EP0986527B1 - Reduktion von carbonylverbindungen durch ein silanderivat in gegenwart eines zink-katalysator - Google Patents

Reduktion von carbonylverbindungen durch ein silanderivat in gegenwart eines zink-katalysator Download PDF

Info

Publication number
EP0986527B1
EP0986527B1 EP99902787A EP99902787A EP0986527B1 EP 0986527 B1 EP0986527 B1 EP 0986527B1 EP 99902787 A EP99902787 A EP 99902787A EP 99902787 A EP99902787 A EP 99902787A EP 0986527 B1 EP0986527 B1 EP 0986527B1
Authority
EP
European Patent Office
Prior art keywords
group
zinc
reduction
oil
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99902787A
Other languages
English (en)
French (fr)
Other versions
EP0986527A1 (de
Inventor
Hubert Mimoun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Firmenich SA
Original Assignee
Firmenich SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firmenich SA filed Critical Firmenich SA
Publication of EP0986527A1 publication Critical patent/EP0986527A1/de
Application granted granted Critical
Publication of EP0986527B1 publication Critical patent/EP0986527B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/02Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains containing only carbon and hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/06Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms
    • C07C403/08Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by singly-bound oxygen atoms by hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes

Definitions

  • the present invention concerns the field of organic synthesis. It concerns, more particularly, a process for the selective reduction of carbonyl compounds, such as aldehydes, ketones, esters and lactones into the corresponding alcohols, using silanes as reducing agents, preferably polymethylhydrosiloxane (PMHS), in the presence of catalysts which comprise monomeric zinc compounds, complexed by basic ligands such as amines, polyamines, aminoalcohols, amine oxydes, amides, phosphoramides, etc.
  • silanes preferably polymethylhydrosiloxane (PMHS)
  • catalysts which comprise monomeric zinc compounds, complexed by basic ligands such as amines, polyamines, aminoalcohols, amine oxydes, amides, phosphoramides, etc.
  • silanes as reducing agents for carbonyl substrates, together with a metal catalyst.
  • a preferred silane for this type of reductions is polymethylhydrosiloxane or PMHS, according to the general formula
  • titane (IV) isopropylate or ethylate or trichlorotitane (IV) isopropylate Such a system is said to be appropriate for the reduction of esters, lactones, amides or imines. More recently, Breedon and Lawrence (Synlett., 1994, 833) and Reding and Buchwald (J. Org. Chem., 1995, 60, 7884) have described a similar process, namely the use of non-activated titane tetraalkoxydes as catalysts for the reduction of esters by PMHS. The method described in those three mentioned references requires the use of large amounts, at least 25 mole% with respect to the substrate, of catalyst.
  • the object of the invention is a process for the preparation of alcohols by reduction of the carbonyl function in substrates belonging to the class of aldehydes, ketones, esters or lactones, which substrates may contain unsaturated functions other than the carbonyl group, wherein
  • Another object of the invention is a reductive system comprising
  • the present invention is based on the surprising fact that the use of a monomeric species of zinc considerably enhances the reactivity of a reductive system for carbonyl compounds comprising a silane and a zinc compound.
  • reductive systems comprising a zinc salt and a silane, as described in US patent US 3,061,424 to Nitzsche and Wick which has been cited beforehand, are by far less reactive than the system according to the present application.
  • the system as described in the prior art is not capable of reducing esters and lactones, in contrast to the reductive system of the present invention.
  • WO 96/12694 shows that it is possible to enhance the reactivity of a silane for the reduction of carbonyl substrates by adding zinc salts or complexes, the latter require the activation by a reducing agent.
  • reducing agent compounds like NaBH 4 , LiAlH 4 , lithium or aluminum alkyls or Grignard compounds were used to generate a highly reactive species, namely a hydride.
  • the present invention uses zinc compounds such as salts or complexes which do not require the activation by a reducing agent and which, when employed in stoichiometric amounts and together with a silane, catalyze the reduction of all sorts of carbonyl compounds.
  • the chemistry of zinc is in general characterized by the tendency of the metal to reach a coordination number higher than 2 which is a consequence of its valence state +2.
  • the zinc can reach the higher coordination number it desires to attain by oligo- or polymerization, after which in general a tetra- or hexacoordination is observed.
  • zinc salts or complexes are in most cases oligo- or polymeric, and as examples, there are mentioned here zinc carboxylates and halides.
  • an electronically unsaturated class of compounds are dialkyl- and diaryl zinc compounds. They are not capable of reaching a higher coordination number than 2 by oligo- or polymerization because alkyl and aryl groups cannot act as bridging ligands. Dialkyl- and diaryl zinc compounds are therefore monomeric, and they show a linear structure.
  • an oligo- or polymeric precursor compound or a dialkyl- or diaryl zinc compound which is converted into an active salt or complex by treatment with an appropriate complexing agent.
