EP1005058B1 - Appareillage commutateur à vide - Google Patents

Appareillage commutateur à vide Download PDF

Info

Publication number
EP1005058B1
EP1005058B1 EP99123233A EP99123233A EP1005058B1 EP 1005058 B1 EP1005058 B1 EP 1005058B1 EP 99123233 A EP99123233 A EP 99123233A EP 99123233 A EP99123233 A EP 99123233A EP 1005058 B1 EP1005058 B1 EP 1005058B1
Authority
EP
European Patent Office
Prior art keywords
movable
mechanism section
section
isolation
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99123233A
Other languages
German (de)
English (en)
Other versions
EP1005058A2 (fr
EP1005058A3 (fr
Inventor
Tetsu Toshiba Kabushiki Kaisha Shioiri
Toshiharu Toshiba Kabushiki Kaisha Yamazaki
Shin Toshiba Kabushiki Kaisha Murakami
Kunio Toshiba Kabushiki Kaisha Yokokura
Junichi Toshiba Kabushiki Kaisha Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of EP1005058A2 publication Critical patent/EP1005058A2/fr
Publication of EP1005058A3 publication Critical patent/EP1005058A3/fr
Application granted granted Critical
Publication of EP1005058B1 publication Critical patent/EP1005058B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66269Details relating to the materials used for screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66276Details relating to the mounting of screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66284Details relating to the electrical field properties of screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66292Details relating to the use of multiple screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/003Earthing switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators

