EP1007795B1 - Procede de pose de tuyaux - Google Patents

Procede de pose de tuyaux Download PDF

Info

Publication number
EP1007795B1
EP1007795B1 EP98902075A EP98902075A EP1007795B1 EP 1007795 B1 EP1007795 B1 EP 1007795B1 EP 98902075 A EP98902075 A EP 98902075A EP 98902075 A EP98902075 A EP 98902075A EP 1007795 B1 EP1007795 B1 EP 1007795B1
Authority
EP
European Patent Office
Prior art keywords
trench
stops
pipe
pipe elements
thixotropic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98902075A
Other languages
German (de)
English (en)
Other versions
EP1007795A1 (fr
Inventor
Thierry Lauzanne
Gérard ZYGOMALAS
Robert Lacroix
Philippe Saffre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurovia SA
Original Assignee
Entreprise Jean Lefebvre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entreprise Jean Lefebvre filed Critical Entreprise Jean Lefebvre
Publication of EP1007795A1 publication Critical patent/EP1007795A1/fr
Application granted granted Critical
Publication of EP1007795B1 publication Critical patent/EP1007795B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/10Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/12Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with equipment for back-filling trenches or ditches

Definitions

  • the present invention relates to a method of laying of pipes and filling of trenches with one or more several flows of a thixotropic material.
  • Pipe laying and backfilling cut by conventional methods are a source of constraints related to the safety of men whose presence in the bottom of the trench is necessary to the installation of the pipes, with the quality of installation, especially the thickness and the quality of compaction of the bed and the quality of the pipe coating.
  • the method according to the invention makes it possible to avoid these constraints thanks to the elimination of the laying bed, removing the hose setting at the bottom of the trench, thanks to a perfect coating of the pipe and a good resistance of the fill material which remains however drawable over time.
  • the method according to the invention allows advantageously to dig the trench over a width lower than the imposed standards, to get rid of altimetric adjustment of the pipes in the bottom of the trench before backfilling. Consequently, this saves materials, and for personnel, reduce risk, arduousness and hours of work.
  • Said method is based on the use of properties of Archimedes' push and character thixotropic backfill material.
  • the processes of pipe laying using the properties of thrust Archimedes are known, especially in swampy terrain, where pipes can be laid in bentonic mud in order to hold the walls of the trench.
  • DE-A-2 905 146 describes a process installation of underground pipes which consists of dig a trench and then fill it with a suspension thixotropic, for example a bentonite suspension, which supports the walls of the trench.
  • a suspension thixotropic for example a bentonite suspension
  • US-A-3,993,192 relates to a cleat system for pipeline which limits displacement side of the pipeline during its installation.
  • the wedges are nestable plastic tubs that are fills with a certain amount of soil depending on the pressure that we want to exert on the pipe.
  • the shims described in this document have not for function the altimetric adjustment of the pipe.
  • the trench width l is determined in depending on the outside diameter of the pipe: l is equal to the outside diameter of the added pipe of 200 mm in the where armor and 450mm are not provided when providing shields. l is then possibly rounded to the nearest decimeter.
  • the diameter outside of the pipe is the outside diameter at the collar.
  • Shielding means removable protection staying along the walls of the trench and ensuring the safety of working men in the bottom of the trench. This shielding is compulsory if the depth of the trench is greater than 1350 mm.
  • the width of trench is imposed by the data of the booklet n ° 70 of the applicable General Technical Conditions to public works contracts voted by decree n ° 92-72 January 16, 1992.
  • This width is the sum of outside diameter of the pipe and a constant equal to 800 mm for any diameter less than or equal to 600 mm and equal to 1000 mm for any diameter greater than 600 mm.
  • the method according to the invention makes it possible to reduce the excavation width from 350 to 800 mm in relation to the excavation width in accordance with the specifications of Issue No. 70.
  • the elements of pipes are assembled at the bottom of the trench and at at least three stops are placed in the trench. These stops are positioned by altimetric adjustment, then wedged on the side walls of the trench. They come to cap the pipe elements prohibiting their lateral movements and limiting their upward vertical displacements.
  • the stops are plates, preferably metallic, which have a light opening to the lower part of the plate, oriented towards the bottom of the trench, the width of said corresponding lumen substantially to the outside diameter of the elements of pipes.
  • the background of the light is semi-circular in shape and has a corresponding diameter substantially to the outside diameter of the elements of pipes. The height of the light is greater than outside diameter of the pipe elements.
  • the spacing between the stops is determined by according to the characteristics of the pipe elements, to know inside diameter, outside diameter and mass volume, and depending on the weight of each stop.
