EP1004656B1 - Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper - Google Patents

Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper Download PDF

Info

Publication number
EP1004656B1
EP1004656B1 EP98121397A EP98121397A EP1004656B1 EP 1004656 B1 EP1004656 B1 EP 1004656B1 EP 98121397 A EP98121397 A EP 98121397A EP 98121397 A EP98121397 A EP 98121397A EP 1004656 B1 EP1004656 B1 EP 1004656B1
Authority
EP
European Patent Office
Prior art keywords
cellulose
granulate
meth
acrylic acid
copolymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98121397A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1004656A1 (de
Inventor
Sascha Casteel
Elke Dr. Philippsen-Neu
Hans-Georg Dr. Hartan
Rainer Pöschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalli Werke GmbH and Co KG
Original Assignee
Dalli Werke Waesche und Korperpflege GmbH and Co KG
Stockhausen GmbH and Co KG
Chemische Fabrik Stockhausen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8232957&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1004656(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dalli Werke Waesche und Korperpflege GmbH and Co KG, Stockhausen GmbH and Co KG, Chemische Fabrik Stockhausen GmbH filed Critical Dalli Werke Waesche und Korperpflege GmbH and Co KG
Priority to EP98121397A priority Critical patent/EP1004656B1/de
Priority to AT98121397T priority patent/ATE198348T1/de
Priority to DE59800410T priority patent/DE59800410D1/de
Priority to DK98121397T priority patent/DK1004656T3/da
Priority to PT79100995T priority patent/PT1004656E/pt
Priority to ES98121397T priority patent/ES2153229T3/es
Priority to HU9903991A priority patent/HU228025B1/hu
Priority to CZ19993977A priority patent/CZ290160B6/cs
Priority to TR1999/02772A priority patent/TR199902772A2/xx
Priority to PL336514A priority patent/PL191104B1/pl
Priority to US09/438,657 priority patent/US6232285B1/en
Publication of EP1004656A1 publication Critical patent/EP1004656A1/de
Publication of EP1004656B1 publication Critical patent/EP1004656B1/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions

Definitions

  • the invention is directed to granules that are particularly good at water records and forwards inside, which in some cases increases the volume takes place, so that the granules as disintegrants for pressed moldings, such as tablets.
  • Disintegrants for tablets or granules are auxiliary substances that disintegrate tablets or granules in contact with liquids, in particular Influence water positively.
  • the decay of Tablets in large parts and then a disintegration into smaller ones Particles are caused and accelerated.
  • inorganic and organic disintegrants for tablets are Substances known, for example inorganic substances such as bentonites, also persalts, acetates, alkali carbonates / hydrogen carbonates and citric acid.
  • organic compounds include starch, modified Starch and starch degradation products, cellulose, cellulose ethers, such as Methyl cellulose hydroxypropyl cellulose and carboxymethyl cellulose, poly (meth) acrylates, Polyvinyl pyrrolidone and cross-linked polyvinyl pyrrolidone, Alginates, gelatin and pectins.
  • an explosive granulate and its use in washing or cleaning-active moldings such as tablets, known a high adsorption capacity for water and a grain size distribution in which at least 90% by weight has a particle size of at least 0.2 mm and a maximum of 3 mm.
  • the granules preferably contain 25-100% by weight of disintegrants, such as starch, starch derivatives, cellulose, cellulose derivatives, Alginic acid, carboxylmethylamylopectin, polyacrylic acid, polyvinylpyrrolidone and polyvinyl polypyrrolidone.
  • disintegrants such as starch, starch derivatives, cellulose, cellulose derivatives, Alginic acid, carboxylmethylamylopectin, polyacrylic acid, polyvinylpyrrolidone and polyvinyl polypyrrolidone.
  • Citric acid is used as a disintegrant or citrates, bicarbonates and carbonates, bisulfate and percarbonate, microcrystalline Cellulose, sugar, sorbitol or swellable layered silicates called the type of bentonite or smectite.
  • the explosives are used in quantities of 1 to 25% by weight as a single raw material or as a compound.
  • DE-A-44 04 279 describes the following disintegrants for washing or cleaning tablets: starch, starch derivatives, cellulose, cellulose derivatives, microcrystalline cellulose, salts of polymeric polyacrylates or polymethacrylates, methyl celluloses, hydroxypropyl celluloses or methyl hydroxypropyl celluloses. Acetates or percarbonates are also mentioned as disintegrants.
  • the application amounts are up to 15% by weight. Since water-soluble silicates are used as builders, a combination of poly (meth) acrylates and nonionic cellulose ethers can Amounts of 1% by weight lead to very good results.
  • Detergent tablets are known from EP-A-522 766 which contain disintegrants which function according to four different mechanisms: swelling, porosity / capillary action, deformation and chemical reaction.
  • Starch, starch derivatives, carboxymethyl starch, sodium starch glycolates, cellulose and cellulose derivatives, carboxymethyl cellulose, crosslinked modified cellulose, microcrystalline cellulose and various organic polymers such as polyethylene glycol, and crosslinked polyvinypyrrolidones and inorganic swelling agents such as bentonites are described. Combinations of organic acids and bicarbonates of the carbonates of alkali metals are also mentioned.
  • EP 0 628 627 A1 describes a water-soluble, water-softening agent Builder in the form of a tablet. Combinations are used as explosives from citric acid and / or partially neutralized polymers and carbonate and / or bicarbonate or an insoluble polyvinylpyrrolidone.
  • detergent tablets are described as disintegrants Starch derivatives, cellulose compounds, polyvinylpyrrolidone compounds, polyvinylpolypyrrolidone compounds, Bentonite compounds, alginate gelatin and may contain pectins.
  • a polyfunctional organic carboxylic acid such as maleic acid Malic acid citric acid or tartaric acid together with carbonates or Bicarbonates recommended.
  • 95/06 109 is a method for producing detergent granules known high density from anhydrous material.
  • the agglomerates are free fluent and have a high content of detergent substances.
  • the object of the invention is to swell quickly and strongly in water
  • To create granules so that it can be used as a disintegrant for molded articles is suitable to promote their decay on contact with water.
  • This task is solved by a compacted explosive granulate for pressed molded articles containing non-water-soluble, water-swellable high-purity cellulose and / or cellulose derivatives and finely divided polymers or copolymers of (meth) acrylic acid or mixtures of these polymers or copolymers and one or more liquid nonionic and / or anionic and / or amphoteric surfactant (s) used for gel formation or thickening incline with water, the weight ratio of the combined in Water-swellable cellulose / cellulose derivatives and the polymers / copolymers of (meth) acrylic acid: liquid surfactant (s) is from 100: 1 to 10: 1.
  • the anisotropic cellulose was aligned by the compression or cellulose derivatives.