Definitions

  • the present invention relates to a vacuum switchgear which uses SF 6 gas as an insulation medium, especially, relates to a vacuum switchgear which controls use amount of the insulation medium such as SF 6 gas and harmonizes with the environment.
  • Document US 4 020 304 discloses a devices according to the preamble of claims 1 and 2.
  • each electric equipment is covered by a pipe-shaped metallic container, SF 6 gas of the high pressure is enclosed as an insulation medium to be miniaturized and sealed up.
  • C-GIS is switchgear developed to correspond to requests of higher reliability, safety, and simplifying maintenance than GIS, and, at the same time, capable of constructing it on a narrow site in a short term, and making the harmony with the environment with surroundings.
  • This C-GIS stores each electric equipment in the lump in the container of the cubicle-type in which the low-pressure insulation gas near the atmospheric pressure is used, and the inside thereof is divided into the configuration units, and has same aspect as other close switchboards.
  • FIG. 1 is a vertical sectional view which shows an example of the configuration of this kind of typical cubicle-type gas insulation switchgear.
  • box 1 SF 6 gas 2 is sealed up in box 1 whose circumference is surrounded to airtight by the mild steel plate. Box 1 is gas-divided into receipt room 1a, breaker room 1b, and generatrix room 1c.
  • cable head 3 is provided to the side in box 1.
  • Arrestor 4 and detection insulator 5 stored in receipt room 1a are connected via connection conductor 7.
  • the power cable which penetrates through current transformer 8 is connected with cable 9.
  • Breaker room 1b stores breaker 11 which stores the vacuum interrupter (not shown in the figure) through insulation spacer 10a in the lower stage gas-divided from receipt room 1a.
  • This breaker 11 is connected with insulation spacer 10b in the upper stage gas-divided from generatrix room 1c through connection conductor 7.
  • a high vacuum is used as insulation and arc-quenching medium for breaker 11.
  • SF 6 gas is used as insulation and arc-quenching medium for isolation machine 6.
  • the solenoid mechanism which is called a stable type comprising a permanent magnet besides an electromagnet and a movable core, has the function to hold the position by the adsorption power of a permanent magnet on the operation edge of a movable core.
  • the solenoid mechanism of this stable type includes the mechanism which is called as a monostable type where the position is held by the part section within the range of the operation of a movable core and the mechanism which is called as a bistable type where the position is held at both ends within the range of the operation of a movable core.
  • the solenoid mechanism used for the operation mechanism of the vacuum breaker is a stable type in which the electromagnet can hold the position of the electrode even in the state of non-excitation.
  • This solenoid mechanism has few number of components and easy structure, and operates along only the straight line. Therefore, since the part of generating a large stress is caused and sliding with large contact pressure is a little, it has the merit of securing reliability easily.
  • SF 6 gas is used as insulation and arc-quenching medium in the switchgear of such a configuration as for isolation machine 6. It is known that this SF 6 gas has about three times the arc-quenching performance and about 100 times the insulation performances compared with air. In addition, this SF 6 gas is a very stable gas of colorlessness, scentless, taste, nonflammability in a usual state of the operation, and is nontoxic.
  • the decomposition products such as SOF 2 , SO 2 , SO 2 F 2 , SOF 4 , HF, and SiF 4 and the decomposition gases are generated by SF 6 gas. Since the decomposition product and the decomposition gas of this SF 6 gas have strong toxicity, special processing and the management are required when the decomposing gas is collected.
  • SF 6 gas is a greenhouse gas which causes earth warming, and the greenhouse effect coefficient is 24000 times larger than carbon dioxide. Therefore, SF 6 gas is added as a reduction target gas, and the action of control and reduction in the exhaust is requested. It is preferable not to use SF 6 gas as insulation and the arc-quenching medium of the isolator from respect of such an environment.
  • connection conductor 7 by heat from the contact of breaker 11 and isolator 6 becomes a disadvantage. Since heat from the contact of such breaker 11 and isolator 6 is generated by a Joule heat by the contact resistance in this part, some measures to lower the contact resistance are needed.
  • This vacuum switchgear has a fixed electrode and a ground electrode at both ends of the crisscross vacuum interrupter, and has a conducting axis and a movable electrode, which makes an orthogonal position to this a fulcrum.
  • the position of a movable core can be held only by the end portion within the range of the operation in the solenoid mechanism, and it is impossible to hold it stably at an intermediate position. Therefore, the electrode cannot be stably held in three positions of a close position (position where contact of movable electrode contacting with contact of fixed electrode), an open position and an isolation position, in addition, or four positions further including a ground position.
  • An object of the present invention is to provide a vacuum switchgear which comprises the vacuum interrupter with simple configuration and high reliability and the operation mechanism with high reliability to be able to achieve three positions of the close position, the open position and the isolation position, or four positions further including the ground position, and controls use amount of the insulation medium of SF 6 gas etc.
  • a vacuum switchgear which comprises a vacuum interrupter having simple structure and high reliability and the operation mechanism with high reliability being achievable to three positions of the close position, the open position, and the isolation position or four positions further including the ground position, can control use amount of the insulation medium of SF 6 gas etc. and can harmonize with the environment.
  • FIG. 2 is a profile which shows an example of the configuration of vacuum interrupter 20 in the vacuum switchgear according to the first embodiment.
  • Insulation cylinder 21 which consists of ceramic or glass, constructs airtight container, and the openings of both ends thereof are sealed up, respectively, by fixed side end plate 22 and movable side end plate 23.
  • Fixed conducting axis 25, to which fixed electrodes 24 is connected, is supported and fixed to fixed side end plate 22.
  • Movable electrode 26 opposed to fixed electrode 24 is fixed to movable conducting axis 27.
  • This movable conducting axis 27 is connected with an operation mechanism described later.
  • Contacts 28a and 28b which consists of various materials corresponding to the usage of vacuum interrupter 20, are set to each electrode to the side to which fixed electrode 24 and movable electrode 26 are contacted.
  • bellows 29 is allocated between movable conducting axis 27 and movable side cover plate 23, and movable electrode 26 can be moved along the straight line.
  • Arc shield 32 is arranged in an electrically insulated state at surroundings of fixed electrode 24 and movable electrode 26 to prevent soil of insulation cylinder 21 caused by metallic steam at the turn the current off.
  • the position where contacts 28a and 28b are contacted is assumed to the close position, the position where the gap length between each contact is d 1 is assumed to the open position when movable electrode 26 moves, and the position where the gap length between each contact is d 2 is assumed to the isolation position when movable electrode 26 further moves.
  • vacuum interrupter 20 when there is open instruction of the breaker from the control circuit of the vacuum switchgear (not shown in the figure), movable electrode 26 moves and the gap length between contacts 28a and 28b becomes d 1 (open position).
  • movable electrode 26 When there is open (isolation) instruction of the isolator from the control circuit of the vacuum switchgear, movable electrode 26 further moves and the gap length between each of contacts 28a and 28b becomes d 2 (isolation position).
  • contact 28b provided in movable electrode 26 continuously moves along a straight line at three positions of a close position, an open position, and an isolation position.