  • each stopper is at less equal to the difference between the Archimedes thrust exerted by the thixotropic material on the elements of pipe and the weight of said pipe elements.
  • the backfilling of the trench is then performed in one or more times up to the base of pavement reconstruction.
  • the backfill material must be poured in the trench to a minimum height previously determined by a theoretical calculation.
  • the beta coefficient is the ratio of the wet section squared the outside diameter of the pipe. From the hydraulic relationships given in tables, we deduce from the beta coefficient the height for which there is balance between the weight of the pipe and Archimedes' push. The stop to exercise, if the pipe is flooded, is equal to the difference between the Archimedes thrust and the weight of the pipe.
  • the minimum amount of material backfill to be used during the first stage of backfilling is such that the height reached is greater than the equilibrium height calculated as explained above.
  • the pipes are flooded up to the generator top of the pipe.
  • the pipe goes up to the stops under the effect of the Archimedes thrust exerted by the material of backfilling.
  • Additional backfill is possibly performed with thixotropic material up to the road reconstruction base.
  • the water / cement ratio of this concrete is in the range of 5 to 12.
  • the thixotropic material according to the invention advantageously comprising aggregates consisting of silico-aluminous fly ash provides excellent sealing of the assembly constituted by the pipe and said thixotropic material.
  • Leak tests have been carried out on pipes 5 m long and 400 mm in diameter perforated with one or two 4 mm diameter holes, after backfilling the trench with the material thixotropic according to the invention and with a sand 0/4 limestone.
  • a thixotropic material with a density between 12 kN / m 3 and 20 kN / m 3 , having a sagging cone (measured according to standard NF-P18-451) of the order of 15 cm to the soil condition, an immediate bearing index (measured after 24 hours and according to standard NF-P94-078) greater than a value of 10 and a compressive strength (measured according to standard NF-P98-232.1) of the order of 1 MPa, after final setting.
  • the thixotropic material according to the present invention hardens in about 2 hours.
  • the following examples illustrate the invention without limiting its scope.
  • PVC pipes have an outside diameter of 400 mm.
  • the depth of the trench is 1.20 m.
  • the trench is made over a width of 1.35 m and a depth of 1.20 m plus 0.1 m for the laying bed, which corresponds to a cut volume equal to 1.75 m 3 / ml (meter cube per linear meter).
  • the laying bed is spread over a thickness of 0.1 m, then adjusted and compacted.
  • the pipe elements are assembled and adjusted in altimetry at the bottom of the trench.
  • the coating of the pipe is carried out in successive layers, up to 0.1 m above the upper generator of the pipe, by a man present in the bottom of the trench.
  • the backfill is then carried out to the coast - 0.40 m of reconstruction of the roadway, i.e. a volume of 1.13 m 3 / ml.
  • the repair. of the pavement represents a volume of 0.50 m 3 / ml for the base layers and 170 kg / ml of asphalt for the wearing course in 5 cm thickness.
  • the width of the trench is 600 mm, ie a cut volume of 0.78 m 3 / ml.
  • the pipes are assembled at the bottom of the trench.
  • the backfilling is carried out to the pavement reconstruction coast in one or more times for a total volume equal to 0.41 m 3 / ml, the repair of the pavement representing a volume of 0.20 m 3 / ml for the seat layers and 75 kg / ml for the wearing course in 5 cm thickness.
  • the process according to the invention therefore allows a saving of 0.97 m 3 / ml of cuttings, 0.72 m 3 / ml of fill, 0.3 m 3 / ml for the reconstitution of the ground layer of the roadway , and 95 kg / ml of asphalt for the wearing course, that is to say a material saving of between 55 and 60%.
  • 90A concrete pipes have an outside diameter of 500 mm.
  • the depth of the trench is 2.50 m.
  • the installation of shielding is compulsory.
  • the trench is made over a width of 1.45 m and a depth of 2.5 m, which corresponds to a cut volume equal to 3.9 m 3 / ml.
  • the laying bed is 0.145 m 3 / ml and the pavement reconstruction fill 2.73 m 3 / ml.
  • the repair of the pavement represents a volume of 0.53 m 3 / ml for the base layers, and 180 kg / ml of asphalt for the wearing course in 5 cm thickness.
  • the width of the trench which includes the shielding is 1.10 m, i.e. a cut volume of 2.86 m 3 / ml.
  • the backfilling is carried out to the pavement reconstruction coast in one or more times for a total volume equal to 2.11 m 3 / ml, and the road repair is carried out for a volume of 0.39 m 3 / ml for the base layers and 137 kg / ml of asphalt for the wearing course in 5 cm thickness.
  • the process according to the invention therefore allows a saving of 1.04 m 3 / ml of cuttings, 0.64 m 3 / ml of fill, 0.14 m 3 / ml for the reconstitution of the layers of the pavement, and 43 kg / ml of mixes for the wearing course, that is to say a material saving of approximately 25%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Sewage (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Pipe Accessories (AREA)
  • Road Paving Structures (AREA)

