocarbonsäurenitril werden im allgemeinen mindestens 0,01 mol, vorzugsweise 0,1 bis 20 und insbesondere 1 bis 5 mol Wasser eingesetzt.
Vorteilhaft wird das Aminocarbonsäurenitril in Form einer 1 bis 50 gew.-%igen, insbesondere 5 bis 50 gew.-%igen, besonders vor¬ zugsweise 5 bis 30 gew.-%igen Lösung in Wasser (wobei dann das Lösungsmittel gleichzeitig Reaktionspartner ist) oder in Wasser/ Lösungsmittel-Gemischen eingesetzt. Als Lösungsmittel seien bei- spielhaft Alkanole wie Methanol, Ethanol, n- und i-Propanol, n-, i- und t-Butanol und Polyole wie Diethylenglykol und Tetra- ethylenglykol, Kohlenwasserstoffe wie Petrolether, Benzol, Toluol, Xylol, Lactame wie Pyrrolidon oder Caprolactam oder alkylsubstituierte Lactame wie N-Methylpyrrolidon, N-Methylcapro- lactam oder N-Ethylcaprolactam sowie Carbonsäureester, vorzugs¬ weise von Carbonsäuren mit 1 bis 8 C-Atomen genannt. Auch Ammo¬ niak kann bei der Reaktion anwesend sein. Selbstverständlich können auch Mischungen organischer Lösungsmittel Anwendung finden. Mischungen aus Wasser und Alkanolen im Gewichtsverhältnis Wasser/Alkanol von 1 bis 75 zu 25 bis 99, vorzugsweise 1 bis 50 zu 50 bis 99 haben sich in einigen Fällen als besonders vorteil¬ haft herausgestellt.
Das erfindungsgemäße Verfahren führt man in Gegenwart von Titan- dioxid-Katalysatoren aus, die einen Rutil-Gehalt im Bereich von 0,1 bis 95, bevorzugt von 1 bis 90 Gew.-% und einen Anatas-Gehalt im Bereich von 99,9 bis 5, bevorzugt von 99 bis 10 Gew.-%, je¬ weils bezogen auf den Gesamtgehalt an Titandioxid, aufweisen.
In einer bevorzugten Ausführungsform führt man die Umsetzung in einem Festbett durch, wobei die Katalysatoren in Form von Strän¬ gen oder Tabletten eingesetzt werden, bevorzugt weisen dabei die Tabletten und Stränge einen Durchmesser zwischen 1 und 10 mm auf.
Zur Herstellung der Stränge und Tabletten, die man nach üblichen Methoden herstellen kann, verwendet man Titandioxid-Pulver, das bereits den gewünschten Gehalt an Anatas und Rutil aufweist oder das man durch Pyrolyse entweder ausgehend von einer reinen Ana- tas-Modifikation oder einer Mischform enthaltend Anatas- und Ru- til-Phasen oder einer Mischung von reinen Anatas- und Rutil-Modi¬ fikationen erhält, indem man bei entsprechender Temperatur und Verweilzeit (beides ist dem Fachmann bekannt, beispielsweise aus Catalysis Today 14, (1992) 225 - 242) solange pyrolysiert, bis das gewünschte Anatas-zu-Rutil-Verhältnis erreicht ist.
Entsprechende Pulver sind auf dem Markt erhältlich, beispiels¬ weise die Titandioxid-Pulver P25® (20 bis 30 Gew.-% Rutil und 80 bis 70 Gew.-% Anatas) von Degussa sowie S150® und S140® (jeweils 100 Gew.-% Anatas) von Finti-Kemira.
Das Titandioxid kann als solches oder als Trägerkatalysator, wo¬ bei es auf einen mechanisch und chemisch stabilen Träger meist mit hoher Oberfläche aufgebracht werden kann, verwendet werden.
Das Titandioxid kann durch Fällung aus wäßrigen Lösungen herge¬ stellt worden sein, z.B. nach dem Sulfatprozeß oder durch andere Verfahren wie die pyrogene Herstellung von feinen Titandioxid- Pulvern, die käuflich zu erhalten sind.