  • the breaker and the isolator are constructed by moving along the straight line continuously at three positions of the close position, the open position, and the isolation position of the contact, the operation thereabove with one operation mechanism becomes possible. It is possible to miniaturize the vacuum switchgear and lower the cost thereof from this respect.
  • FIG. 3 is profile which shows an example of configuration of vacuum interrupter 20 of vacuum switchgear according to the second embodiment. The same marks are fixed to the same parts of FIG. 2, the explanation will be omitted, and only parts different from FIG. 2 will be described here.
  • ground electrode 35 is provided at a position opposed to movable conducting axis 27 connected with said movable electrode 26, and the inside diameter of ground electrode 35 opposed to movable conducting axis 27 is reduced smaller than the outside diameter of movable electrode 26.
  • Insulation cylinders 21 and 36 are arranged between ground electrode 35 and metal end plates 2 and 3 of both ends thereof, respectively.
  • the position where contact 28b of movable electrode 26 contacts with contact 28a of fixed electrode 24 is the close position, and the position where the gap length between contacts 28a and 28b is d 6 is a ground position.
  • the movable electrode 26 can continuously move along the straight line at four positions of a close position, an open position, an isolation position, and a ground position.
  • vacuum interrupter 20 in a case of instructing of ground from the isolation state from the control circuit of the vacuum switchgear (not shown in the figure) when vacuum switchgear is checked, movable electrode 26 moves and is grounded at the position (ground position) where the gap length between contacts 28a and 28b becomes d 5 .
  • movable electrode 26 continuously moves along the straight line at four positions of the close position, the open position, the isolation position, and the ground position.
  • the vacuum switchgear can be miniaturized.
  • vacuum interrupter 20 Since the configuration of vacuum interrupter 20 is easy, the assembly of vacuum interrupter 20 becomes easy, and mass production becomes possible.
  • movable electrode 26 continuously moves along the straight line at four positions of the close position, the open position, the isolation position and the ground position for the contact, the operation thereabove with one operation mechanism becomes possible. It is possible to miniaturize the vacuum switchgear and lower the cost thereof from this respect.
  • the allowance of the insulation performance when contact 28b provided to movable electrode 26 shown in FIG. 2 is at the open position, is assumed to be 2 ⁇ for V 50 when 50% breakdown voltage is assumed to be V 50 .
  • the allowance of 3 ⁇ will be given for V 50 , where 3 ⁇ is the destruction probability of about 0.1%.
  • the breakdown voltage dispersion ⁇ between contacts 28a and 28b is large different depending on the contact material, the surface state, and the insulation current, etc., and is considered to 10 to 23%.
  • FIG. 4 is characteristic diagram which shows an example of relationship to ratio of gap length (that is, ratio of d 2 and d 1 ) which gives 3 ⁇ and gap length which gives 2 ⁇ and dispersion (standard deviation) ⁇ of breakdown voltage from the relationship of the above-mentioned breakdown voltage and the gap length.
  • ratio d 2 /d 1 of the gap length becomes about 1.3
  • ratio d 2 /d 1 of the gap length becomes about 2.6.
  • FIG. 5 is a characteristic diagram which shows an example of relationship of electric field intensity E1 of the end portion of fixed electrodes 24 and ratio of above-mentioned d 3 and d 2 .
  • electric field intensity Ec of the vertical axis is destruction electric field intensity in which the material of fixed electrode 24 is to be copper.
  • ratio d 3 /d 2 of the gap length becomes 0.5 or less, since the electric field intensity at the electrode end portion is determined by the gap length between fixed electrode 24 and arc shield 32, the electric field intensity at the electrode end portion becomes large with decreasing ratio d 3 /d 2 of the gap length.
  • ratio d 3 /d 2 of the gap length becomes large, since the diameter of vacuum interrupter 20 becomes large, it is desired that ratio d 3 /d 2 of the gap length as small as possible from the cost.
  • the ratio of d 3 and d 2 of the gap length is set at 0.35 to 0.8, the outside diameter of vacuum interrupter 20 is suppressed, and vacuum interrupter 20 with an excellent insulation characteristic can be obtained.
  • FIG. 6 is profile which shows an example of configuration of vacuum interrupter 20 of vacuum switchgear according to the embodiment.
  • the same marks are fixed to the same to part of FIG. 2, the explanation will be omitted, and only a different part will be described here.
  • Vacuum interrupter 20 has second shield 33 which surrounds the fixed electrode 24 and third shield 34 which surrounds said movable electrode 26, as shown in FIG. 6.
  • This second shield 33 and third shield 34 are supported and fixed with metallic end plates at both ends.
  • second shield 33 which surrounds fixed electrode 24, and third shield 34 which surrounds movable electrode 26, are provided and second shield 33 and third shield 34 are supported and fixed with metallic end plate at both ends, the electric field intensity of movable side contact 28b and fixed side contact 28a, movable electrode 26 and fixed electrode 24 can be decreased.
  • FIG. 7 is profile which shows an example of configuration of vacuum interrupter 20 of vacuum switchgear according to the embodiment.
  • the same marks are fixed to the same to FIG. 6 part, the explanation will be omitted, and only a different part will be described here.
  • second shield 33 which surrounds said fixed electrode 24, is supported and fixed with fixed conducting axis 25.
  • FIG. 8 is profile which shows an example of configuration of vacuum interrupter 20 of vacuum switchgear according to the embodiment.
  • the same marks are fixed to the same parts of FIGS. 6 and 7 and the explanation will be omitted. Only a different part will be described here.
  • second shield 33 which surrounds the fixed electrode 24 is supported and fixed with fixed electrode 24.
  • vacuum interrupter 20 since second shield 33, which surrounds fixed electrode 24, is supported and fixed with fixed electrode 24, similar function and advantage as a case of the above-mentioned sixth embodiment can be achieved, and the vacuum switchgear with excellent insulation performance can be obtained.
  • FIG. 9 is a characteristic diagram which shows an example of peripheral electric field intensity of second shield 33 and third shield 34 by the presence thereof.
  • straight line E0 with chain line shown in the upper end shows the electric field intensity on the surface of contact 28a or 28b when there are neither second shield 33 nor third shield 34
  • curve E1 shows the electric field intensity in the point of second shield 33 or third shield 34
  • curve E2 shows the electric field intensity on the surface of contact 28a or 28b at the isolation position.
  • Curve E1 is inversely proportional to ratio d 4 /d 2 of the gap length, and curve E2 is proportional to ratio d 4 /d 2 of the gap length.
  • Breakdown electric field intensity Ea is a value when the material of second shield 33 and third shield 34 is stainless steel
  • breakdown electric field intensity Eb is a value when the material of contacts 28a and 28b is a copper chrome alloy.
  • the material of second shield 33 and third shield 34 is made of stainless steel or tungsten.
  • second shield 33 and third shield 34 since the material of second shield 33 and third shield 34 is made of stainless steel or tungsten, the electric field intensity of movable side contact 28b, fixed side contact 28a, movable electrode 26 and fixed electrode 24 can be decreased, and the insulation performance of second shield 33 and third shield 34 can be improved.
  • FIG. 10 is a characteristic diagram which shows an example of comparing the thunder impulse breakdown voltage performances by the difference of the material of second shield 33 and third shield 34 performed by the invention inventor etc.
  • the material is copper (no oxygen copper), stainless steel (SUS 304), and tungsten.
  • the electrode shape used for the examination is a plate electrode of 34 mm in the diameter, and the gap length is 1.5 mm.