  • monomeric complexes or salts which turned out to be active in the process of the invention, but whose activity has passed completely unnoticed until now.
  • any known compound of zinc according to the general formula ZnX 2 can be used as the precursor compound.
  • X stands for any anion.
  • Preferred anions X are defined below.
  • the active catalyst of the invention can be described by the general formula ZnX 2 L n .
  • the catalyst can be obtained in situ, in the reaction medium, or be prepared separately from a zinc compound such as, for example, a salt or complex of general formula ZnX 2 , mentioned above.
  • X is preferably any anion selected from the group consisting of carboxylates, ⁇ -diketonates, enolates, amides, silylamides, halides, carbonates and cyanides and organic groups such as alkyl, cycloalkyl, alkoxy, aryl, aryloxy, alkoxyalkyl, alkoxyaryl, aralkoxy, aralcoyl and alkylaryl groups.
  • a zinc carboxylate of formula Zn(RCO 2 ) 2 like, for example, the acetate, propionate, butyrate, isobutyrate, isovalerate, diethylacetate, benzoate, 2-ethylhexanoate, stearate or naphthenate ;
  • a zinc alkoxyde of formula Zn(OR) 2 wherein R is an alkyl group from C 1 to C 20 , preferably from C 1 to C 5 such as, for example, the methoxyde, ethoxyde, isopropoxyde, tert-butoxyde, tert-pentoxyde, or the 8-hydroxyquinolinate ;
  • a zinc ⁇ -diketonate like, for example, the acetylacetonate, substituted or unsubstituted, or the tropolonate;
  • n is an integer from 1 to 6.
  • the ligands L can be identical or different and be selected from the group consisting of amines, polyamines, imines, polyimines, aminoethers, amines oxydes, phosphoramides and amides.
  • the amine may be a primary, secondary, or tertiary aliphatic, alicyclic or aromatic amine comprising from 2 to 30 carbon atoms.
  • Non-limiting examples include aniline, triethylamine, tributylamine, N,N-dimethylaniline, morpholine, piperidine, pyridine, picolines, lutidines, 4-tertiobutylpyridine, dimethylaminopyridine, quinoline and N-methylmorpholine.
  • the polyamines may comprise from 2 to 6 primary, secondary or tertiary amine groups, and from 2 to 30 carbon atoms such as, for example, ethylenediamine, 1,2- and 1,3-propylenediamine, 1,2-, 1,3- and 1,4-butanediamine, hexamethylenediamine, N,N-dimethylethylenediamine, diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetramethylethylenediamine, N,N-dimethylpropylenediamine, N,N,N'-trimethylethylenediamine, N,N,N',N'-tetramethyl-1,3-propanediamine, hexamethylenetetramine, diazabicyclononane, sparteine, orthophenantroline, 2,2'-bipyridine and neocuproine.
  • the aminoalcohols may comprise one or several primary, secondary or tertiary amine functions together with one or several primary, secondary or tertiary alcohol functions like in, for example, ethanolamine, diethanolamine, triethanolamine, dimethylaminoethanol, diethylaminoethanol, dimethylaminomethanol, diethylaminomethanol, 2-aminobutanol, ephedrine, prolinol, valinol, cinchonidine, quinine and quinidine.
  • the compounds R 1 to R 6 each represent a hydrogen atom or an alkyl, cycloalkyl, alkoxy, aryl, aryloxy, alkoxyalkyl, alkoxyaryl, aralkoxy, aralcoyl, alkylaryl or aralkyl goup comprising from 1 to 20 carbon atoms.
  • ligands capable of activating zinc compounds and derivatives yet include amides like, for example, dimethylformamide, dimethylacetamide or N-methylpyrrolidone, phosphoramides such as, for example, hexamethylphosphomiamide, phosphine oxides like, for example, triphenylphosphine oxide, tributyl- or trioctylphosphine oxide, amine oxides like, for example, pyridine N-oxyde, 4-picoline-N-oxyde, N-methyl- morpholine N-oxyde and sulfoxydes like, for example, dimethyl- or diphenylsulfoxyde.
  • amides like, for example, dimethylformamide, dimethylacetamide or N-methylpyrrolidone
  • phosphoramides such as, for example, hexamethylphosphomiamide
  • the invention also concerns monomeric zinc complexes which turned out to be active in the process of the invention.
  • a preferred class of compounds are monomeric zinc carboxylates. This class of molecules is not described in the chemical literature, with the exception of the compound Zn(O 2 CCH 3 ) 2 (pyridine) 2 , see J. Am. Chem. Soc. 119, 7030, (1997).
  • silanes can be used in the process according to the present invention.
  • Such silanes are known to a person skilled in the art, and they will be chosen according to their capacity to effectively reduce carbonyl substrates in the process according to the present invention.
  • trialkylsilanes dialkylsilanes or trialkoxysilanes. More specific examples include dimethylsilane, diethylsilane, trimethoxysilane and triethoxysilane.
  • PMHS due to its effectiveness, availability and price.
  • procees according to the present invention is lined out in the following reaction schemes, which apply to the particular and preferred case of employing PMHS as reducing agent.
  • the concentration of the catalyst ZnX 2 L n is generally from 0.1 to 10%, preferably from 1 to 5%.
  • the term "effective amount" means an amount of silane sufficient to induce reduction of the substrate.
  • the alcohol which is obtained as reaction product can be obtained by hydrolysis of the formed polysilylether.
  • This hydrolysis may be carried out by adding to the reaction mixture an aqueous or alcoholic solution of a basic agent such as, for example, sodium or potassium hydroxide, lime or sodium or potassium carbonate.