Gewünschtenfalls kann man das Rutil-/Anatas-haltige Titandioxid mit anderen Oxiden wie Aluminiumoxid, Zirkonoxid oder Ceroxid abmischen. Zur Herstellung von Gemischen der verschiedenen Oxide stehen mehrere Methoden zur Wahl. Die Oxide oder deren Vorläufer¬ verbindungen, die durch Calzinieren in die Oxide umwandelbar sind, können z.B. durch eine gemeinsame Fällung aus Lösung herge¬ stellt werden. Dabei wird im allgemeinen eine sehr gute Ver¬ teilung der beiden verwendeten Oxide erhalten. Die Oxid- oder Vorläufergemische können auch durch eine Fällung des einen Oxids oder Vorläufers in Gegenwart des als Suspension von fein verteil¬ ten Teilchen vorliegenden zweiten Oxids oder Vorläufers ausge¬ fällt werden. Eine weitere Methode besteht im mechanischen Mi- sehen der Oxid- oder Vorlauferpulver, wobei dieses Gemisch als Ausgangsmaterial zur Herstellung von Strängen oder Tabletten Ver¬ wendung finden kann.
Zur Herstellung von Trägerkatalysatoren bieten sich verschiedene Methoden an. So kann man das Titandioxid in Form eines Sols durch einfaches Tränken auf den Träger aufbringen. Durch Trocknen und Calzinieren werden die flüchtigen Bestandteile des Sols üblicher¬ weise aus dem Katalysator entfernt. Solche Sole sind für Titan¬ dioxid käuflich erhältlich.
Eine weitere Möglichkeit zum Aufbringen von Schichten des aktiven Titandioxids besteht in der Hydrolyse oder Pyrolyse von organi¬ schen oder anorganischen Verbindungen. So kann ein keramischer Träger mit Titandioxid durch Hydrolyse von Titan-Isopropylat oder anderen Ti-Alkoxiden in dünner Schicht belegt werden. Eine wei¬ tere geeignete Verbindung ist TiCl . Geeignete Träger sind Pulver, Stränge oder Tabletten des Titandioxids selbst oder anderer sta¬ biler Oxide wie Siliciumdioxid. Die verwendeten Träger können zur Verbesserung des Stofftransports makroporös ausgestaltet sein. Wichtig ist, daß man bei der Pyrolyse des Titandioxids darauf achtet, daß sowohl Rutil- als auch Anatasphasen in den obenge¬ nannten Bereichen entstehen.
Nach dem erfindungsgemäßen Verfahren erhält man cyclische Lactame, insbesondere Caprolactam in hoher Ausbeute bei guten Selektivitäten und guter Konstanz der Katalysatoraktivität.
Beispiele
Beispiele 1 bis 7
In einen geheizten Rohrreaktor von 25 ml Inhalt (Durchmesser 6 mm; Länge 800 mm), der mit Titandioxid in Form von Tabletten oder Strängen gefüllt war, wurde bei 100 bar eine Lösung von 6-Aminocapronsäurenitril (ACN) in Wasser und Ethanol in den in der Tabelle angegebenen Gewichtsverhältnissen geleitet. Der den Reaktor verlassende Produktstrom wurde gaschromatographisch ana¬ lysiert. Die Ergebnisse sind ebenfalls der Tabelle zu entnehmen. Tabelle
Bsp. Katalysator Form Sulfat-Gehalt Rutil Anatas BET A U S [%] [%] [m /g]
1 P25 3 mm Strang 0,01 93 7 15 92 95 97
2 P25/DT511 3 mm Strang 0,5 18 82 41 90 98 93
3 P25/S1502 3 mm Strang 0,06 16 84 50 89 97 92
4 P25 1, 5 mm Strang n.b. 20 80 48 91 99 93 zum Vergleich
5 VKR611®3 1, 5 mm Strang n.b. 100 0 5 5 10 53
6 DT51 4 mm Strang n.b. 0 100 36 78 90 85
7 S150 3 mm Strang 0,17 0 100 108 90 99 91
1 Mischung aus 2/3 Gew.-Teilen P25®-Pulver, Rest DT51® (Rhδne-Poulenc)
2 Mischung aus 2/3 Gew.-Teilen P25®-Pulver, Rest S150® (Finti-Kemira)
3 Rutil von Fa. Sachtleben, behandelt durch 2h Tempern bei 875°C n.b.= nicht bestimmt
A= Ausbeute; S = Selektivität; U = Umsatz BET= Oberfläche nach BET gemäß DIN 66 131