  • the water-swellable, high-purity cellulose becomes microcrystalline in form Structure used, the super-molecular structural elements Have the shape of fibrils, in the longitudinal direction of which crystalline and can alternate amorphous areas. Have proven to be particularly suitable Fibrils of native cellulose with a maximum length of 300 ⁇ m have been proven. Both microcrystalline and amorphous fine cellulose can be used and mixtures thereof can be used.
  • the finely divided cellulose preferably has bulk densities of 40 g / l up to 300 g / l, very particularly preferably from 65 g / l to 170 g / l. Become already used granulated types, their bulk density is higher and can be from 350 g / l to 550 g / l.
  • the bulk weights of the cellulose derivatives can range from 50 g / l to 1000 g / l, preferably in the range of 100 g / l and 800 g / l.
  • the particle size of the finely divided cellulose can be between 30 ⁇ m and 300 ⁇ m, preferably between 30 ⁇ m and 200 ⁇ m, in the case of granulated types the average particle size is between 350 ⁇ m and 800 ⁇ m.
  • the particle size of the finely divided Cellulose derivatives can be between 30 ⁇ m and 1000 ⁇ m.
  • cellulose derivatives that are swellable in water such as cellulose ethers and cellulose esters and mixed modifications the same can also be used.
  • Suitable cellulose ethers are e.g. Methyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose, as well modified carboxymethyl cellulose.
  • Granules are present.
  • finely divided polymers of (meth) acrylic acid or copolymers of (Meth) acrylic acid or salts thereof or mixtures of such polymers or copolymers or salts thereof with high water absorption contained in the granulate Linear ones have proven to be particularly suitable Polymers of (meth) acrylic acid, copolymers of (meth) acrylic acid or salts the same with weight average molecular weights of 5,000 to 70,000 and cross-linked polymers of (meth) acrylic acid, copolymers of (Meth) acrylic acid or salts thereof with weight average molecular weights proven from 1,000,000 to 5,000,000.
  • the copolymers are concerned it is preferably a copolymer of (meth) acrylic acid and maleic acid or maleic anhydride, for example 40 to 90% by weight (Meth) acrylic acid and 60 to 10% by weight of maleic acid or maleic anhydride contain, whose relative molar mass, based on free acids, between 3,000 and 100,000, preferably 3,000 to 70,000 and very particularly preferred Is 5,000 to 50,000.
  • Ter- and quattropolymeric polycarboxylates have also proven to be very suitable proven, made from (meth) acrylic acid, maleic acid and vinyl alcohol or vinyl alcohol derivatives, or those of (meth) acrylic acid, ethylenically unsaturated sulfonic acids and sugar derivatives, or such (Meth) acrylic acid, maleic acid, vinyl alcohol derivatives and sulfonic acid groups Monomers
  • Salt formation is preferably carried out with cations of alkali metals, Ammonia and amines, or their mixtures.
  • the finely divided polymers / copolymers of (meth) acrylic acid or salts preferably have the same of the cross-linked derivatives described above an average particle size of 45 ⁇ m to 150 ⁇ m. Most notably particle sizes from 45 ⁇ m to 90 ⁇ m are preferred.
  • Particles with average particle sizes over 150 ⁇ m show a good one Explosive effects, but are too large after swelling, become when washing filtered off and are visually as particles on the textile after washing visible.
  • Cellulose / cellulose derivatives are made with polymers / copolymers from (Meth) acrylic acid or salts thereof combined in the granulate, the weight ratio can be from 100: 0.5 to 100: 30, preferably from 100: 1 to 100: 20, a weight ratio of is very particularly preferred 100: 1 to 100: 10, the most favorable is a weight ratio of 100: 3.
  • the granulate contains one or more other essential constituents liquid, water-forming or thickening surfactants from the group of nonionic, anionic or amphoteric surfactants.
  • the nonionic surfactants are selected from alkyl polyglucosides, fatty acid alkylolamides, Fatty acid polyethylene glycol esters, fatty amine oxethylates, Fatty alcohol ethoxylates with 3-15 mol ethylene oxide or propylene oxide, Fatty acid glycerides, sorbitan esters, sucrose esters, e.g. Sucrose palmitate, Pentaerythritol partial esters, which can also be ethoxylated, as well as alkylphenol polyethylene glycol ethers and phenol poly - ethylene glycol ethers (if they can be used in the respective country)
  • the anionic surfactants are selected from alkyl sulfates, linear and branched alkylbenzenesulfonates, alkylglycerol ethers, fatty alcohol polyethylene glycol ether sulfates, Paraffin sulfonates, alpha olefin sulfonates, Sulfosuccinates, phosphoric acid esters and fatty alcohol ether carboxylates.
  • amphoteric surfactants are selected from coconut fatty acid amidopropyl betaine, modified imidazolines and fatty acid amide derivatives with betaine structure.
  • the quantitative ratio of cellulose / cellulose derivatives and / or polymers / copolymers of (meth) acrylic acid or salts thereof: surfactant can from 100: 1 to 10: 1. Quantities of 100: 2 are preferred up to 100: 5
  • the gel-forming or water-thickening surfactants can be anionic, be amphoteric or nonionic, particularly preferred are nonionic Surfactants.
  • liquid Surfactants initially in direct contact with the cellulose / cellulose derivatives to bring and attach to it and then the finely divided polymers / Copolymers of (meth) acrylic acid or its salts in the mixture to be introduced in such a way that the polymer particles on the fibrils of the cellulose be liable.