  • a basic agent such as, for example, sodium or potassium hydroxide, lime or sodium or potassium carbonate.
  • the ratio of the base with respect to the PMHS used will be from 1 to 2 mole equivalents.
  • the desired alcohol is found in the organic phase and can be obtained by evaporation of the solvent which may be present.
  • the obtained residue may be distilled for further purification.
  • the reduction can be carried without a solvent or in a solvent such as, for example, an ether (e.g. methyltert-butylether, diisopropylether, dibutylether, tert-amylmethylether, tetrahydrofurane or dioxane), an aliphatic hydrocarbon (e.g. heptane, petroleum ether, octane, or cyclohexane) or an aromatic hydrocarbon (e.g. benzene, toluene, xylene or mesitylene), or mixture thereof.
  • a solvent such as, for example, an ether (e.g. methyltert-butylether, diisopropylether, dibutylether, tert-amylmethylether, tetrahydrofurane or dioxane), an aliphatic hydrocarbon (e.g. heptane, petroleum ether, octane, or cyclohe
  • the reduction according to the invention is applicable to various carbonyl compounds which may contain unsaturated functionalities other than the carbonyl group such as, for example, olefin, acetylene, nitrile or nitro groups which will not be affected by the reduction reaction.
  • aldehyde substrates there can be cited butanal, pentanal, heptanal, octanal, decanal, dodecanal, linear or branched.
  • Other aldehydes which are unsaturated and which can be selectively reduced into the corresponding unsaturated alcohols include acroleine, methacroleine, prenal, citral, retinal, campholene aldehyde, cinnamic aldehyde, hexylcinnamic aldehyde, formylpinane and nopal.
  • Aromatic aldehydes like, for example, benzaldehyde, cuminic aldehyde, vanilline, salicylaldehyde or heliotropine are also easily reduced to the corresponding alcohols.
  • saturated and unsaturated ketones which can be reduced into the corresponding alcohols by silanes according to the invention
  • esters or lactones which can be reduced into the corresponding alcohols by silanes according to the invention
  • All the above-cited esters may, for example, be alkyl or aryl esters, preferably methyl esters.
  • Other non-limitative examples include lactones, such as ⁇ -caprolactone, decalactone, dodecalactone, diketene and sclareolide.
  • a remarkable property of the catalysts according to the invention is that they allow the reduction of natural triglycerides of fatty acids, like those which form the vegetable and animal oils.
  • natural triglycerides of fatty acids like those which form the vegetable and animal oils.
  • the substituents R 1 , R 2 and R 3 are hydrocarbon groups which can be identical or different and which can contain from 1 to 20 carbon atoms.
  • these groups contain one or more olefinc groups of a defined stereochemistry (which, in general, will be cis)
  • the corresponding alcohol obtained after reduction according to the invention will have the same stereochemistry.
  • oils rich in linoleic and/or linolenic acid, like linseed oil will be transformed into mixtures rich in linoleyl and/or linolenyl alcohol. Conventional hydrogenation of these vegetable oils is generally carried out at high pressures and temperatures, in contrast with the present invention.
  • trioleine peanut oil, soya oil, olive oil, colza oil, sesame oil, grape-seed oil, linseed oil, cacao butter, palm oil, palm-kernel oil, cotton oil, copra oil, coconut oil, and pork, beef, mutton and chicken fat.
  • oils and fats which are found in nature and which are not triglycerides, but esters of unsaturated fatty acids and monovalent unsaturated alcohols, like jojoba oil and sperm oil, can also be reduced according to the present invention, without any modification of the position or of the stereochemistry of the double bonds present in the ester molecule.
  • the reaction temperature can vary within a wide range of values, and will in general be in the range of from -50°C to 250°C. The temperature chosen will depend on the reactivity of the substrate and can be adjusted accordingly without difficulty. More generally, the reaction will be carried out at a temperature within the range of from 50 to 110°C.
  • Table 3 shows that zinc acetylacetonate on its own possesses a low activity in the reduction of esters by PMHS.
  • Dialkylzinc compounds have a monomeric linear structure with a C-Zn-C angle which is 180° and are unreactive under the conditions of the invention.
  • a bidentate ligand L like a tertiary diamine, they form a monomeric complex of tetrahedral structure ZnR 2 L [see O'Brien et al., J. Organomet. Chem., 1993, 449, 1 et 1993, 461, 5].
  • Methyl benzoate 20 mmole
  • PMHS 44 mmole
  • Zn(OC 5 H 11 ) 2 0.4 mmole
  • Ligand 0.4 mmole
  • Solvent diisopropylether (2 ml), 70°C, 4 h
  • Ph phenyl.
  • Reactions were carried out as described in example 5, in refluxing diisopropyl ether, and using a mixture containing 2 mole% of zinc diethylacetate and 2 mole% of one of the ligands mentioned in Table 7 below, each with respect to the substrate.
  • substrates there were used 20 mmoles of the respective aldehyde or ketone, which was reduced with 22 mmoles of PMHS.
  • Hydrolysis was carried out after the substrate had completely disappeared, using 60 mmoles of KOH (in the form of an aqueous 45% KOH solution). After decantation and evaporation of the solvent, the alcohol formed was distilled.
  • BHT 2,4-di-tert-butyl-p-cresol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Claims (40)