  • a breakdown voltage is 1.7 times in stainless steel and 1.9 times in tungsten compared with the copper material.
  • the vacuum switchgear can be miniaturized in addition to the advantage of the above-mentioned electric field relaxation.
  • vacuum interrupter 20 in vacuum interrupter 20 shown in above-mentioned FIGS. 6, 7, and 8, the electrochemical buffing processing or the electron beam processing (reforming layer by the irradiation of the electron beam) is performed on the surfaces of second shield 33 and third shield 34.
  • second shield 33 and third shield 34 are processed by the electrochemical buffing processing or the electron beam processing, the electric field intensity of movable side contact 28b, fixed side contact 28a, movable electrode 26 and fixed electrode 24 can be decreased, and the insulation performance of second shield 33 and third shield 34 can be improved.
  • FIG. 11 is a characteristic diagram, which shows an example of comparing the thunder impulse breakdown voltages by the difference of the surfaces of second shield 33 and third shield 34.
  • the electrolysis liquid is a mixture liquid of phosphoric acid and sulfuric acid.
  • the breakdown voltage of the dielectric breakdown in the vacuum rises every time the dielectric breakdown is repeated as understood from FIG. 11. This is called as conditioning effect, and the conditioning processing, in which this is used, is performed in the final step of manufacturing the vacuum interrupter.
  • FIG. 12 is characteristic diagram which shows an example of comparing a voltage characteristics of the electron beam processing with that of the electrochemical buffing processing for second shield 33 and third shield 34.
  • each gap length d 1 and d 5 (1.3 to 1.8).d 1 , it is possible to cooperate about the insulation between contacts at the open position of movable side contact 28b and the insulation of the ground device, and reliability can be improved.
  • the dispersion is 10 to 18% when the dispersion is shown by the standard deviation.
  • ratio d 5 /d 1 of the gap length becomes 1.3 to 1.8.
  • the insulation of ground electrode 35 and movable conducting axis 27 can be cooperated with the insulation at the isolation position, and the vacuum switchgear with low cost and high reliability can be obtained.
  • FIGS. 13A to 13C are profiles which show examples of configuration of operation mechanism in vacuum switchgear according to the embodiment, the configurations show at the close position, the open position, and the isolation position, respectively.
  • operation mechanism 50 is constructed by arranging two mechanism sections 60 and 70 in series.
  • insulation mechanism section 60 and isolation mechanism section 70 are arranged.
  • movable axis 61 of insulation mechanism section 60 is connected with movable conducting axis 27 of vacuum interrupter 20 through insulation stick 36, and movable conducting axis 71 of isolation mechanism section 90 is connected with frame 62 of insulation mechanism section 60 and screw section 91a.
  • Insulation mechanism section 60 is a mechanism for the insulation operation (open and close operation from the close position to the open position) to which the high-speed open and close operation is requested.
  • Isolation mechanism section 90 is a mechanism for the open and close operation from the open position to the isolation position.
  • the solenoid operation mechanism which has been known, can be used as insulation mechanism section 60, and has permanent magnet 63 fixed to surroundings in frame 62, movable core 64 and electromagnetic coil 65 fixed to movable axis 61, and coil spring 66 connected with a movable axis.
  • Isolation mechanism section 90 stores rotation axis 91 and motor 93, which is constructed as one body thereto, in frame 92.
  • Screw section 91a of rotation axis 91 is connected with frame 62 of insulation mechanism section 60, and connection length S shown in FIG. 13B becomes (d 2 - d 1 ) or more.
  • frame 62 can relatively move only in an axial direction for frame 92, but can not relatively rotate.
  • insulation mechanism section 60 First, the operation of insulation mechanism section 60 will be described.
  • the close position is held by exceeding the suck power with the flange part of movable core 64 and permanent magnet 63 than the compression power of coil spring 66.
  • movable core 64 is apart from permanent magnet 63, thereby, the suck power therebetween is small and the repulsion power of coil spring 66 is superior to the suck power and the open position is held.
  • the insulation operation is completed by the above-mentioned operation.
  • electromagnetic power between electromagnetic coil 65 and permanent magnet 63 is superior to the repulsion power of coil spring 66
  • movable axis 61 is driven in the direction of the close position while compressing coil spring 66 and is held at the close position shown in FIG. 13A by the suck power of permanent magnet 63, and the turning on operation is completed.
  • isolation mechanism section 90 Next, the operation of isolation mechanism section 90 will be described.
  • insulation mechanism section 60 and movable conducting axis 27 of vacuum interrupter 20 move from the isolation position of FIG. 13C to the open position of FIG. 13B, and the close operation is completed.
  • the operation mechanism of the vacuum switchgear in the first above-mentioned embodiment can be achieved with an easy configuration.
  • the present invention is not limited to this. It is also possible to connect the vacuum interrupter and the insulation mechanism section or the insulation mechanism section and the isolation mechanism section in series through the lever and the link.
  • connection length S of screw section 91a of the isolation mechanism section and frame 62 of the insulation mechanism section becomes (d 3 - d 1 ) or more in the operation mechanism of the vacuum switchgear shown in above-mentioned FIGS. 13A to 13C.
  • insulation mechanism section 60 performs insulation and the turning on operation from the close position to the open position
  • isolation mechanism section 90 performs the open operation from the open position to the isolation position
  • insulation mechanism section 60 and movable conducting axis 27 of vacuum interrupter 20 are driven from the isolation position to the ground position.
  • the operation mechanism of the vacuum switchgear in the above-mentioned second embodiment can be achieved by an easy configuration.
  • FIG. 14 is profile which shows an example of configuration of operation mechanism in vacuum switchgear according to the embodiment, and the configuration at the close position is shown in FIG. 14.
  • operation mechanism 50 is constructed by arranging three mechanism sections 60, 70 and 80 in series.
  • insulation mechanism section 60 isolation mechanism section 70 and ground mechanism section 80 are arranged.
  • insulation mechanism section 60 all of insulation mechanism section 60, isolation mechanism section 70, and ground mechanism section 80 are constructed by using the solenoid operation mechanism explained by FIGS. 13A to 13C.
  • movable axis 61 of insulation mechanism section 60 is connected with movable conducting axis 27 of vacuum interrupter 20 through insulation stick 36
  • movable axis 71 of isolation mechanism section 70 is connected with frame 62 of insulation mechanism section 60
  • movable axis 81 of ground mechanism section 80 is connected with frame 72 of isolation mechanism section 70.
  • the solenoid operation mechanism of insulation mechanism section 60 performs insulation and the turning on operation from the close position to the open position.
  • the operation mechanism of the vacuum switchgear in the above-mentioned second embodiment can be achieved by an easy configuration.
  • the operation mechanism is explained in the case of arranging three solenoid operation mechanisms in series, the present invention is not limited to this, a suitable solenoid operation mechanism for high-speed open and close operation may be used for the operation part as the breaker and suitable other operation mechanisms may be used for low-speed open and close operation as the isolator and the ground device, in this case, an operation mechanism with low cost can be obtained as a whole.
  • FIGS. 15A to 15C are profiles which show an example of configuration of operation mechanism in vacuum switchgear according to the embodiment, and show the configurations at the close position, the open position, and the isolation position, respectively.