  • the mixture of the granulate components according to the invention, cellulose / cellulose derivatives and polymers / copolymers of (meth) acrylic acid and nonionic surfactants are then granulated using conventional methods.
  • mixers from Vomm, Lödige, Schugi, Eirich, Henschel or Fukae can be used.
  • the final compression is essential.
  • Compacting under Pressure can be applied in various ways.
  • Compaction on rolling mills has proven to be particularly suitable whose rollers run at different speeds, so that the pressure on the granules in the nip is still due to friction is added. This leads to the formation of a scale-like structure and alignment of the anisotropic cellulose / cellulose derivatives in the granulate.
  • This orientation can be one of the reasons for the particularly cheap source kinetic behavior of this embodiment of the invention Be granules.
  • the compression of the granules should preferably be such that the compression Granules a bulk density of 100 g / l to 800 g / l, preferred from 200 g / l to 600 g / l, very particularly preferably from 300 g / l to 500 g / l having.
  • the disintegrant granules according to the invention are in the moldings in Contain amounts of 0.5 wt.% To 10 wt.%, Preferably 2 wt.% To 7 % By weight and particularly preferably 3% by weight to 6% by weight.
  • the specific water absorption capacity of the granules according to the invention can be determined gravimetrically as follows: A defined amount of granules (eg 2.00 g) is sealed in a thin paper bag, such as a tea bag, and immersed in a vessel with an excess of water. After 3 minutes of immersion, the bag is removed from the water and hung for 10 minutes to drain. The bag is weighed and the water absorption is determined from the weight difference of a wet bag with and without granules. Distilled water or water with a defined hardness can be used for the determination.
  • a defined amount of granules eg 2.00 g
  • a thin paper bag such as a tea bag
  • the water absorption which can be determined in this way is preferably 500 until 2000 %
  • the compacted granulate according to the invention is distinguished by a special one Swelling kinetics, the expansion changes depending on the Time is not linear and should reach a certain level after the shortest possible time to reach.
  • the increase in volume after 5 seconds is preferably 55% by volume to 225% by volume, the increase in volume being greater with higher compaction, ie higher bulk density.
  • the increase in volume is preferably 75% by volume to 270% by volume, the increase in volume likewise increasing with increasing bulk density.
  • the volume increases after 5 seconds contact with water from 55 vol.% to 100 vol.% and after 10 seconds from 75 vol.% to 130 vol.%.
  • a bulk density of 400 g / l to 500 g / l the volume increase of 200 after 5 seconds Vol.% To 225 vol.% And after 10 seconds from 230 vol.% To 270 vol.%.
  • Figure 1 shows a diagram for the swelling kinetics of known explosives and granules according to the invention.
  • Table 1 contains the corresponding measured values. Swelling kinetics of different materials Bulk density [g / l] 70 90 90 300 300 450 450 Cellulose V 1 M1 V2 M2 V3 M3 Time [sec] Way [mm] Way [mm] Way [mm] Way [mm] Way [mm] Way [mm] Way [mm] Way [mm] 0 0 0 0 0 1 0.10 0.20 0.25 0.30 0.50 0.80 1.20 2nd 0.20 0.40 0.40 0.60 1.05 1.20 1.80 3rd 0.30 0.60 0.65 0.90 1.35 1.50 2.20 4th 0.35 0.70 0.80 1.00 1.58 1.60 2.40 5 0.40 0.85 0.95 1.10 1.75 1.70 2.50 6 0.42 1.00 1.15 1.15 1.83 1.72 2.58 7 0.44 1.10 1.25 1.20 1.93 1.80 2.65 8th 0.46 1.20 1.40 1.25 2.00 1.82 2.70 9 0.48 1.35 1.55 1.40 2.05 1.82 2.72 10th 0.48 1.40 1.65 1.50 2.15 1.85 2.
  • composition of the samples V1 to V3 is as in Table 3, example 2.1.
  • composition of the samples M1 to M3 is as in Table 3, example. 2.3: Does not fall under the scope of protection; but supports the concept of the present invention. Volume expansion in vol.% Cellulose V1 M1 V2 M2 V3 M3 Bulk density in g / l 70 90 90 300 300 450 450 Volume increase after 5 sec vol.% 5 14 16 55 100 200 225 after 10 sec vol.% 6 23 28 75 130 230 270
  • Formulation V1 has the composition of Example 2.1 in undensified form.
  • Formulation M1 has the composition of Example 2.3 in undensified form.
  • V2, M2 denote samples that were compressed to a bulk density of 300 g / l after mixing in a roller press.
  • V3 and M3 refer to samples which, after mixing, were compressed to a bulk density of 450 g / l using a roller press.
  • the increase in volume after 5 seconds is preferably at least 95%, particularly preferred> 150%.
  • Another object of the invention is a method for manufacturing a compacted granulate that is insoluble in water but swellable high-purity cellulose and / or cellulose derivatives and finely divided polymers / copolymers of (meth) acrylic acid or its salts and one or more contains liquid surfactants by mixing high-purity cellulose / cellulose derivative with the surfactant (s) according to the invention and mixing the polymers / copolymers, granulating and then compressing the Granules aligned with anisotropic cellulose / cellulose derivatives.