  1. Verfahren zur Herstellung von Alkoholen durch Reduktion der Carbonylfunktion in Substraten, die zur Klasse der Aldehyde, Ketone, Ester oder Lactone gehören, wobei die Substrate andere ungesättigte Funktionen als Carbonyl enthalten können, umfassend
    a) die Umsetzung des Carbonylsubstrats mit einer wirksamen Menge einer Silanverbindung in Gegenwart katalytischer Mengen einer aktiven Zinkverbindung zu einem Siloxan,
    b) Hydrolyse des erhaltenen Siloxans mit einem basischen Mittel zu einem Alkohol, und
    c) Abtrennung und Reinigung, falls erforderlich, des so erhaltenen Alkohols,
    dadurch gekennzeichnet, daß die aktive Zinkverbindung ein nichthydridischer monomerer Komplex der allgemeinen Formel ZnX2Ln ist, in dem X ein Anion ist, L ein Ligand ist, der ausgewählt ist aus der Gruppe bestehend aus Aminen, Polyaminen, Iminen, Polyiminen, Aminoalkoholen, Aminoxiden, Phosphoramiden und Amiden, und wobei die Anionen X und die Liganden L gleich oder verschieden sein können und das Verhältnis Ligand/Zink, ausgedrückt durch die ganze Zahl n, 1 bis 6 beträgt; mit der Einschränkung, daß die Verwendung von Reduktionsmitteln, die aus der Gruppe von Bor- oder Aluminiumhydriden, Lithium- oder Aluminiumalkylen und Grignard-Verbindungen ausgewählt sind, ausgenommen ist.
  2. Verfahren nach Anspruch 1, worin das Silan Polymethylhydrosiloxan (PMHS) ist.
  3. Verfahren nach Anspruch 1, worin die aktive Zinkverbindung durch Umsetzung einer oligomeren oder polymeren Vorläuferverbindung von Zink, oder einer ZnX2-Verbindung, in der X ein Anion ist, und eines Komplexbildners L gebildet wird.
  4. Verfahren nach Anspruch 1, worin X ein Anion ist, das ausgewählt ist aus der Gruppe bestehend aus Carboxylaten, β-Diketonaten, Enolaten, Amiden, Silylamiden, Alkyl-, Cycloalkyl-, Alkoxy-, Aryl-, Aryloxy-, Alkoxyalkyl-, Alkoxyaryl-, Aralkoxy-, Aralcoyl- und Alkylarylgruppen mit 1 bis 20 Kohlenstoffatomen, Halogenen, Carbonaten und Cyaniden.
  5. Verfahren nach Anspruch 4, worin X ausgewählt ist aus der Gruppe bestehend aus Acetat, Propionat, Butyrat, Isobutyrat, Isovalerianat, Diethylacetat, Benzoat, 2-Ethylhexanoat, Stearat, Methoxid, Ethoxid, Isopropoxid, tert-Butoxid, tert-Pentoxid, 8-Hydroxychinolinat, Naphthenat, substituiertem und unsubstituiertem Acetylacetonat, Tropolonat, einer Methylgruppe, einer Ethylgruppe, einer Propylgruppe, einer Butylgruppe und einer Arylgruppe.
  6. Verfahren nach Anspruch 1, worin der Ligand L ausgewählt ist aus der Gruppe bestehend aus Ethylendiamin, N,N'-Dimethylethylendiamin, Tetramethylethylendiamin, Ethanolamin, Diethanolamin, Dimethylaminoethanol, Dimethylformamid, Dimethylacetamid, Hexamethylphosphortriamid, Dimethylsulfoxid oder 4-tert-Butylpyridin.
  7. Verfahren nach Anspruch 1, worin die Konzentration an aktiver Zinkverbindung, ausgedrückt in Mol-% bezogen auf das Substrat, 0,1 und 10% beträgt.
  8. Verfahren nach Anspruch 7, wobei die Konzentration an aktiver Zinkverbindung, ausgedrückt in Mol-% bezogen auf das Substrat, 1 und 5% beträgt.
  9. Verfahren nach Anspruch 1, worin das Carbonylsubstrat ein lineares oder verzweigtes, aliphatisches oder cyclisches, gesättigtes oder ungesättigtes Keton oder ein linearer oder verzweigter, aliphatischer oder cyclischer, gesättigter oder ungesättigter Aldehyd ist, ausgewählt aus der Gruppe bestehend aus Butanal, Pentanal, Hexanal, trans-Hex-2-en-1-al, Heptanal, Octanal, Decanal, Dodecanal, Acrolein, Methacrolein, Crotonaldehyd, Prenal, Citral, Retinal, Campholenaldehyd, Zimtaldehyd, Hexylzimtaldehyd, Formylpinän, Nopal, Benzaldehyd, Cuminaldehyd, Vanillin, Salicylaldehyd, Hexan-2-on, Octan-2-on, Nonan-4-on, Dodecan-2-on, Methylvinylketon, Mesityloxid, Acetophenon, Cyclopentanon, Cyclohexanon, Cyclododecanon, Cyclohex-1-en-3-on, Isophoron, Oxophoron, Carvon, Campher, beta-Ionon, Geranylaceton, 3-Methylcyclopenta-1,5-dion, 3,3-Dimethyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pent-4-en-2-on und 2-Pentylcyclopenten-2-on.