Claims

Patentansprüche
1. Verfahren zur Herstellung cyclischer Lactame durch Umsetzung von Aminocarbonsäurenitrilen mit Wasser in Gegenwart von
Katalysatoren, dadurch gekennzeichnet, daß man die Umsetzung in flüssiger Phase in Gegenwart heterogener Katalysatoren auf der Basis von Titandioxid mit einem Rutil-Gehalt im Bereich von 0,1 bis 95 Gew.-% und einem Anatas-Gehalt im Bereich von 99,9 bis 5 Gew.-%, jeweils bezogen auf den Gesamtgehalt an Titandioxid, durchführt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Umsetzung bei einer Temperatur im Bereich von 140 bis 320°C durchführt.
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekenn¬ zeichnet, daß man Aminocarbonsäurenitrile der Formel
H2N—(CH2)Itr—C---≡N
wobei
m 3, 4, 5 oder 6 ist, einsetzt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als Aminocarbonsäurenitril 6-Aminocapronsäurenitril einsetzt
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, daß man eine 1 bis 50 gew.-%ige Lösung des Amino- carbonsäurenitrils in Wasser oder in Wasser/org. Lösungs¬ mittel-Gemischen einsetzt.
EP96919687A 1995-05-18 1996-05-07 Titandioxidkatalysierte cyclisierung in flüssiger phase von 6-aminocapronsäurenitril zu caprolactam Withdrawn EP0815077A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19517821 1995-05-18
DE19517821A DE19517821A1 (de) 1995-05-18 1995-05-18 Verfahren zur Herstellung von Caprolactam
PCT/EP1996/001891 WO1996036600A1 (de) 1995-05-18 1996-05-07 Titandioxidkatalysierte cyclisierung in flüssiger phase von 6-aminocapronsäurenitril zu caprolactam

Publications (1)

Publication Number Publication Date
EP0815077A1 true EP0815077A1 (de) 1998-01-07

Family

ID=7761968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96919687A Withdrawn EP0815077A1 (de) 1995-05-18 1996-05-07 Titandioxidkatalysierte cyclisierung in flüssiger phase von 6-aminocapronsäurenitril zu caprolactam

Country Status (20)

Country Link
EP (1) EP0815077A1 (de)
JP (1) JPH11505230A (de)
KR (1) KR19990014859A (de)
CN (1) CN1075810C (de)
AU (1) AU700098B2 (de)
BG (1) BG102027A (de)
BR (1) BR9608470A (de)
CA (1) CA2218132A1 (de)
CZ (1) CZ289460B6 (de)
DE (1) DE19517821A1 (de)
EA (1) EA199700402A1 (de)
HU (1) HU220356B (de)
MX (1) MX9708676A (de)
NO (1) NO307964B1 (de)
NZ (1) NZ308485A (de)
PL (1) PL323389A1 (de)
SK (1) SK154897A3 (de)
TR (1) TR199701385T1 (de)
TW (1) TW340840B (de)
WO (1) WO1996036600A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738464A1 (de) * 1997-09-03 1999-03-04 Basf Ag Verwendung von Formkörpern als Katalysator zur Herstellung von Caprolactam
DE19738463C2 (de) * 1997-09-03 1999-09-23 Basf Ag Verfahren zur Herstellung von Caprolactam
CN101890370B (zh) * 2010-08-05 2012-05-30 上海交通大学 基于纳米二氧化钛和聚膦腈的复合光催化剂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029540A (en) * 1935-10-01 1936-02-04 Porteous William Trailer
US2301964A (en) * 1941-09-12 1942-11-17 Du Pont Method of preparing lactams
JPS4821958B1 (de) * 1969-01-28 1973-07-02
US4628085A (en) * 1985-09-03 1986-12-09 Allied Corporation Use of silica catalyst for selective production of lactams
US4625023A (en) * 1985-09-03 1986-11-25 Allied Corporation Selective conversion of aliphatic and aromatic aminonitriles and/or dinitriles into lactams
JP2969779B2 (ja) * 1990-05-01 1999-11-02 株式会社明電舎 濃淡画像処理装置
DE4339648A1 (de) * 1993-11-20 1995-05-24 Basf Ag Verfahren zur Herstellung von Caprolactam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9636600A1 *