  • the first step of the process involves a mixing and granulating process, in the pre-compounds produced by agglomeration processes become. These precompounds form a free-flowing and coarse-grained Goods that have a certain degree of moisture.
  • the next step will be these precompounds are mechanically compressed.
  • the products can be between two pressure areas in roller compressors, e.g. B. smooth or profiled, compressed become. If certain sliding properties are available, the Compression in extruders or flat die presses to form dies.
  • the compactate is ejected as a strand. Compression methods in Matrices with stamps or pillow rollers produce compact forms such as tablets or briquettes. Roller compactors, Extruders, roller or cube presses, but also granulating presses be used. Below are the coarse, densified particles crushed, e.g. Suitable for mills, shredders or roller mills are.
  • the granulate according to the invention takes this quickly in contact with water with volume increase and is therefore suitable as a so-called Disintegrant for pressed moldings so that they quickly disintegrate in water.
  • the invention includes the use of the compacted granules as Disintegrants for pressed molded articles, for example tablets, cubes, Bullets and the like.
  • disintegrant for detergent formulations is particularly preferred, Detergent formulations, stain salts, water softeners in tablet or cube form.
  • Detergent tablets and detergent tablets for different Purposes, in the sanitary area or for dishwashers are generally known.
  • Such moldings must have sufficient stability and strength to enable handling, packaging and storage however, quickly disintegrate on contact with water, so that the components can have the desired effect.
  • the pressed moldings often contain so-called Disintegrants that due to the swelling behavior and the increase in volume Remove the cohesion of the shaped bodies and accelerate the disintegration.
  • Detergent formulations usually contain builders, bleaches and bleach activators, surfactants, tabletting aids, disintegrants and other common additives and auxiliaries.
  • Fillers can also form part of the builder system such as alkali carbonates, bicarbonates e.g. Sodium carbonate or sodium hydrogen carbonate, Sesquiocarbonates, sodium sulfate, magnesium sulfate, or citrate, citric acid, succinic acid, tartaric acid and malic acid his.
  • Cobuilders and dispersants are often used as auxiliary builders. Such cobuilders or dispersants can be polyacrylic acids and their sodium salts.
  • Copolymers of (meth) acrylic acid and maleic acid terpolymers and Quattropolymers of (meth) acrylic acid, maleic acid, vinyl alcohol and sulfo groups Vinyl compounds can be used.
  • Ter- and quattropolymeric polycarboxylates are also particularly preferred, made from (meth) acrylic acid, maleic acid and vinyl alcohol or Vinyl alcohol derivatives (as described in DE 43 00 772 C2) or those from (meth) acrylic acid, 2-alkylallylsulfonic acid and sugar derivatives (as described in DE 42 21 381 C1) or those made from (meth) acrylic acid, Maleic acid, vinyl alcohol derivatives and monomers with sulfonic acid groups (described in DE 19 516 957 A).
  • polyethylene glycol and / or polypropylene glycol with a Suitable molecular weight from 900 to 30,000, as well as carboxylated polysaccharides, Polyaspartates and polyglutamate.
  • Customary bleaching agents are sodium perborate tetrahydrate and sodium perborate monohydrate, sodium percarbonate, peroxypyrophosphates, citrate perhydrates, as well as H 2 O 2 -producing peracidic salts, peracids such as perbenzoates, peroxyphthalates, diperazelaic acid and diperdodecanedioic acids.
  • the bleach content in tablets is preferably 10-60% by weight and in particular 15-50% by weight.
  • activators can be incorporated.
  • Suitable bleach activators are the N-acyl and O-acyl compounds forming with H 2 O 2 organic peracids, preferably N, N'-tetraacylated diamines, carboxylic acid anhydrides and esters of polyols such as glucose pentaacetate. Acetylated mixtures of sorbitol and mannitol can also be used.
  • bleach activators are N, N, N ', N'-tetraacetylethylene diamine (TAED), 1,5-diacetyl-2,4-dioxo-hexahydro-1,2,5-triazine (DADHT) and acetylated sorbitol mannitol Mixtures (SORMAN).
  • TAED N, N, N ', N'-tetraacetylethylene diamine
  • DADHT 1,5-diacetyl-2,4-dioxo-hexahydro-1,2,5-triazine
  • SORMAN acetylated sorbitol mannitol Mixtures
  • cationic surfactants can also be present in detergent formulations, for example quaternary ammonium compounds with C 8 -C 16 N-alkyl or N-alkenyl groups and N-substituents such as methyl, hydroxyethyl or hydroxypropyl groups.
  • Polyalkylene glycols and magnesium stearates come as tableting aids into consideration.
  • Examples of other common detergent additives and auxiliaries are Enzymes, magnesium silicates, aluminum aluminates, benzotriazole, glycerin, Magnesium stearate, polyalkylene glycols, hexametaphosphate, phosphonates, bentonites, Soil release polymers, carboxymethyl celluloses.