  • insulation mechanism section 160 which is near vacuum interrupter 20 and isolation mechanism section 170 which is far from the vacuum interrupter 20 are arranged in series, and each mechanism section is constructed with the solenoid operation mechanism of the bistable type.
  • movable axis 161a which consists of non-magnetic body of stainless etc, is assembled to movable core 161 of insulation mechanism section 160, movable axis 161a is supported to a free sliding to guide material 166a which consists of non-magnetic body, and is assembled to movable conducting axis 27 through insulation stick 36.
  • Electromagnetic coils 165a and 165b are arranged in surrounding of movable core 161, and york 162 is arranged outside of electromagnetic coils 165a and 165b.
  • permanent magnet 163 is assembled to york 162 between electromagnetic coil 165a and 165b, and, for example, permanent magnet 163 is magnetized in the direction of the inside and outside such that the outside becomes S-pole and the inside becomes N-pole.
  • york 167 for the guide is assembled in permanent magnet 163.
  • isolation mechanism section 170 is constructed as well as above-mentioned insulation mechanism section 160, movable axis 171a, which consists of non-magnetic body, is assembled to movable core 171, movable axis 171a clings to york 162 of insulation mechanism section 160, and a point guides movable axis 161b of insulation mechanism section 160 with a free sliding.
  • Electromagnetic coils 175a and 175b and permanent magnet 173 magnetized in the direction of the inside and outside are arranged surrounding of movable core 171, york 172 is assembled around electromagnetic coil 175a and 175b, and york 172 is fixed to the base of operation mechanism 150 (not shown in the figure).
  • each electromagnetic coil is not excited at the close position shown in FIG. 15A, the upper end of movable core 161 of insulation mechanism section 160 is adsorbed by the upper part of york 162 by the magnetism of permanent magnet 163, and a magnetic path, which is shut in the direction indicated by an arrow shown in FIG. 15A, is formed.
  • movable core 171 is adsorbed by york 172.
  • the close operation if magnetic flux is generated in the direction of the arrow shown in FIG. 15A by exciting electromagnetic coil 165a and electromagnetic coil 175b at the same time, the close operation can be performed with high-speed with surely holding isolation mechanism section 170.
  • the operation between the open position and the close position is achieved by the high-speed reciprocation operation only of one movable electrode, the operation of insulation and turning on can surely be performed.
  • the solenoid operation mechanism of the bistable type is arranged in series, three positions of the close position, the open position, and the isolation position can surely be held by the adsorption power of a permanent magnet.
  • the holding power at the position of the other movable core is strengthened when one movable core is driven, even if the impact power etc. act, the position can surely be held. Therefore, the vacuum switchgear, which comprises the operation mechanism having simple structure and high reliability, can be achieved.
  • the configuration having the wipe spring mechanism which generates the power to press the closed electrode in the direction of further closed position, may be provided between a movable axis and movable electrode of insulation mechanism section 160.
  • permanent magnet may be assembled to a movable core, and a solenoid operation mechanism of the bistable type where the position is held by the adsorption power of a permanent magnet at both ends within the range of the operation of a movable core may be adapted.
  • FIGS. 16A to 16D are profiles which show an example of configuration of operation mechanism in vacuum switchgear according to the embodiment, and show the configurations at the close position, the open position, the isolation position, and the ground position, respectively.
  • operation mechanism 350 is constructed by arranging insulation mechanism section 360 which consists of the solenoid operation mechanism of the bistable type has already been explained in FIGS. 15A to 15C and isolation mechanism section 370 which is constructed by an electromagnetic actuator which can hold three positions in series.
  • movable core 361 of insulation mechanism section 360 is assembled to movable conducting axis 27 through insulation stick 36, electromagnetic coils 365a and 365b are assembled around movable core 361, and york 362 is assembled around electromagnetic coils 365a and 365b.
  • Permanent magnet 363 is assembled inside york 362 as well as the state explained in FIGS. 15A to 15C.
  • salient 371a, 371b, 371c, and 371d are formed to movable core 371 of isolation mechanism section 370 to which york 362 of insulation mechanism section 360 is connected, electromagnetic coils 375a and 375b are assembled the outside thereof, and york 372 is assembled around electromagnetic coils 375a and 375b.
  • permanent magnets 363a, 363b, 363c, and 363d are assembled to the position opposed to each above-mentioned salient 371a of movable cores 371, 371b, 371c, and 371d inside of york 372, permanent magnets 373a and 373b are magnetized to so that the inside may become S-pole and the outside may become N-pole, and permanent magnets 373c and 373d are magnetized so that the inside may become S-pole and the outside may become N-pole.
  • movable core 361 and movable core 371 are adsorbed by york 362 and york 372 by the magnetism of permanent magnet 363, permanent magnets 373a, and 373b, respectively.
  • the closed magnetic circuit indicated by the arrow shown in FIG. 16C is formed by opposing permanent magnets 373a, 373b, 373c, and 373d to salient 371a, 371b, 371c, and 371d of a movable core, the position is stably held.
  • the operation between the open position and the close position can surely be performed by the high-speed reciprocation operation only of one movable electrode. Since it constructs it by arranging electromagnetic actuator which stably holds three positions in series, four positions of the close position, the open position, the isolation position, and the ground position can surely be held by the adsorption power of the permanent magnet. In addition, since the holding power at the position of the other movable core is strengthened when the one movable core is driven, even if the impact power etc. act, the position can surely be held. Therefore, the vacuum switchgear having the operation mechanism with simple structure and high reliability can be achieved.
  • the present invention is not limited to this, the sensor which detects the position of a movable core may be provided, thereby reliability can be further improved.
  • FIG. 17 is a profile which shows an example of configuration of operation mechanism of vacuum switchgear according to the embodiment, and FIG. 17 shows the configuration at the close position.
  • operation mechanism 250 is constructed by insulation mechanism section 260, isolation mechanism section 270, and ground mechanism section 280 from a near side of vacuum interrupter 20, and each mechanism section is constructed by the solenoid operation mechanism of the bistable type explained in FIG. 15A to FIG. 15C.
  • movable cores 261 of insulation mechanism section 260 is connected with movable conducting axis 27 of vacuum interrupter 20 through insulation stick 36
  • movable cores 271 of isolation mechanism section 270 is connected with york 262 of insulation mechanism section 260
  • movable cores 281 of ground mechanism section 280 is connected with york 272 of isolation mechanism section 270.
  • Electromagnetic coils 265a, 265b, 275a, 275b, 285a, 285b, and permanent magnets 263, 273, 283 are assembled to the three above-mentioned mechanism sections, respectively.
  • the open and close operation of the close position and the open position is performed by the operation of insulation mechanism section 260
  • the open and close operation of the open position and the isolation position is performed by the operation of isolation mechanism section 270
  • the open and close operation of the isolation position and the ground position is performed by the operation of ground mechanism section 280.
  • each electromagnetic coil is excited to strengthen the holding power at the position of the other two movable cores.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Electromagnets (AREA)