Description

La présente invention concerne un procédé de pose de tuyaux et le remblaiement de tranchée par une ou plusieurs coulées d'un matériau thixotrope.
La pose de tuyau et le remblaiement de tranchée par des procédés classiques sont source de contraintes liées à la sécurité des hommes dont la présence dans le fond de la tranchée est nécessaire pour la mise en place des tuyaux, à la qualité de pose, notamment l'épaisseur et la qualité de compactage du lit de pose et à la qualité de l'enrobage du tuyau.
Le procédé selon l'invention permet d'éviter ces contraintes grâce à la suppression du lit de pose, à la suppression du réglage du tuyau au fond de la tranchée, grâce à un parfait enrobage du tuyau et à un bonne résistance du matériau de remblaiement qui reste toutefois piochable dans le temps.
Le procédé selon l'invention permet avantageusement de creuser la tranchée sur une largeur inférieure aux normes imposées, de s'affranchir du réglage altimétrique des tuyaux dans le fond de la tranchée avant le remblaiement. En conséquence, ceci permet de réaliser des économies de matériaux, et pour le personnel, de diminuer les risques, la pénibilité et la durée du travail.
Ledit procédé est basé sur l'utilisation des propriétés de la poussée d'Archimède et du caractère thixotrope du matériau de remblaiement. Les procédés de pose de tuyau utilisant les propriétés de la poussée d'Archimède sont connus, en particulier dans les terrains marécageux, où les tuyaux peuvent être posés dans une boue bentonique afin de tenir les parois de la tranchée.
DE-A-2 905 146 décrit un procédé d'installation de conduites souterraines qui consiste à creuser une tranchée puis à la remplir d'une suspension thixotrope, par exemple une suspension de bentonite, qui permet de soutenir les parois de la tranchée.
Une fois la suspension versée, les tuyaux sont mis en place au fond de la tranchée. Le procédé décrit s'affranchit de tout réglage altimétrique et n'utilise pas les propriétés de la poussée d'Archimède.
US-A-3 993 192 porte sur un système de cales pour oléoduc qui permet de limiter le déplacement latéral de la canalisation pendant son installation. Les cales sont des bacs plastiques emboítables que l'on remplit d'une certaine quantité de terre en fonction de la pression que l'on souhaite exercer sur la canalisation. Les cales décrites dans ce document n'ont pas pour fonction le réglage altimétrique de la canalisation.
Le procédé selon l'invention comprend les opérations successives suivantes:
  • a) Réalisation d'une tranchée à une largeur l et à une profondeur P et assemblage entre eux des éléments de tuyaux au fond de la tranchée.
  • b) Mise en place et réglage altimétrique de butées aptes à contrôler le déplacement des éléments de tuyaux assemblés.
  • c) Remblaiement de ladite tranchée à une hauteur H avec un matériau thixotrope à l'état de sol, de façon à faire remonter les éléments de tuyaux sous l'effet de la poussée d'Archimède.
  • d) Retrait des butées lorsque le matériau thixotrope est à l'état de gel, les éléments de tuyaux restant immobiles.
  • e) Eventuel remblaiement complémentaire de la tranchée.
  • La largeur de tranchée l est déterminée en fonction du diamètre extérieur du tuyau : l est égale au diamètre extérieur du tuyau ajouté de 200 mm dans le cas où l'on ne prévoit pas de blindage et de 450 mm lorsque l'on prévoit des blindages. l est ensuite éventuellement arrondie au décimètre le plus proche.
    Dans le cas d'un tuyau en béton, le diamètre extérieur du tuyau est le diamètre extérieur au collet.
    On entend par blindage une protection amovible se logeant le long des parois de la tranchée et permettant d'assurer la sécurité des hommes travaillant dans le fond de la tranchée. Ce blindage est obligatoire si la profondeur de la tranchée est supérieure à 1350 mm.
    Selon une pose classique, la largeur de tranchée est imposée par les données du fascicule n°70 du Cahier des clauses Techniques Générales applicables aux marchés publics de travaux voté par décret n°92-72 du 16 janvier 1992. Cette largeur est la somme du diamètre extérieur du tuyau et d'une constante égale à 800 mm pour tout diamètre inférieur ou égal à 600 mm et égale à 1000 mm pour tout diamètre supérieur à 600 mm.
    Le procédé selon l'invention permet de réduire la largeur de fouille de 350 à 800 mm par rapport à la largeur de fouille conforme aux spécifications du fascicule n°70.