  10. Verfahren nach Anspruch 1, worin das Carbonylsubstrat ein Ester oder Lacton ist, ausgewählt aus der Gruppe bestehend aus Alkyl- und Arylacetaten, -propionaten, -butyraten, -isobutyraten, -benzoaten, -acrylaten, -crotonaten, -cinnamaten, -cis-3-hexenoaten, -sorbaten, -salicylaten, -10-undecylenaten, -oleaten und -linoleaten, Fettsäureestern natürlichen oder synthetischen Ursprungs, Caprolacton, Butyrolacton, Dodecalacton, Diketen und Sclareolid.
  11. Verfahren nach Anspruch 1, worin das Substrat ein tierisches oder pflanzliches Fett ist.
  12. Verfahren nach Anspruch 11, worin das Substrat ein Triglycerid einer Fettsäure der Formel
    Figure 00350001
    ist, wobei R1, R2 und R3 Kohlenwasserstoffgruppen sind, die gleich oder verschieden, linear oder verzweigt, gesättigt oder ungesättigt sind und die 1 bis 20 Kohlenstoffatome enthalten können.
  13. Verfahren nach Anspruch 12, worin das Triglycerid ein pflanzliches Öl ist.
  14. Verfahren nach Anspruch 13, worin das pflanzliche Öl ausgewählt ist aus der Gruppe bestehend aus Triolein, Erdnußöl, Sonnenblumenöl, Sojaöl, Olivenöl, Rapsöl, Sesamöl, Traubenkernöl, Leinsamenöl, Kakaobutter, Baumwollöl, Copraöl, Kokosnußöl, Palmöl und Palmkernöl.
  15. Verfahren nach Anspruch 11, worin das tierische Fett Schweine-, Rinder-, Hammel- oder Hühnerfett ist.
  16. Verfahren nach Anspruch 11, worin das Fett ausgewählt ist aus der Gruppe bestehend aus Jojobaöl und Walratöl.
  17. Verfahren nach Anspruch 1, worin die Hydrolyse des nach Reduktion erhaltenen Siloxans durch Behandlung der Reaktionsmischung mit Natrium- oder Kaliumhydroxid, Kalk oder Natriumcarbonat durchgeführt wird.
  18. Verfahren nach Anspruch 1, worin die Reduktionsreaktion in einem inerten organischen Lösungsmittel durchgeführt wird, das ausgewählt ist aus der Gruppe bestehend aus aliphatischen und aromatischen Kohlenwasserstoffen.
  19. Verfahren nach Anspruch 1, worin die Reduktionsreaktion bei einer Temperatur von -50° bis 250°C durchgeführt wird.
  20. Verfahren nach Anspruch 19, worin die Reduktionsreaktion bei einer Temperatur von 50° bis 110°C durchgeführt wird.
  21. Reduktionssystem, das zusammengemischt werden kann, um die Reduktion von Carbonylverbindungen zu den entsprechenden Alkoholen zu bewirken, umfassend
    a) ein Silan, und
    b) eine aktive, nichthydridische monomere Zinkverbindung der allgemeinen Formel ZnX2Ln, in der X ein Anion ist, L ein Ligand ist, der ausgewählt ist aus der Gruppe bestehend aus Aminen, Polyaminen, Iminen, Polyiminen, Aminoalkoholen, Aminoxiden, Phosphoramiden und Amiden, und wobei die Anionen X und die Liganden L gleich oder verschieden sein können und das Verhältnis Ligand/Zink, ausgedrückt durch die ganze Zahl n, 1 bis 6 beträgt,
    wobei die Komponenten (a) und (b), nach dem Zusammenmischen, die Reduktion der Carbonylverbindungen erlauben; mit der Einschränkung, daß Reduktionsmittel, die aus der Gruppe der Bor- oder Aluminiumhydride, Lithium- oder Aluminiumalkyle und Grignard-Verbindungen ausgewählt sind, ausgenommen sind.
  22. Reduktionssystem zur Reduktion von Carbonylverbindungen, bestehend aus dem Reduktionsprodukt aus:
    a) einer wirksamen Menge eines Silans, um die Reduktion eines Carbonylsubstrats zum entsprechenden Alkohol zu bewirken, und
    b) einer wirksamen Menge eines Katalysators zur Katalyse der Reduktion, wobei der Katalysator eine aktive, nichthydridische monomere Zinkverbindung der allgemeinen Formel ZnX2Ln ist, in der X ein Anion ist, L ein Ligand ist, der ausgewählt ist aus der Gruppe bestehend aus Aminen, Polyaminen, Iminen, Polyiminen, Aminoalkoholen, Aminoxiden, Phosphoramiden und Amiden, und wobei die Anionen X und die Liganden L gleich oder verschieden sein können und das Verhältnis Ligand/Zink, ausgedrückt durch die ganze Zahl n, 1 bis 6 beträgt.
  23. Katalysatorsystem, das zusammen mit einem Silan umgesetzt werden kann, um die Reduktion eines Carbonylsubstrats zum entsprechenden Alkohol zu bewirken, bestehend aus:
    a) einer wirksamen Menge eines Katalysators zur Katalyse der Reduktion, wobei der Katalysator eine aktive, nichthydridische monomere Zinkverbindung der allgemeinen Formel ZnX2Ln ist, in der X ein Anion ist, L ein Ligand ist, der ausgewählt ist aus der Gruppe bestehend aus Aminen, Polyaminen, Iminen, Polyiminen, Aminoalkoholen, Aminoxiden, Phosphoramiden und Amiden, und wobei die Anionen X und die Liganden L gleich oder verschieden sein können und das Verhältnis Ligand/Zink, ausgedrückt durch die ganze Zahl n, 1 bis 6 beträgt; und
    b) dem zu reduzierenden Carbonylsubstrat.
  24. System nach Anspruch 21 oder 22, wobei das Silan-Agens Polymethylhydrosiloxan (PMHS) ist.
  25. System nach Anspruch 21 oder 22, wobei das Silan in einer stöchiometrischen Menge bezogen auf das Carbonylsubstrat eingesetzt wird.
  26. System nach irgendeinem der Ansprüche 21 bis 23, wobei die aktive Zinkverbindung gebildet wird durch Umsetzung von
    i) einer oligomeren oder polymeren Vorläuferverbindung von Zink, oder einer ZnX2-Verbindung, in der X ein Anion ist, und
    ii) einem Komplexbildner L, der ausgewählt ist aus der Gruppe bestehend aus Aminen, Polyaminen, Iminen, Polyiminen, Aminoalkoholen, Aminoxiden, Phosphoramiden und Amiden.
  27. System nach irgendeinem der Ansprüche 21 bis 23, wobei X ein Anion ist, das ausgewählt ist aus der Gruppe bestehend aus Carboxylaten, β-Diketonaten, Enolaten, Amiden, Silylamiden, Alkyl-, Cycloalkyl-, Alkoxy-, Aryl-, Aryloxy-, Alkoxyalkyl-, Alkoxyaryl-, Aralkoxy-, Aralcoyl- und Alkylarylgruppen mit 1 bis 20 Kohlenstoffatomen, Halogenen, Carbonaten und Cyaniden, und wobei die Anionen X und die Liganden L gleich oder verschieden sein können und das Verhältnis Ligand/Zink, ausgedrückt durch die ganze Zahl n, 1 bis 6 beträgt.
  28. System nach irgendeinem der Ansprüche 21 bis 23, wobei X ausgewählt ist aus der Gruppe bestehend aus Acetat, Propionat, Butyrat, Isobutyrat, Isovalerianat, Diethylacetat, Benzoat, 2-Ethylhexanoat, Stearat, Methoxid, Ethoxid, Isopropoxid, tert-Butoxid, tert-Pentoxid, 8-Hydroxychinolinat, Naphthenat, substituiertem und unsubstituiertem Acetylacetonat, Tropolonat, einer Methylgruppe, einer Ethylgruppe, einer Propylgruppe, einer Butylgruppe und einer Arylgruppe.
  29. System nach irgendeinem der Ansprüche 21 bis 23, wobei der Ligand L ausgewählt ist aus der Gruppe bestehend aus Ethylendiamin, N,N'-Dimethylethylendiamin, Tetramethylethylendiamin, Ethanolamin, Diethanolamin, Dimethylaminoethanol, Dimethylformamid, Dimethylacetamid, Hexamethylphosphortriamid, Dimethylsulfoxid oder 4-tert-Butylpyridin.
  30. System nach irgendeinem der Ansprüche 21 bis 23, wobei die Konzentration des aktiven Komplexes, ausgedrückt in Mol-% bezogen auf das Substrat, 0,1 bis 10% beträgt.