Claims (19)

  1. Dispositif de commutation à vide comprenant :
    un interrupteur à vide (20) avec un joint d'étanchéité placé sur les deux extrémités d'un récipient isolant (21), dans lequel un milieu isolant est enfermé sous vide dans des premier et deuxième matériaux métalliques (22, 23), dans lequel ledit interrupteur à vide (20) comporte une électrode fixe (24), qui pénètre à travers ledit premier matériau métallique (22) et adhère audit premier matériau métallique (22), et une électrode mobile (26), qui pénètre à travers ledit deuxième matériau métallique (23) et qui est fixée audit deuxième matériau métallique (23) par l'intermédiaire d'un soufflet (29), et qui est prévue de manière à faire face à ladite électrode fixe (24) ; caractérisé par
    un mécanisme d'actionnement (60, 90) qui déplace ladite électrode mobile (26) en ligne droite à trois positions, une position fermée, une position ouverte et une position d'isolement, respectivement, dans lequel, lorsqu'une longueur d'espace entre des contacts à ladite position ouverte est supposée être d1 et qu'une longueur d'espace entre l'électrode mobile (26) et ladite électrode fixe (24) à ladite position d'isolement est supposée être d2, chacune desdites longueurs d'espace d1 et d2 est fixée pour satisfaire une relation : d 2 = ( 1 , 3   à   2 , 6 ) × d 1 .
    Figure imgb0011
  2. Dispositif de commutation à vide comprenant :
    un interrupteur à vide (20) avec un joint d'étanchéité placé sur les deux extrémités d'un récipient isolant (21), dans lequel un milieu isolant est enfermé sous vide dans des premier et deuxième matériaux métalliques (22, 23), ledit interrupteur à vide (20) comportant une électrode fixe (24), qui pénètre à travers ledit premier matériau métallique (22) et adhère audit premier matériau métallique (22), et une électrode mobile (26), qui pénètre à travers ledit deuxième matériau métallique (23) et adhère audit deuxième matériau métallique (23) par l'intermédiaire d'un soufflet (29) et qui est prévue de manière à faire face à ladite électrode fixe (24) ; caractérisé par une électrode de masse (35) prévue d'un côté (24) de ladite électrode mobile (26) ne faisant pas face à ladite électrode fixe ; et
    un mécanisme d'actionnement (60, 70, 80) qui déplace ladite électrode mobile (26) en ligne droite à quatre positions, une position fermée, une position ouverte, une position d'isolement et une position de masse, respectivement, dans lequel,
    lorsqu'une longueur d'espace entre des contacts à ladite position ouverte est supposée être d1 et qu'une longueur d'espace entre l'électrode mobile (26) et ladite électrode fixe (24) à ladite position d'isolement est supposée être d2, chacune desdites longueurs d'espace d1 et d2 est fixée pour satisfaire une relation : d 2 = ( 1 , 3    à   2 , 6 ) × d 1 .
    Figure imgb0012
  3. Dispositif de commutation à vide selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comprend en outre :
    un écran aux arcs (32) prévu de manière à entourer ladite électrode fixe (24) et ladite électrode mobile (26), dans lequel, lorsque chacune d'une longueur d'espace entre ledit écran aux arcs (32) et ladite électrode fixe (24) et d'une longueur d'espace entre ledit écran aux arcs (32) et l'électrode mobile (26) est supposée être d3 et qu'une longueur d'espace entre des contacts à ladite position d'isolement est supposée être d2, chacune desdites longueurs d'espace d2 et d3 est fixée pour satisfaire une relation : d 3 = ( 0 , 35   à    0 , 8 ) × d 2 .
    Figure imgb0013
  4. Dispositif de commutation à vide selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend :
    un deuxième écran (33) entourant ladite électrode fixe (24) et un troisième écran (34) entourant ladite électrode mobile (26), chacune d'eux étant prévu dans ledit écran aux arcs (32), dans lequel
    ledit deuxième écran (33) et ledit troisième écran (34) sont supportés et fixés auxdits premier et deuxième matériaux métalliques (22, 23).
  5. Dispositif de commutation à vide selon la revendication 4, caractérisé en ce que
    ledit deuxième écran (33) est supporté et fixé à un axe conducteur (25) connecté à ladite électrode fixe (24).
  6. Dispositif de commutation à vide selon la revendication 4, caractérisé en ce que
    ledit deuxième écran (33) est supporté et fixé à ladite électrode fixe (24).
  7. Dispositif de commutation à vide selon l'une quelconque des revendications 2 et 4 à 6, caractérisé en ce que
    lorsqu'une longueur d'espace entre ledit deuxième écran (33) et ledit troisième écran (34) est supposée être d4 et qu'une longueur d'espace entre lesdits contacts à ladite position d'isolement est supposée être d2, chacune desdites longueurs d'espace d2 et d4 est fixée pour satisfaire une relation : d 4 = ( 0 , 6   à  0 , 95 ) × d 2 .
    Figure imgb0014
  8. Dispositif de commutation à vide selon l'une quelconque des revendications 4 à 7, caractérisé en ce que
    ledit deuxième écran (33) et ledit troisième écran (34) sont réalisés en acier inoxydable.
  9. Dispositif de commutation à vide selon l'une quelconque des revendications 4 à 7, caractérisé en ce que
    ledit deuxième écran (33) et ledit troisième écran (34) sont réalisés en tungstène.
  10. Dispositif de commutation à vide selon l'une quelconque des revendications 4 à 8, caractérisé en ce que
    les surfaces dudit deuxième écran (33) et dudit troisième écran (34) sont traitées par le traitement d'avivage électrochimique.
  11. Dispositif de commutation à vide selon l'une quelconque des revendications 4 à 8, caractérisé en ce que
    une couche de reformage est réalisée par un rayonnement d'un faisceau d'électrons sur les surfaces dudit deuxième écran (33) et dudit troisième écran (34).
  12. Dispositif de commutation à vide selon la revendication 2, caractérisé en ce que
    lorsque la longueur d'espace entre l'axe conducteur auquel ladite électrode mobile (26) adhère et les électrodes de masse (35) face à celui-ci est d5 et que la longueur d'espace entre les contacts à ladite position ouverte est d1, chacune des longueurs d'espace d1 et d5 est fixée pour satisfaire une relation : d 5 = ( 1 , 3    à   1 , 8 ) × d 1 .
    Figure imgb0015
  13. Dispositif de commutation à vide selon l'une quelconque des revendications 1 et 4 à 12, caractérisé en ce que
    ledit mécanisme d'actionnement comporte une section de mécanisme d'isolement (60) et une section de mécanisme d'isolement (90), chacune d'elles étant agencée en série et se déplaçant en ligne droite entre deux positions,
    une section mobile de ladite section de mécanisme d'isolement (60) est reliée à ladite électrode mobile (26) et effectue une opération d'ouverture et de fermeture de ladite longueur d'espace d1, et
    un cadre de ladite section de mécanisme d'isolement (60) est relié à une section mobile de ladite section de mécanisme d'isolement (90) et ladite section de mécanisme d'isolement (90) effectue une opération d'ouverture et de fermeture de ladite longueur d'espace d1 à la longueur d'espace d2.
  14. Dispositif de commutation à vide selon l'une quelconque des revendications 2 et 3 à 12,
    caractérisé en ce que
    ledit mécanisme d'actionnement comporte une section de mécanisme d'isolement (60) qui est agencée en série et qui se déplace entre deux positions en ligne droite et comporte une section de mécanisme d'isolement (90) qui se déplace en ligne droite à trois positions comprenant un point intermédiaire,