  • Dishwashing tablets as an educational form of detergent formulations usually contain polyphosphates, pyrophosphates, Metaphosphates or phosphonates, layered silicates, amorphous silicates, amorphous disilicates and zeolites, as well as fillers such as sodium carbonate, Sodium sulfate, magnesium sulfate, sodium hydrogen carbonate, citrate as well Citric acid, succinic acid, tartaric acid and malic acid. Frequently are also used as auxiliary builders, cobuilders and dispersants. Such Cobuilders or dispersants can be polyacrylic acids or copolymers with polyacrylic acid and its sodium salts.
  • Customary bleaching agents are sodium perborate tetrahydrate and sodium perborate monohydrate, sodium percarbonate, peroxypyrophosphates, citrate perhydrates, as well as H 2 O 2 -producing peracidic salts, peracids such as perbenzoates, peroxyphthalates, diperazelaic acid and diperdodecanedioic acids.
  • the content in the tablets is preferably 10-60% by weight and in particular 15-50% by weight.
  • Low-foaming non-ionic surfactants of the polyalkylene glycol and alkyl polyglucoside type are also used.
  • Examples of other common detergent additives and auxiliaries are here too enzymes, magnesium silicates, aluminum aluminates, benzotriazole, Glycerin, magnesium stearate, polyalkylene glycols, hexametaphosphate as well Phosphonates.
  • Water softening tablets usually consist of builders such as Layered silicates, amorphous silicates, amorphous disilicates and zeolites, as well as fillers such as sodium carbonate, sodium sulfate, magnesium sulfate, Sodium bicarbonate, citrate and citric acid. Often called Auxiliary builders cobuilders and dispersants also used. Such cobuilders or dispersants can be polyacrylic acids or copolymers with polyacrylic acid and their sodium salts.
  • Low-foaming non-ionic surfactants of the polyalkylene glycol and alkyl polyglucoside type are also used.
  • Examples of other common detergent additives and auxiliaries are Magnesium silicates, polyalkylene glycols and phosphonates.
  • disintegrant compositions according to the teaching of the invention (all amounts in% by weight) .
  • Detergent tablet containing phosphate strength of the tablet and its Disintegration time using the granules of the above examples:
  • Phosphate-containing detergent tablets with the composition described in Table 3 were examined for their disintegration time and strength.
  • Table 5 shows the strength and disintegration time of the individual detergent tablets when using the different disintegrants: Disintegrant composition according to example Disintegration time in sec Strength in N 2.1 35 62 2.2 28 61 2.3 25th 63 2.4 28 70 2.5 22 53 2.6 19th 64 2.7 21 63 2.8 29 58
  • Phosphate-free detergent tablet strength of the tablet and its disintegration time using one of the granules of the aforementioned examples:
  • Amorphous disilicate 36 30th Fatty alcohol ethoxylate 2nd 7 Fatty alcohol sulfate 11 15 Linear alkyl benzene sulphonate 4th 2nd Sodium percarbonate 16 16 TAED 4th 4th Acrylate-maleate copolymer - 3rd soda 7 4th Sodium citrate 5 5 Microcrystalline cellulose (200 ⁇ m) 4th 4th Defoamer, optical brightener, CMC, phosphonate 5 4th Enzyme mix 1 1 Disintegrant preparation according to example 2.3 5 5 5 Recipe Disintegration time in sec Strength in N a) 40 68 b) 15 48
  • Example 11 Pressed molded articles with the intended use as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Seasonings (AREA)
  • Glanulating (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Catalysts (AREA)
EP98121397A 1998-11-11 1998-11-11 Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper Expired - Lifetime EP1004656B1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP98121397A EP1004656B1 (de) 1998-11-11 1998-11-11 Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper
AT98121397T ATE198348T1 (de) 1998-11-11 1998-11-11 Verdichtetes granulat, herstellungsverfahren und verwendung als sprengmittel für gepresste formkörper
DE59800410T DE59800410D1 (de) 1998-11-11 1998-11-11 Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper
DK98121397T DK1004656T3 (da) 1998-11-11 1998-11-11 Komprimeret granulat, fremstillingsfremgangsmåde og anvendelse som sprængemiddel til pressede formlegemer
PT79100995T PT1004656E (pt) 1998-11-11 1998-11-11 Processo de fabrico e utilizacao de granulado compactado como desintegrante em corpos moldados por prensagem
ES98121397T ES2153229T3 (es) 1998-11-11 1998-11-11 Granulado densificado, procedimiento para su fabricacion y su utilizacion como agente desintegrador para cuerpos moldeados por compactacion.
HU9903991A HU228025B1 (en) 1998-11-11 1999-11-01 Caulked granulate, process for producing it and its use as a material for promoting decomposition
CZ19993977A CZ290160B6 (cs) 1998-11-11 1999-11-10 Zhutněný granulát, způsob jeho výroby a jeho pouľití jako bubřidla pro lisovaná tvarová tělesa
TR1999/02772A TR199902772A2 (xx) 1998-11-11 1999-11-10 S�k��t�r�lm�� gran�l, �retimi ve sulama maddesi olarak kullan�m�
PL336514A PL191104B1 (pl) 1998-11-11 1999-11-10 Zgęszczony granulat substancji rozsadzającej, sposób jego wytwarzania i zastosowanie zgęszczonego granulatu substancji rozsadzającej
US09/438,657 US6232285B1 (en) 1998-11-11 1999-11-12 Compacted granulate, process for making same and use as disintegrating agent for pressed detergent tablets, cleaning agent tablets for dishwashers, water softening tablets and scouring salt tablets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98121397A EP1004656B1 (de) 1998-11-11 1998-11-11 Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper

Publications (2)

Publication Number Publication Date
EP1004656A1 EP1004656A1 (de) 2000-05-31
EP1004656B1 true EP1004656B1 (de) 2000-12-27

Family

ID=8232957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98121397A Expired - Lifetime EP1004656B1 (de) 1998-11-11 1998-11-11 Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper

Country Status (11)

Country Link
US (1) US6232285B1 (cs)
EP (1) EP1004656B1 (cs)
AT (1) ATE198348T1 (cs)
CZ (1) CZ290160B6 (cs)
DE (1) DE59800410D1 (cs)
DK (1) DK1004656T3 (cs)
ES (1) ES2153229T3 (cs)
HU (1) HU228025B1 (cs)
PL (1) PL191104B1 (cs)
PT (1) PT1004656E (cs)
TR (1) TR199902772A2 (cs)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020010A1 (de) * 2004-04-21 2005-11-17 Henkel Kgaa Verfahren zur Herstellung von Polymer-Granulaten

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19709991C2 (de) * 1997-03-11 1999-12-23 Rettenmaier & Soehne Gmbh & Co Waschmittelpreßling und Verfahren zu seiner Herstellung
DE19710254A1 (de) * 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
DE19953027A1 (de) * 1999-11-04 2001-05-23 Cognis Deutschland Gmbh Waschmitteltabletten
DE19953026A1 (de) * 1999-11-04 2001-05-17 Cognis Deutschland Gmbh Sprengmittelgranulate
DE19953792A1 (de) * 1999-11-09 2001-05-17 Cognis Deutschland Gmbh Waschmitteltabletten
DE19953793A1 (de) * 1999-11-09 2001-05-17 Cognis Deutschland Gmbh Tensidgranulate mit verbesserter Auflösegeschwindigkeit
DE19956803A1 (de) * 1999-11-25 2001-06-13 Cognis Deutschland Gmbh Tensidgranulate mit verbesserter Auflösegeschwindigkeit
EP1167433A1 (de) * 2000-06-19 2002-01-02 Mifa Ag Frenkendorf Mit unlöslichem Sprengmittel coprozessiertes Polysaccharidprodukt, Herstellungsverfahren und Verwendung davon
AU2001210944A1 (en) * 2000-10-18 2002-04-29 The Procter And Gamble Company Detergent tablet
GB0102736D0 (en) * 2001-02-05 2001-03-21 Crosfield Joseph & Sons Disintegrants and a process for their manufacture
US7550156B2 (en) * 2001-11-23 2009-06-23 Rohm And Haas Company Optimised pellet formulations
US6669929B1 (en) * 2002-12-30 2003-12-30 Colgate Palmolive Company Dentifrice containing functional film flakes
AU2004299877A1 (en) * 2003-12-15 2005-06-30 Absorbent Technologies, Inc. A superabsorbent polymer product including a bioactive, growth-promoting additive
US7425595B2 (en) * 2003-12-15 2008-09-16 Absorbent Technologies, Inc. Superabsorbent polymer products including a beneficial additive and methods of making and application
DE102004020016A1 (de) * 2004-04-21 2005-11-10 Henkel Kgaa Verfahren zur Herstellung von Polymer-Granulaten
CA2576967A1 (en) 2004-08-27 2006-03-09 Absorbent Technologies, Inc. Superabsorbent polymers in agricultural applications
EP1693438A1 (en) 2005-02-21 2006-08-23 The Procter & Gamble Company A particulate laundry detergent composition comprising a detersive surfactant, carbonate and a cellulosic polymer
EP1693441B2 (en) * 2005-02-21 2019-11-06 The Procter & Gamble Company A particulate laundry detergent composition comprising a detersive surfactant, carbonate and a fluorescent whitening component
EP1693440A1 (en) * 2005-02-22 2006-08-23 The Procter & Gamble Company Detergent compositions
US20070197423A1 (en) * 2006-02-21 2007-08-23 The Procter & Gamble Company Detergent compositions
EP1693439A1 (en) * 2005-02-22 2006-08-23 The Procter & Gamble Company Detergent compositions
US20070148213A1 (en) * 2005-12-22 2007-06-28 Sayed Ibrahim Film containing compositions
US7607259B2 (en) * 2006-01-17 2009-10-27 Absorbent Technologies, Inc. Superabsorbent polymer root dip
US20070163172A1 (en) * 2006-01-17 2007-07-19 Savich Milan H Biodegradable mat containing superabsorbent polymers
US20070167330A1 (en) * 2006-01-17 2007-07-19 Savich Milan H Superabsorbent polymer applicator
US20110319530A1 (en) 2010-06-29 2011-12-29 Eastman Chemical Company Processes for making cellulose estate/elastomer compositions
US9273195B2 (en) 2010-06-29 2016-03-01 Eastman Chemical Company Tires comprising cellulose ester/elastomer compositions
US9596801B2 (en) 2010-10-25 2017-03-21 Vjs Investments Limited Superabsorbent polymer seed coatings and associated methods
US20130150501A1 (en) 2011-12-07 2013-06-13 Eastman Chemical Company Cellulose esters in highly-filled elastomaric systems
US11267916B2 (en) 2014-02-07 2022-03-08 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10647795B2 (en) 2014-02-07 2020-05-12 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10723824B2 (en) 2014-02-07 2020-07-28 Eastman Chemical Company Adhesives comprising amorphous propylene-ethylene copolymers
US10308740B2 (en) 2014-02-07 2019-06-04 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US9428598B2 (en) 2014-02-07 2016-08-30 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US10696765B2 (en) 2014-02-07 2020-06-30 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and propylene polymer
US10077343B2 (en) 2016-01-21 2018-09-18 Eastman Chemical Company Process to produce elastomeric compositions comprising cellulose ester additives

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA960936A (en) * 1971-01-12 1975-01-14 American Can Company Phosphate-free detergent composition
DE4010533A1 (de) * 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
DE3943019A1 (de) * 1989-12-27 1991-07-04 Henkel Kgaa Granulares, avivierend wirkendes waschmitteladditiv und verfahren zu seiner herstellung
IL105553A (en) 1992-05-06 1998-01-04 Janssen Pharmaceutica Inc Solid dosage form comprising a porous network of matrix forming material which disperses rapidly in water
US5772786A (en) * 1993-08-13 1998-06-30 The Procter & Gamble Company Detergent composition comprising lime soap dispersant and lipase enzymes
EP0639638A1 (en) * 1993-08-18 1995-02-22 The Procter & Gamble Company Process for making detergent compositions
US5486303A (en) * 1993-08-27 1996-01-23 The Procter & Gamble Company Process for making high density detergent agglomerates using an anhydrous powder additive
DE4404279A1 (de) * 1994-02-10 1995-08-17 Henkel Kgaa Tablette mit Buildersubstanzen
DE4429550A1 (de) 1994-08-19 1996-02-22 Henkel Kgaa Verfahren zur Herstellung von Wasch- oder Reinigungsmitteltabletten
ATE360056T1 (de) 1996-12-06 2007-05-15 Procter & Gamble Beschichtetes reinigungsmittels in tablettenform und herstellungsverfahren dafür
DE19710254A1 (de) * 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
DE29724283U1 (de) * 1997-06-03 2000-10-05 Henkel KGaA, 40589 Düsseldorf Hilfsmittelgranulat für wasch- und reinigungsaktive Formkörper
DE19739383A1 (de) 1997-09-09 1999-03-11 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020010A1 (de) * 2004-04-21 2005-11-17 Henkel Kgaa Verfahren zur Herstellung von Polymer-Granulaten