    Une fois la tranchée réalisée, les éléments de tuyaux sont assemblés dans le fond de la tranchée et au moins trois butées sont mises en place dans la tranchée. Ces butées sont positionnées par réglage altimétrique, puis calées sur les parois latérales de la tranchée. Elles viennent coiffer les éléments de tuyaux interdisant leurs déplacements latéraux et limitant leurs déplacements verticaux ascendants.
    Les butées sont des plaques, de préférence métalliques, qui comportent une lumière débouchant à la partie inférieure de la plaque, orientée vers le fond de la tranchée, la largeur de ladite lumière correspondant sensiblement au diamètre extérieur des éléments de tuyaux. Le fond de la lumière est de forme hémi-circulaire et présente un diamètre correspondant sensiblement au diamètre extérieur des éléments de tuyaux. La hauteur de la lumière est supérieure au diamètre extérieur des éléments de tuyaux.
    L'espacement entre les butées est déterminé en fonction des caractéristiques des éléments de tuyaux, à savoir diamètre intérieur, diamètre extérieur et masse volumique, et en fonction du poids de chaque butée.
    La réaction exercée sur chaque butée est au moins égale à la différence entre la poussée d'Archimède exercée par le matériau thixotrope sur les éléments de tuyau et le poids desdits éléments de tuyau.
    Le remblaiement de la tranchée est ensuite réalisé en une ou plusieurs fois jusqu'à la base de reconstitution de chaussée.
    Le matériau de remblaiement doit être coulé dans la tranchée jusqu'à une hauteur minimale préalablement déterminée par un calcul théorique.
    On calcule le volume déplacé en supposant le tuyau noyé. La poussée d'Archimède exprimée en kg/ml (kilogramme par mètre linéaire) est le produit du volume déplacé par la densité du matériau de remblaiement. Le poids du tuyau étant connu, la section mouillée pour laquelle il y a équilibre entre la poussée d'Archimède et le poids du tuyau est le rapport du tuyau à la densité du matériau de remblaiement.
    Le coefficient bêta est le rapport de la section mouillée au carré du diamètre extérieur du tuyau. A partir des relations hydrauliques données dans des tables, on déduit du coefficient bêta la hauteur pour laquelle il y a équilibre entre le poids du tuyau et la poussée d'Archimède. La butée à exercer, si le tuyau est noyé, est égale à la différence entre la poussée d'Archimède et le poids du tuyau.
    La quantité minimale de matériau de remblaiement à utiliser au cours de la première étape de remblaiement est telle que la hauteur atteinte est supérieure à la hauteur d'équilibre calculée comme expliqué ci-dessus. En outre, dans un soucis de sécurité, les tuyaux sont noyés jusqu'à la génératrice supérieure du tuyau.
    Le remblaiement de la tranchée est compartimenté par les butées; on l'effectue donc en plusieurs fois. Dans le cas de tuyaux souples, la dernière portion de tuyaux non remblayée peut s'incurver sans déboítement. Par contre, dans le cas de tuyaux rigides comme les tuyaux en béton, les joints entre tuyaux permettent seulement un angle de 4° sans déboítement; il y a donc lieu de vérifier que la réservation sous le tuyau n'excède pas, par exemple 17 cm pour un tuyau de 2,4 m et 20 cm pour un tuyau de 3 m.
    Le tuyau remonte jusqu'aux butées sous l'effet de la poussée d'Archimède exercée par le matériau de remblaiement.
    Un remblaiement complémentaire est éventuellement effectué avec le matériau thixotrope jusqu'à la base de reconstitution de la chaussée.
    Le matériau thixotrope peut être un béton comprenant :
    • des granulats de diamètre maximal inférieur à 20 mm, par exemple des cendres volantes silico-alumineuses,
    • un liant représentant 2 à 6 % du poids sec des granulats,
    • un agent hydro-réducteur, par exemple des fibres naturelles ou synthétiques, en particulier des fibres polymères acryliques, représentant 0,05 à 0,15 % du poids sec des granulats.
    Le rapport eau/ciment de ce béton est de l'ordre de 5 à 12.
    Le matériau thixotrope selon l'invention comprenant avantageusement des granulats constitués de cendres volantes silico-alumineuses assure une excellente étanchéité de l'ensemble constitué par le tuyau et ledit matériau thixotrope.
    Des essais d'étanchéité ont été réalisés sur des tuyaux de longueur 5 m et de diamètre 400 mm perforés d'un ou de deux trous de 4 mm de diamètre, après remblaiement de la tranchée avec le matériau thixotrope selon l'invention et avec un sable 0/4 calcaire.