    une section mobile de ladite section de mécanisme d'isolement (60) est reliée à ladite électrode mobile (26) et effectue une opération d'ouverture et de fermeture de ladite longueur d'espace d1, et
    un cadre de ladite section de mécanisme d'isolement (60) est relié à une section mobile de ladite section de mécanisme d'isolement (90) et ladite section de mécanisme d'isolement (90) effectue des opérations d'ouverture et de fermeture en deux étapes de ladite longueur d'espace d1 à la longueur d'espace d2 et de ladite longueur d'espace d2 à ladite longueur d'espace d3.
  15. Dispositif de commutation à vide selon l'une quelconque des revendications 2 et 3 à 12, caractérisé en ce que
    ledit mécanisme d'actionnement est agencé en série et comporte une section de mécanisme d'isolement (60), une section de mécanisme d'isolement (70) et une section de mécanisme de masse (80), chacune d'elles se déplaçant entre deux positions en ligne droite,
    une section mobile de ladite section de mécanisme d'isolement (60) est reliée à ladite électrode mobile (26) et effectue une opération d'ouverture et de fermeture de ladite longueur d'espace d1,
    un cadre de ladite section de mécanisme d'isolement (60) est relié à une section mobile de ladite section de mécanisme d'isolement (70) et ladite section de mécanisme d'isolement (70) effectue une opération d'ouverture et de fermeture de ladite longueur d'espace d1 à ladite longueur d'espace d2, et
    un cadre de ladite section de mécanisme d'isolement (70) est relié à une section mobile de ladite section de mécanisme de masse (80) et ladite section de mécanisme de masse (80) effectue une opération d'ouverture et de fermeture de ladite longueur d'espace d2 à ladite longueur d'espace d3.
  16. Dispositif de commutation à vide selon la revendication 13, caractérisé en ce que
    chacune de ladite section de mécanisme d'isolement (160) et de ladite section de mécanisme d'isolement (170) est réalisée par le mécanisme à solénoïde qui comprend une bobine électromagnétique, une culasse, un noyau mobile et un aimant permanent ou par le mécanisme à solénoïde qui comprend en outre le ressort si nécessaire,
    une section mobile de ladite section de mécanisme d'isolement (160) est un noyau mobile du premier mécanisme à solénoïde, le cadre de ladite section de mécanisme d'isolement (160) est une culasse du premier mécanisme à solénoïde, une section mobile de ladite section de mécanisme d'isolement (170) est un noyau mobile du deuxième mécanisme à solénoïde, et le cadre de ladite section de mécanisme d'isolement (170) est une culasse du deuxième mécanisme à solénoïde, et
    chacun desdits noyaux effectue un mouvement de navette par le magnétisme de ladite bobine électromagnétique et de l'aimant permanent ou, en outre par la puissance de rétablissement dudit ressort si nécessaire et, aux deux extrémités de la plage du mouvement d'un dit noyau mobile, maintient la position par la puissance d'adsorption dudit aimant permanent ou, en outre, par la puissance de rétablissement d'un dit ressort si nécessaire.
  17. Dispositif de commutation à vide selon la revendication 14, caractérisé en ce que
    ladite section de mécanisme d'isolement (360) est réalisée par un mécanisme à solénoïde qui comprend une bobine électromagnétique, une culasse, un noyau mobile et un aimant permanent, ou, par le mécanisme à solénoïde qui comprend en outre le ressort si nécessaire,
    une section mobile de ladite section de mécanisme d'isolement (360) est un noyau mobile dudit mécanisme à solénoïde, et le cadre de ladite section de mécanisme d'isolement (360) est ladite culasse,
    ledit noyau mobile effectue le mouvement de navette par le magnétisme de ladite bobine électromagnétique et de l'aimant permanent ou, en outre par la puissance de rétablissement du ressort, si nécessaire, et, aux deux extrémités de la plage du mouvement dudit noyau mobile, et la position est maintenue par la puissance d'adsorption dudit aimant permanent ou, en outre, par la puissance de rétablissement du ressort si nécessaire,
    ladite section de mécanisme d'isolement (370) est un actionneur électromagnétique qui comprend un noyau mobile et un aimant permanent, dans lequel la protubérance est formée, pour être fasse à la protubérance d'une culasse et ladite culasse avec laquelle une bobine électromagnétique et la protubérance sont formées, et une section mobile de ladite section de mécanisme d'isolement (370) est un noyau mobile dudit actionneur électromagnétique,
    le cadre de ladite section de mécanisme d'isolement (370) est une culasse dudit actionneur électromagnétique, et
    ledit noyau mobile effectue le mouvement de navette par le magnétisme de ladite bobine électromagnétique et d'un aimant permanent et maintient la position par la puissance d'adsorption dudit aimant permanent, et aux deux extrémités de la plage du mouvement dudit noyau mobile, et maintient la position par le magnétisme dudit aimant permanent par le positionnement de la protubérance de ladite culasse face à la protubérance dudit noyau mobile à une position intermédiaire dans la plage dudit mouvement.
  18. Dispositif de commutation à vide selon la revendication 15, caractérisé en ce que
    ladite section de mécanisme d'isolement (260), ladite section de mécanisme d'isolement (270) et ladite section de mécanisme de masse (280) sont respectivement réalisées par un mécanisme à solénoïde qui comprend une bobine électromagnétique, une culasse, un noyau mobile et un aimant permanent, ou sont réalisées par un mécanisme à solénoïde qui comprend en outre le ressort si nécessaire,
    une section mobile de ladite section de mécanisme d'isolement (260) est un noyau mobile du premier mécanisme à solénoïde, le cadre de ladite section de mécanisme d'isolement (260) est une culasse du premier mécanisme à solénoïde, une section mobile de ladite section de mécanisme d'isolement (270) est un noyau mobile du deuxième mécanisme à solénoïde, le cadre de ladite section de mécanisme d'isolement (270) est une culasse du deuxième mécanisme à solénoïde, une section mobile dudit mécanisme de masse est un noyau mobile du troisième mécanisme à solénoïde, et le cadre de ladite section de mécanisme de masse (280) est une culasse du troisième mécanisme à solénoïde, et
    chacun desdits noyaux mobiles effectue le mouvement de navette par le magnétisme de ladite bobine électromagnétique et de l'aimant permanent, et en outre par la puissance de rétablissement dudit ressort, si nécessaire, et, aux deux extrémités de la plage du mouvement dudit noyau mobile, maintenant la position par la puissance d'adsorption dudit aimant permanent ou en outre par la puissance de rétablissement dudit ressort si nécessaire.
  19. Dispositif de commutation à vide selon l'une quelconque des revendications 16 à 18, caractérisé en ce que
    lorsque le noyau mobile est déplacé par l'excitation de l'une d'une bobine électromagnétique dudit mécanisme à solénoïde et d'une bobine électromagnétique dudit actionneur électromagnétique, l'autre bobine électromagnétique est excitée pour renforcer la puissance de maintien à la position de l'autre des noyaux mobiles qui ne se déplace pas.
EP99123233A 1998-11-27 1999-11-26 Appareillage commutateur à vide Expired - Lifetime EP1005058B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33710798 1998-11-27
JP33710798A JP3664899B2 (ja) 1998-11-27 1998-11-27 真空開閉装置