Also Published As

Publication number Publication date
HUP9903991A3 (en) 2000-09-28
PL191104B1 (pl) 2006-03-31
PT1004656E (pt) 2001-04-30
ATE198348T1 (de) 2001-01-15
EP1004656A1 (de) 2000-05-31
TR199902772A3 (tr) 2000-06-21
PL336514A1 (en) 2000-05-22
HUP9903991A2 (hu) 2000-08-28
HU9903991D0 (en) 2000-01-28
DK1004656T3 (da) 2001-02-05
HU228025B1 (en) 2012-08-28
ES2153229T3 (es) 2001-02-16
CZ290160B6 (cs) 2002-06-12
DE59800410D1 (de) 2001-02-01
TR199902772A2 (xx) 2000-06-21
CZ397799A3 (cs) 2000-08-16
US6232285B1 (en) 2001-05-15

Similar Documents

Publication Publication Date Title
EP1004656B1 (de) Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper
EP1004661A1 (de) Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper (2)
EP1043391B1 (de) Verdichtetes Sprengmittelgranulat für gepresste Formkörper; dessen Herstellung und Verwendung
EP0966518B1 (de) Wasch- oder reinigungsaktive formkörper für den gebrauch im haushalt
EP0579659B1 (de) Verfahren zur herstellung von reinigungsmitteltabletten für das maschinelle geschirrspülen
EP0591282B1 (de) Verfahren zur herstellung von reinigungsmitteltabletten für das maschinelle geschirrpülen
EP1043389B1 (de) Sprengmittelgranulat enthaltende Waschmitteltabletten
EP0523095B1 (de) Stabile, bifunktionelle, phosphatfreie reinigungsmitteltabletten für das maschinelle geschirrspülen
DE19723028A1 (de) Hilfsmittelgranulat für wasch- und reinigungsaktive Formkörper
EP1043388B1 (de) Sprengmittelgranulat enthaltende Geschirrspülmaschinenreinigungstabletten
EP0985023B1 (de) Waschmittelformkörper mit verbesserten auflöseeigenschaften
EP1491621B1 (de) Alpha Olefin- und Alpha Olefin-Cellulose Granulate als Sprengmittel
DE19601840A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmittelformkörpern
DE10123621A1 (de) Verfahren zur Herstellung einer Wasserenthärtertablette
DE29723656U1 (de) Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
EP1141191A1 (de) Phosphat-compounds
CZ397699A3 (cs) Zhutněný granulát, způsob jeho výroby a jeho použití jako bubřidla pro lisovaná tvarová tělesa
DE29723652U1 (de) Wasch- oder reinigungsaktive Förmkörper für den Gebrauch im Haushalt
DE29723655U1 (de) Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt

Legal Events

Date Code Title Description
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17P Request for examination filed

Effective date: 19991005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 198348

Country of ref document: AT

Date of ref document: 20010115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO JEAN HUNZIKER

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010103

REF Corresponds to:

Ref document number: 59800410

Country of ref document: DE

Date of ref document: 20010201

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB IT LI LU NL PT SE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2153229

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20010118

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HENKEL KGAA

Effective date: 20010828

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL KGAA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: DALLI-WERKE WAESCHE- UND KOERPERPFLEGE GMBH & CO.

Free format text: DALLI-WERKE WAESCHE- UND KOERPERPFLEGE GMBH & CO. KG#ZWEIFALLER STRASSE 120#D-52220 STOLBERG (DE) $ STOCKHAUSEN GMBH & CO. KG#BAEKERPFAD 25#47805 KREFELD (DE) -TRANSFER TO- DALLI-WERKE WAESCHE- UND KOERPERPFLEGE GMBH & CO. KG#ZWEIFALLER STRASSE 120#D-52220 STOLBERG (DE)

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DALLI-WERKE WAESCHE- UND KOERPERPFLEGE GMBH & CO

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DALLI-WERKE WAESCHE- UND KOERPERPFLEGE GMBH & CO.

NLS Nl: assignments of ep-patents

Owner name: DALLI-WERKE WAESCHE- UND KOERPERPFLEGE GMBH & CO.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DALLI-WERKE GMBH & CO. KG

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DALLI-WERKE GMBH & CO. KG

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APBW Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20061114

NLR2 Nl: decision of opposition

Effective date: 20061114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59800410

Country of ref document: DE

Representative=s name: FLEISCHER, ENGELS & PARTNER MBB, PATENTANWAELT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20171120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171120

Year of fee payment: 20

Ref country code: DK

Payment date: 20171122

Year of fee payment: 20

Ref country code: DE

Payment date: 20171009

Year of fee payment: 20

Ref country code: FR

Payment date: 20171121

Year of fee payment: 20

Ref country code: FI

Payment date: 20171121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171120

Year of fee payment: 20

Ref country code: AT

Payment date: 20171121

Year of fee payment: 20

Ref country code: IT

Payment date: 20171124

Year of fee payment: 20

Ref country code: PT

Payment date: 20171107

Year of fee payment: 20

Ref country code: CH

Payment date: 20171120

Year of fee payment: 20

Ref country code: BE

Payment date: 20171120

Year of fee payment: 20

Ref country code: GB

Payment date: 20171123

Year of fee payment: 20

Ref country code: ES

Payment date: 20171220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59800410

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20181111

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20181110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20181110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20181111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 198348

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181111

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20181119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20181110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20181112