    La pression minimale à obtenir à l'essai QUEBEC est de 17 kPa au bout de 42 s. Les résultats de ces essais montrent que le matériau thixotrope selon l'invention garantit une étanchéitéité parfaite alors que le sable 0/4 calcaire donne un résultat largement hors tolérance.
    Lesdits résultats permettent d'envisager la mise en oeuvre du procédé de pose de tuyaux selon l'invention en réseau d'eaux usées dans des environnements à protéger comme les zones de champs captants d'eau potable.
    On choisira de préférence un matériau thixotrope de poids volumique compris entre 12 kN/m3 et 20 kN/m3, présentant un affaissement au cône (mesuré selon la norme NF-P18-451) de l'ordre de 15 cm à l'état de sol, un indice portant immédiat (mesuré après 24 heures et selon la norme NF-P94-078) supérieur à une valeur de 10 et une résistance en compression (mesurée selon la norme NF-P98-232.1) de l'ordre de 1 MPa, après prise définitive.
    Le matériau thixotrope selon la présente invention durcit en 2 heures environ.
    Les exemples suivants illustrent l'invention sans en limiter le portée.
    Exemple 1 : Pose de tuyaux en PVC
    Les tuyaux PVC ont un diamètre extérieur de 400 mm. La profondeur de la tranchée est de 1,20 m.
    Pose classique conformément au fascicule n°70 :
    La tranchée est réalisée sur une largeur de 1,35 m et une profondeur de 1,20 m plus 0,1 m pour le lit de pose, ce qui correspond à un volume de déblai égale à 1,75 m3/ml (mètre cube par mètre linéaire). Le lit de pose est répandu sur une épaisseur de 0,1 m, puis réglé et compacté. Les éléments de tuyaux sont assemblés et réglés en altimétrie au fond de la tranchée. L'enrobage du tuyau est effectué par couches successives, jusqu'à 0,1 m au dessus de la génératrice supérieure du tuyau, par un homme présent dans le fond de la tranchée. Le remblai est ensuite effectué jusqu'à la côte -0,40 m de reconstitution de la chaussée, soit un volume de 1,13 m3/ml. La réfection. de la chaussée représente un volume de 0,50 m3/ml pour les couches d'assise et 170 kg/ml d'enrobés pour la couche de roulement en 5 cm d'épaisseur.
    Pose selon le procédé de l'invention :
    La largeur de la tranchée est de 600 mm soit un volume de déblai de 0,78 m3/ml. Après pose des butées métalliques, les tuyaux sont assemblés en fond de tranchée. Le remblaiement est effectué jusqu'à la côte de reconstitution de la chaussée en une ou plusieurs fois pour un volume total égal à 0,41 m3/ml, la réfection de la chaussée représentant un volume de 0,20 m3/ml pour les couches d'assise et 75 kg/ml pour la couche de roulement en 5 cm d'épaisseur.
    Le procédé selon l'invention permet donc une économie de 0,97 m3/ml de déblai, 0,72 m3/ml de remblai, 0,3 m3/ml pour la reconstitution de la couche d'assise de la chaussée, et 95 kg/ml d'enrobés pour la couche de roulement, c'est-à-dire une économie de matériau comprise entre 55 et 60%.
    Exemple 2 : Pose de tuyaux en béton 90A
    Les tuyaux en béton 90A ont un diamètre extérieur de 500 mm. La profondeur de la tranchée est de 2,50 m. La pose de blindage est obligatoire.
    Pose classique conformément au fascicule n°70 :
    La tranchée est réalisée sur une largeur de 1,45 m et une profondeur de 2,5 m ce qui correspond à un volume de déblai égal à 3,9 m3/ml. Le lit de pose est de 0,145 m3/ml et le remblaiment de reconstitution de la chaussée de 2,73 m3/ml. La réfection de la chaussée représente un volume de 0,53 m3/ml pour les couches d'assise, et 180 kg/ml d'enrobés pour la couche de roulement en 5 cm d'épaisseur.
    Pose selon le procédé de l'invention :
    La largeur de la tranchée qui inclut le blindage est de 1,10 m soit un volume de déblai de 2,86 m3/ml. Le remblaiement est effectué jusqu'à la côte de reconstitution de la chaussée en une ou plusieurs fois pour un volume total égal à 2,11 m3/ml, et la réfection de chaussée est effectuée pour un volume de 0,39 m3/ml pour les couches d'assise et 137 kg/ml d'enrobés pour la couche de roulement en 5 cm d'épaisseur.
    Le procédé selon l'invention permet donc une économie de 1,04 m3/ml de déblai, 0,64 m3/ml de remblai, 0,14 m3/ml pour la reconstitution des couches d'assise de la chaussée, et 43 kg/ml d'enrobés pour la couche de roulement, c'est-à-dire une économie de matériau d'environ 25%.