Publications (3)

Publication Number Publication Date
EP1005058A2 EP1005058A2 (fr) 2000-05-31
EP1005058A3 EP1005058A3 (fr) 2001-07-11
EP1005058B1 true EP1005058B1 (fr) 2006-05-31

Family

ID=18305509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99123233A Expired - Lifetime EP1005058B1 (fr) 1998-11-27 1999-11-26 Appareillage commutateur à vide

Country Status (4)

Country Link
EP (1) EP1005058B1 (fr)
JP (1) JP3664899B2 (fr)
CN (1) CN1214422C (fr)
DE (1) DE69931583T2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG128651A1 (en) * 2005-06-29 2007-01-30 Hitachi Ltd Vacuum insulated switchgear
US7902480B2 (en) 2007-06-13 2011-03-08 Hitachi, Ltd. Vacuum insulated switchgear

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222935A (ja) 2000-02-08 2001-08-17 Toshiba Corp 真空開閉装置
DE10030670C2 (de) 2000-06-23 2002-06-13 Siemens Ag Vakuumschaltröhre mit zwei Kontaktsystemen
JP4629271B2 (ja) * 2001-06-29 2011-02-09 三菱電機株式会社 電力用開閉装置の操作装置
FR2827075B1 (fr) * 2001-07-05 2003-09-19 Schneider Electric Ind Sa Appareillage electrique de coupure et de sectionnement comportant une ampoule sous vide
JP4667664B2 (ja) * 2001-07-12 2011-04-13 三菱電機株式会社 電力用開閉装置
US7453129B2 (en) 2002-12-18 2008-11-18 Noble Peak Vision Corp. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
JP2006202568A (ja) * 2005-01-19 2006-08-03 Toshiba Corp 真空バルブ用接点材料の製造方法
FR2887683A1 (fr) 2005-06-28 2006-12-29 Schneider Electric Ind Sas Ampoule a vide pour un appareil de protection electrique tel un interrupteur ou un disjoncteur
JP4174495B2 (ja) * 2005-06-29 2008-10-29 株式会社日立製作所 スイッチギヤの開閉装置
JP4531005B2 (ja) * 2005-09-30 2010-08-25 三菱電機株式会社 電磁操作方式開閉器
DE102006033355A1 (de) * 2006-07-19 2008-01-24 Euchner Gmbh + Co. Kg Vorrichtung zum Überwachen des Zustandes einer Schutzeinrichtung einer Maschine
JP4846684B2 (ja) * 2007-09-25 2011-12-28 株式会社日立製作所 真空絶縁スイッチ及び真空絶縁スイッチギヤ
DE102008031472B4 (de) * 2008-07-02 2010-05-06 Siemens Aktiengesellschaft Vakuumschaltröhre
EP2234232A3 (fr) * 2009-03-27 2013-10-23 ABB Technology AG Dispositif haute tension
JP4906892B2 (ja) * 2009-08-12 2012-03-28 株式会社日立製作所 スイッチギヤ
DE112009005331B4 (de) * 2009-10-29 2019-08-01 Mitsubishi Electric Corporation Elektromagnetvorrichtung und Schaltvorrichtung, die eine Elektromagnetvorrichtung verwendet
KR101100708B1 (ko) 2010-05-13 2011-12-30 엘에스산전 주식회사 진공 차단기
JP5475559B2 (ja) * 2010-06-11 2014-04-16 株式会社東芝 真空開閉装置
JP5342517B2 (ja) * 2010-07-14 2013-11-13 三菱電機株式会社 真空バルブ
FR2985081B1 (fr) * 2011-12-21 2015-03-06 Alstom Technology Ltd Dispositif de protection contre les particules engendrees par un arc electrique de commutation
KR101586260B1 (ko) * 2011-12-28 2016-01-18 현대중공업 주식회사 개폐기용 진공 차단기
DE102012215246A1 (de) * 2012-08-28 2014-03-06 Siemens Aktiengesellschaft Druckfluidisoliertes Schaltfeld
FR2996352B1 (fr) 2012-10-02 2014-10-31 Alstom Technology Ltd Dispositif de contact electrique de type doigt de contact a fort courant nominal
KR101449736B1 (ko) * 2012-12-27 2014-10-08 주식회사 효성 컨버터의 바이패스 장치
KR101599234B1 (ko) * 2013-12-30 2016-03-03 주식회사 효성 모듈러 멀티레벨 컨버터 바이패스 스위칭 장치 및 방법
CN104037012B (zh) * 2014-05-30 2016-02-24 国家电网公司 一种具有插入式接地工位的三工位真空灭弧室
DK3229253T3 (da) 2014-12-01 2019-10-28 Mitsubishi Electric Corp Kredsløbsafslutningsindretning og kredsløbsafslutningssystem
CN108172452A (zh) * 2018-01-19 2018-06-15 合肥朗辉电气有限公司 一种交流高压大电流快速开关的装置
KR102643434B1 (ko) * 2022-03-22 2024-03-06 대한전선 주식회사 Gis 절연 스페이서의 전기시험 챔버 및 전극 구조

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1161401A (en) * 1965-06-16 1969-08-13 English Electric Co Ltd Operating Mechanisms for Electrical Circuit Interrupters
US3720798A (en) * 1969-09-08 1973-03-13 Sumitomo Electric Industries Vacuum-type current interrupter
DE2037234A1 (de) * 1970-07-01 1972-02-03 Inst Prueffled Fuer Elektrisch Schaltgerat für hohe Spannungen
US4020304A (en) * 1972-07-24 1977-04-26 Westinghouse Electric Corporation Two-material vapor shield for vacuum-type circuit interrupter
JPS5422583A (en) * 1977-07-20 1979-02-20 Tokyo Shibaura Electric Co Vacuum circuit breaker
US4249050A (en) * 1977-12-30 1981-02-03 Tokyo Shibaura Denki Kabushiki Kaisha Vacuum switch
DE3304803A1 (de) * 1983-02-11 1984-08-16 Siemens AG, 1000 Berlin und 8000 München Vakuumschalter, insbesondere mittelspannungs-lasttrennschalter
TW389919B (en) * 1995-09-27 2000-05-11 Hitachi Ltd Insulated type switching device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG128651A1 (en) * 2005-06-29 2007-01-30 Hitachi Ltd Vacuum insulated switchgear
US7902480B2 (en) 2007-06-13 2011-03-08 Hitachi, Ltd. Vacuum insulated switchgear
US8304679B2 (en) 2007-06-13 2012-11-06 Hitachi, Ltd. Vacuum insulated switchgear

Also Published As

Publication number Publication date
JP3664899B2 (ja) 2005-06-29
DE69931583D1 (de) 2006-07-06
JP2000164084A (ja) 2000-06-16
EP1005058A2 (fr) 2000-05-31
DE69931583T2 (de) 2007-04-26
CN1214422C (zh) 2005-08-10
EP1005058A3 (fr) 2001-07-11
CN1256503A (zh) 2000-06-14

Similar Documents

Publication Publication Date Title
EP1005058B1 (fr) Appareillage commutateur à vide
US5373130A (en) Self-extinguishing expansion switch or circuit breaker
KR20100020425A (ko) 진공 스위치 기어
JP2001307603A (ja) 真空スイッチ及びそれを用いた真空スイッチギヤ
US6476338B2 (en) Vacuum switch
US5591948A (en) Vacuum cartridge, notably for a medium voltage electrical cicuit breaker or switch and a switch incorporating such a cartridge
CA2002829C (fr) Disjoncteur de circuit triphase, sans boitier
Giere et al. Vacuum interrupter unit for CO2-neutral 170kV/50kA switchgear
CN101194330A (zh) 具有环形静态接触件的电开关
KR101231764B1 (ko) 가스절연개폐장치
JPH11164429A (ja) 接地装置付き断路器
JP4434529B2 (ja) 開閉装置
JP2000197221A (ja) ガス絶縁3相密閉形開閉装置
JPH10210615A (ja) 受変電設備装置
JP4011050B2 (ja) 真空開閉装置
EP4099522A1 (fr) Appareillage de commutation isolé au gaz
KR20090130825A (ko) 블레이드형 단로기
JP2004120974A (ja) ガス絶縁開閉器
JP2002093293A (ja) 断路器用真空バルブ
GB2178239A (en) Circuit breakers
WO2022044424A1 (fr) Dispositif de commutation à isolation gazeuse
EP4227968A1 (fr) Sectionneur de terre rapide permettant de couper des courants autres que de court-circuit
JP2001312948A (ja) 開閉装置
JP4695496B2 (ja) 真空開閉装置
JP3270130B2 (ja) 真空遮断器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991201

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SATO, JUNICHI,TOSHIBA KABUSHIKI KAISHA

Inventor name: YOKOKURA, KUNIO,TOSHIBA KABUSHIKI KAISHA

Inventor name: MURAKAMI, SHIN,TOSHIBA KABUSHIKI KAISHA

Inventor name: YAMAZAKI, TOSHIHARU,TOSHIBA KABUSHIKI KAISHA

Inventor name: SHIOIRI, TETSU,TOSHIBA KABUSHIKI KAISHA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 69931583

Country of ref document: DE

Date of ref document: 20060706

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151118

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151008

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69931583

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601