Also Published As

Publication number Publication date
HUP9801131A3 (en) 1999-05-28
WO1996036600A1 (de) 1996-11-21
PL323389A1 (en) 1998-03-30
HUP9801131A2 (hu) 1998-08-28
NO307964B1 (no) 2000-06-26
NO975268L (no) 1997-11-17
SK154897A3 (en) 1998-07-08
EA199700402A1 (ru) 1999-06-24
CZ357897A3 (cs) 1998-04-15
HU220356B (hu) 2001-12-28
JPH11505230A (ja) 1999-05-18
TR199701385T1 (xx) 1998-04-21
BG102027A (en) 1998-08-31
CN1184467A (zh) 1998-06-10
DE19517821A1 (de) 1996-11-21
CN1075810C (zh) 2001-12-05
BR9608470A (pt) 1998-12-29
MX9708676A (es) 1998-02-28
CA2218132A1 (en) 1996-11-21
TW340840B (en) 1998-09-21
CZ289460B6 (cs) 2002-01-16
NO975268D0 (no) 1997-11-17
NZ308485A (en) 2000-01-28
KR19990014859A (ko) 1999-02-25
AU5814796A (en) 1996-11-29
AU700098B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
EP0729453B1 (de) Verfahren zur herstellung von caprolactam
EP0876341B1 (de) Verfahren zur gleichzeitigen herstellung von caprolactam und hexamethylendiamin
DE68919134T2 (de) Katalytischer Prozess für die Herstellung von Oximen.
EP0801647B1 (de) Verfahren zur gleichzeitigen herstellung von caprolactam und hexamethylendiamin
EP0815077A1 (de) Titandioxidkatalysierte cyclisierung in flüssiger phase von 6-aminocapronsäurenitril zu caprolactam
WO1999028296A1 (de) Verfahren zur herstellung von lactamen
DE3309355A1 (de) Verfahren zur herstellung von pyrrolen
EP0815078A1 (de) Verfahren zur herstellung von caprolactam
EP1161409B1 (de) Verfahren zur herstellung cyclischer alpha, beta-ungesättigter ketone
EP0769004B1 (de) Verfahren zur herstellung von cyclischen lactamen
EP1015424B1 (de) Verwendung von formkörpern als katalysator zur herstellung von caprolactam
EP1565435B1 (de) Verfahren zur reinigung von caprolactam
DE69914606T2 (de) Verfahren zur herstellung von lactamen durch cyclisierende hydrolyse von aminonitrilen
EP1015425B1 (de) Verfahren zur herstellung von caprolactam
EP1562896B1 (de) Verfahren zur reinigung von caprolactam
DE3730185A1 (de) Verfahren zur herstellung von cyclopentanon
DE2552652C3 (de) Verfahren zum Herstellen von Dibenzofuran
DE10028950A1 (de) Verfahren zur Herstellung von Caprolactam
MXPA97008676A (en) Caprolact preparation
DE4321692A1 (de) Verfahren zur Herstellung von cyclischen Ketonen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19991126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020523