    Claims (21)

    1. Procédé de pose de tuyaux, caractérisé en ce qu'il comprend les opérations successives suivantes :
      a) Réalisation d'une tranchée à une largeur l et à une profondeur P et assemblage entre eux des éléments de tuyaux au fond de la tranchée.
      b) Mise en place et réglage altimétrique de butées aptes à contrôler le déplacement des éléments de tuyaux assemblés.
      c) Remblaiement de ladite tranchée à une hauteur H avec un matériau thixotrope à l'état de sol, de façon à faire remonter les éléments de tuyaux sous l'effet de la poussée d'Archimède jusqu'à la position déterminée par les butées.
      d) Retrait des butées lorsque le matériau thixotrope est à l'état de gel, les éléments de tuyaux restant immobiles.
      e) Eventuel remblaiement complémentaire de la tranchée.
    2. Procédé selon la revendication 1, caractérisé en ce que la largeur l est égale au diamètre extérieur du tuyau ajouté de 200 mm, en l'absence de blindage.
    3. Procédé selon la revendication 1, caractérisé en ce que la largeur l est égale au diamètre extérieur du tuyau ajouté de 450 mm lorsque l'on prévoit des blindages.
    4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les butées viennent coiffer les éléments de tuyaux interdisant leurs déplacements latéraux et limitant leurs déplacements verticaux ascendants.
    5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les butées sont des plaques, de préférence métalliques, qui comportent une lumière débouchant à la partie inférieure de la plaque, orientée vers le fond de la tranchée, la largeur de ladite lumière correspondant sensiblement au diamètre extérieur des éléments de tuyaux.
    6. Procédé selon la revendication 5, caractérisé en ce que le fond de la lumière est de forme hémi-circulaire et présente un diamètre correspondant sensiblement au diamètre extérieur des éléments de tuyaux.
    7. Procédé selon la revendication 6, caractérisé en ce que la hauteur de la lumière h est supérieure au diamètre extérieur des éléments de tuyaux.
    8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que H est telle que la lumière des butées est noyée dans le matériau thixotrope.
    9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le nombre de butées mises en place est supérieur ou égal à trois.
    10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'espacement entre les butées est déterminé en fonction des caractéristiques des éléments de tuyaux, à savoir diamètre intérieur, diamètre extérieur et masse volumique, et en fonction du poids de chaque butée.
    11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la réaction exercée sur chaque butée est au moins égale à la différence entre la poussée d'Archimède exercée par le matériau thixotrope sur les éléments de tuyau et le poids desdits éléments de tuyau.
    12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, après réglage altimétrique, les butées sont calées sur les parois latérales de la tranchée.
    13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le remblaiement de la tranchée est réalisé en une ou plusieurs fois jusqu'à la base de reconstitution de chaussée.
    14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau thixotrope est un béton.
    15. Procédé selon la revendication 14, caractérisé en ce que le béton comprend :
      des granulats de diamètre maximal inférieur à 20 mm,
      un liant représentant 2 à 6 % du poids sec des granulats,
      un agent hydro-réducteur représentant 0,05 à 0,15 % du poids sec des granulats.
    16. Procédé selon la revendication 15, caractérisé en ce que les granulats sont constitués de cendres volantes silico-alumineuses.
    17. Procédé selon l'une des revendications 15 et 16, caractérisé en ce que le rapport eau/ciment est compris entre 5 et 12.
    18. Procédé selon l'une des revendications 15 à 17, caractérisé en ce que l'agent hydro-réducteur comprend des fibres naturelles ou synthétiques, en particulier des fibres polymères acryliques.
    19. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau thixotrope a un poids volumique compris entre 12 kN/m3 et 20 kN/m3.
    20. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau thixotrope présente :
      un affaissement au cône de l'ordre de 15 cm à l'état de sol,
      un indice portant immédiat supérieur à une valeur de 10, mesuré après 24 heures.
    21. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau thixotrope durcit en 2 heures environ et présente une résistance en compression de l'ordre de 1 MPa, après prise définitive.
    EP98902075A 1997-01-16 1998-01-14 Procede de pose de tuyaux Expired - Lifetime EP1007795B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9700395A FR2758378B1 (fr) 1997-01-16 1997-01-16 Procede de pose de tuyaux
    FR9700395 1997-01-16
    PCT/FR1998/000060 WO1998031880A1 (fr) 1997-01-16 1998-01-14 Procede de pose de tuyaux