  31. Reaktionsprodukt, hergestellt durch die katalysierte Reduktion eines Carbonylsubstrats durch ein Silan zu einem Alkohol vor Gewinnung des Alkohols, bestehend aus:
    a) einem Katalysator, wobei der Katalysator eine aktive, nichthydridische monomere Zinkverbindung der allgemeinen Formel ZnX2Ln ist, in der X ein Anion ist, L ein Ligand ist, der ausgewählt ist aus der Gruppe bestehend aus Aminen, Polyaminen, Iminen, Polyiminen, Aminoalkoholen, Aminoxiden, Phosphoramiden und Amiden, und wobei die Anionen X und die Liganden L gleich oder verschieden sein können und das Verhältnis Ligand/Zink, ausgedrückt durch die ganze Zahl n, 1 bis 6 beträgt; und
    b) dem Reaktionsprodukt eines Carbonylsubstrats mit einem Silan.
  32. Reaktionsprodukt nach Anspruch 31, wobei das Silan Polymethylhydrosiloxan (PMHS) ist.
  33. Katalysator, bestehend aus einer nichthydridischen monomeren Zinkverbindung, die das Reaktionsprodukt ist aus
    i) einer oligomeren oder polymeren Vorläuferverbindung von Zink, oder einer ZnX2-Verbindung, in der X ein Anion ist, und
    ii) einem Komplexbildner L, der ausgewählt ist aus der Gruppe bestehend aus Aminen, Polyaminen, Iminen, Polyiminen, Aminoalkoholen, Aminoxiden, Phosphoramiden und Amiden,
    ausgenommen der Komplex [Zn(O2CCH3)2(pyridin)2].
  34. Katalysator nach Anspruch 33, wobei X ein Anion ist, das ausgewählt ist aus der Gruppe bestehend aus Carboxylaten, β-Diketonaten, Enolaten, Amiden, Silylamiden, Alkyl-, Cycloalkyl-, Alkoxy-, Aryl-, Aryloxy-, Alkoxyalkyl-, Alkoxyaryl-, Aralkoxy-, Aralcoyl- und Alkylarylgruppen mit 1 bis 20 Kohlenstoffatomen, Halogenen, Carbonaten und Cyaniden.
  35. Katalysator nach Anspruch 34, wobei X ausgewählt ist aus der Gruppe bestehend aus Acetat, Propionat, Butyrat, Isobutyrat, Isovalerianat, Diethylacetat, Benzoat, 2-Ethylhexanoat, Stearat, Methoxid, Ethoxid, Isopropoxid, tert-Butoxid, tert-Pentoxid, 8-Hydroxychinolinat, Naphthenat, substituiertem und unsubstituiertem Acetylacetonat, Tropolonat, einer Methylgruppe, einer Ethylgruppe, einer Propylgruppe, einer Butylgruppe und einer Arylgruppe.
  36. Katalysator nach Anspruch 33, wobei der Komplexbildner ausgewählt ist aus der Gruppe bestehend aus Ethylendiamin, N,N'-Dimethylethylendiamin, Tetramethylethylendiamin, Ethanolamin, Diethanolamin, Dimethylaminoethanol, Dimethylformamid, Dimethylacetamid, Hexamethylphosphortriamid, Dimethylsulfoxid oder 4-tert-Butylpyridin.
  37. Katalysator nach Anspruch 33, wobei der Katalysator die allgemeine Formel ZnX2Ln besitzt, in der X ein wie in Anspruch 34 definiertes Anion ist und in der X und L jeweils gleich oder verschieden sein können und das Verhältnis Ligand/Zink, ausgedrückt durch die ganze Zahl n, 1 bis 6 beträgt.
  38. Monomeres Zinkcarboxylat, ausgenommen der Komplex [Zn(O2CCH3)2(pyridin)2].
  39. Carboxylat nach Anspruch 38,
    a) [Zn(benzoat)2(dimethylaminoethanol)2]
    b) [Zn(benzoat)2(tetramethylethylendiamin)]
    b) [Zn(diethylacetat)2(1,2-diaminopropan)2]
    b) [Zn(diethylacetat)2(2,2'-bipyridyl)]
  40. Verfahren zur Herstellung der Carboxylate nach Anspruch 38, umfassend die Umsetzung einer geeigneten oligomeren oder polymeren Vorläuferverbindung von Zink mit einem Komplexbildner.
EP99902787A 1998-04-01 1999-02-25 Reduktion von carbonylverbindungen durch ein silanderivat in gegenwart eines zink-katalysator Expired - Lifetime EP0986527B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH77898 1998-04-01
CH77898 1998-04-01
PCT/IB1999/000329 WO1999050211A1 (en) 1998-04-01 1999-02-25 Reduction of carbonyl compounds by a silane in the presence of a zinc catalyst