    Publications (2)

    Publication Number Publication Date
    EP1007795A1 EP1007795A1 (fr) 2000-06-14
    EP1007795B1 true EP1007795B1 (fr) 2002-04-24

    Family

    ID=9502648

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98902075A Expired - Lifetime EP1007795B1 (fr) 1997-01-16 1998-01-14 Procede de pose de tuyaux

    Country Status (6)

    Country Link
    EP (1) EP1007795B1 (fr)
    CA (1) CA2278224C (fr)
    CZ (1) CZ297610B6 (fr)
    ES (1) ES2173566T3 (fr)
    FR (1) FR2758378B1 (fr)
    WO (1) WO1998031880A1 (fr)

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2830269B1 (fr) * 2001-09-28 2004-07-09 Eurovia Man Procede de preparation d'un remblai autocompactant, remblai autocompactant et utilisation
    FR2851316B1 (fr) * 2003-02-13 2007-04-20 Gaz De France Procede de pose d'lelements tubulaires enterres et preparation de mortier pour sa mise en oeuvre
    BE1021367B1 (fr) * 2013-02-06 2015-11-06 Etablissements Hublet Remblais autocompactant reexcavable.
    FR3101648B1 (fr) 2019-10-04 2021-11-26 Greffet Dispositif de cureuse de fossé doté d’une technologie particulière de captation et de relevage de toutes les natures et constituants de terre et de boues, adaptable sur un tracteur de puissance maximum de 100ch aux fins d’être utilisé pour des routes étroites et sinueuses.

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1392931A (en) * 1971-08-14 1975-05-07 Holroyd L M Laying of pipes
    DE2437012C3 (de) * 1974-08-01 1979-08-09 Gewerkschaft Eisenhuette Westfalia, 4670 Luenen Vorrichtung zum Verlegen eines Rohrstranges in einem Graben, insbesondere in wasserführenden Böden
    US3993192A (en) * 1975-11-10 1976-11-23 Christopher Brian Bunn Pipeline weight container and method
    IT1091898B (it) * 1977-01-26 1985-07-06 Soletanche Perfezionamenti alla messa in opera di canalizzazioni interrate
    DE2905146A1 (de) * 1979-02-10 1980-08-21 Rolf Stahn Verfahren zur herstellung unterirdischer leitungen in einer fluessigkeitsgestuetzten baugrube
    US4836595A (en) * 1988-05-05 1989-06-06 Dicarlo Frank Pipe handling apparatus
    GB9018927D0 (en) * 1990-08-30 1990-10-17 Seamark Systems Subsea pipeline protection

    Also Published As

    Publication number Publication date
    CA2278224A1 (fr) 1998-07-23
    WO1998031880A1 (fr) 1998-07-23
    FR2758378B1 (fr) 1999-04-02
    EP1007795A1 (fr) 2000-06-14
    FR2758378A1 (fr) 1998-07-17
    CZ9902506A3 (cs) 2001-01-17
    ES2173566T3 (es) 2002-10-16
    CZ297610B6 (cs) 2007-02-14
    CA2278224C (fr) 2005-03-29

    Similar Documents

    Publication Publication Date Title
    Kitazume et al. Development of a pneumatic flow mixing method and its application to Central Japan International Airport construction
    FR2814793A1 (fr) Procede de pose dans une chaussee routiere de fourreaux pour fibres optiques, et chaussee ainsi obtenue
    EP1007795B1 (fr) Procede de pose de tuyaux
    CN115262730A (zh) 一种雨污水管道的施工方法
    FR2830269A1 (fr) Procede de preparation d'un remblai autocompactant, remblai autocompactant et utilisation
    CN117569263A (zh) 一种大坝防渗墙及其施工方法
    KR101129469B1 (ko) 매설관의 매설방법
    EP0385971A1 (fr) Procede de construction de routes et de sols
    EP1447604B1 (fr) Procédé de pose d'éléments tubulaires enterrés et préparation de mortier pour sa mise en oeuvre
    KR20020035216A (ko) 도로 저면에 지하수의 유입이 많은 연약지반의 배수로시공 공법 및 그 배수관
    JP3002188B1 (ja) 地盤掘削工法
    RU2513480C1 (ru) Конструкция для укрепления откосов земляного сооружения в выветривающихся скальных грунтах
    Raymond et al. Evaluation and suggested improvements to highway edge drains incorporating geotextiles
    Rochelle et al. The stabilization of a slide in Saint-Jérôme, Lac Saint-Jean
    O'Malley et al. Crisis Averted
    JP2004238993A (ja) 護岸の遮水構造及び護岸の施工方法
    KR20170121847A (ko) 우수 침투체
    Joplin et al. STANDARD SPECIFICATIONS FOR PUBLIC WATER AND WASTEWATER SYSTEM IMPROVEMENTS
    JPS6070241A (ja) 下水道管渠布設工法
    Johnston et al. COLLIFORD DAM SAND WASTE EMBANKMENT AND ASPHALTIC CONCRETE MEMBRANE.
    SHEET EARTH WORKS
    CN117027039A (zh) 一种大型石油储罐环梁混凝土基础施工方法
    JPH01158106A (ja) 複合軽量材料
    JP2006167562A (ja) 遮水材の配合決定方法
    CN117265935A (zh) 用于涉水路基的抛石挤淤施工方法及边坡防护结构

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990809

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE CH ES FR GB LI

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010829

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE CH ES FR GB LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: EUROVIA

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020718

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2173566

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030127

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20120119

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20120123

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20120126

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20130114

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130114

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20140509

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130115

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20170125

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20170131

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MK

    Effective date: 20180114