Publications (2)

Publication Number Publication Date
EP0986527A1 EP0986527A1 (de) 2000-03-22
EP0986527B1 true EP0986527B1 (de) 2003-05-07

Family

ID=4194974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99902787A Expired - Lifetime EP0986527B1 (de) 1998-04-01 1999-02-25 Reduktion von carbonylverbindungen durch ein silanderivat in gegenwart eines zink-katalysator

Country Status (10)

Country Link
US (3) US6245952B1 (de)
EP (1) EP0986527B1 (de)
JP (1) JP4169801B2 (de)
CN (1) CN1208295C (de)
AT (1) ATE239685T1 (de)
CA (1) CA2291486A1 (de)
DE (1) DE69907589T2 (de)
ES (1) ES2198886T3 (de)
IL (1) IL133270A (de)
WO (1) WO1999050211A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438158A1 (de) 2017-08-01 2019-02-06 Evonik Degussa GmbH Herstellung von sioc-verknüpften polyethersiloxanen

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2195371T3 (es) * 1997-09-09 2003-12-01 Firmenich & Cie Reduccion enantioselectiva de cetonas con un sistema de agente silanico/compuesto metalico/ligando quiral.
JP4169801B2 (ja) * 1998-04-01 2008-10-22 フイルメニツヒ ソシエテ アノニム 亜鉛触媒存在下でのシランによるカルボニル化合物の還元
KR20010043866A (ko) * 1998-06-01 2001-05-25 안쏘니 제이. 버비스카 국소용 경피 치료제
US7955611B2 (en) 2000-01-03 2011-06-07 International Flora Technologies Ltd. Binding and rinse-off of quaternary ammonium compounds for cosmetic and personal care applications
DE10238114A1 (de) * 2002-08-21 2004-03-04 Bayer Ag Optisch aktive Diamine und deren Anwendung in katalytischen Prozessen
JP4962924B2 (ja) * 2005-03-04 2012-06-27 学校法人東京理科大学 光学活性アルコールの製造方法
JP5179430B2 (ja) * 2009-02-27 2013-04-10 国立大学法人名古屋大学 光学活性アルコールの製造方法
CN101844957B (zh) * 2010-03-30 2012-10-24 杭州师范大学 一种α, β-不饱和酮羰基还原成亚甲基的方法
FR2999980A1 (fr) * 2012-12-20 2014-06-27 Bluestar Silicones France Article presentant des proprietes antisalissures et destine a etre utilise dans des applications aquatiques en particulier marines
CN104981523B (zh) * 2012-12-20 2018-10-09 埃肯有机硅法国简易股份公司 在环境温度下可硫化成弹性体的有机聚硅氧烷组合物以及有机聚硅氧烷缩聚催化剂
JP6134006B2 (ja) * 2012-12-20 2017-05-24 ブルースター・シリコーンズ・フランス・エスアエス 水中用途、特に海洋用途を目的とする防汚特性を有する物品
CN104981524B (zh) 2012-12-20 2020-03-13 埃肯有机硅法国简易股份公司 在环境温度下可硫化成弹性体的有机聚硅氧烷组合物以及新的有机聚硅氧烷缩聚催化剂
CN106062011B (zh) * 2014-05-21 2018-03-16 道康宁公司 含锌催化剂、制备含锌催化剂的方法以及包含含锌催化剂的组合物
JP6514568B2 (ja) * 2015-05-19 2019-05-15 東ソー・ファインケム株式会社 ジアルキル亜鉛部分加水分解物含有溶液及びこの溶液を用いる酸化亜鉛薄膜の製造方法
CA3005562C (en) 2015-11-18 2024-05-28 Provivi, Inc. Production of fatty olefin derivatives via olefin metathesis
JP7153937B2 (ja) 2017-02-17 2022-10-17 プロビビ インコーポレイテッド オレフィンメタセシスによるフェロモンおよび関連材料の合成方法
JP2023550901A (ja) * 2020-11-27 2023-12-06 フイルメニツヒ ソシエテ アノニム 亜鉛触媒存在下におけるシランによる還元

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061424A (en) 1957-02-06 1962-10-30 Wacker Chemie Gmbh Method of reducing organometallic compounds
GB8902228D0 (en) * 1989-02-01 1989-03-22 Ici Plc Carbodiimide-isocyanurate rigid foams
US5220020A (en) 1990-11-21 1993-06-15 Massachusetts Institute Of Technology Catalytic reduction of organic carbonyls using metal catalysts
US5227538A (en) * 1990-11-21 1993-07-13 Massachusetts Institute Of Technology Catalytic asymmetric reduction of ketones using metal catalysts
US5449736A (en) * 1993-07-16 1995-09-12 Research Foundation Of The State Of New York Water soluble phosphorylated polysiloxanes
EP0734370B1 (de) * 1994-10-19 1999-10-20 Firmenich Sa Verfahren zur herstellung von alkoholen
ES2195371T3 (es) * 1997-09-09 2003-12-01 Firmenich & Cie Reduccion enantioselectiva de cetonas con un sistema de agente silanico/compuesto metalico/ligando quiral.
JP4169801B2 (ja) * 1998-04-01 2008-10-22 フイルメニツヒ ソシエテ アノニム 亜鉛触媒存在下でのシランによるカルボニル化合物の還元

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438158A1 (de) 2017-08-01 2019-02-06 Evonik Degussa GmbH Herstellung von sioc-verknüpften polyethersiloxanen

Also Published As

Publication number Publication date
JP4169801B2 (ja) 2008-10-22
WO1999050211A1 (en) 1999-10-07
US6533960B2 (en) 2003-03-18
CA2291486A1 (en) 1999-10-07
US20010034464A1 (en) 2001-10-25
ES2198886T3 (es) 2004-02-01
ATE239685T1 (de) 2003-05-15
US20030171210A1 (en) 2003-09-11
DE69907589D1 (de) 2003-06-12
US6245952B1 (en) 2001-06-12
US6770588B2 (en) 2004-08-03
JP2002503259A (ja) 2002-01-29
DE69907589T2 (de) 2004-03-25
IL133270A (en) 2006-06-11
CN1262667A (zh) 2000-08-09
IL133270A0 (en) 2001-04-30
EP0986527A1 (de) 2000-03-22
CN1208295C (zh) 2005-06-29

Similar Documents

Publication Publication Date Title
EP0986527B1 (de) Reduktion von carbonylverbindungen durch ein silanderivat in gegenwart eines zink-katalysator
US6046127A (en) Process for the preparation of alcohols
Avalos et al. Nonlinear stereochemical effects in asymmetric reactions
JPS6123775B2 (de)
Mukaiyama et al. Chiral pyrrolidine diamines as efficient ligands in asymmetric synthesis
US4138420A (en) Hydroformylation catalysts
US6573395B2 (en) Enantioselective reduction of ketones with a silane agent/metal compound/ chiral ligand system
US4925990A (en) Process for the preparation of unsaturated alcohols
MXPA99011062A (en) Reduction of carbonyl compounds by a silane in the presence of a zinc catalyst
US6441218B2 (en) Process for producing 2-substituted propionic acid
Nindakova et al. Enantioselective Hydrogenation over Chiral Cobalt Complexes with (+)-(1 S, 2 S, 5 R)-Neomenthyldiphenylphosphine and (-)-(R, R)-2, 2-Dimethyl-4, 5-bis (diphenylphosphinomethyl)-1, 3-dioxolane
EP4217362A1 (de) Reduktion durch ein silan in gegenwart eines zinkkatalysators
JPH0427971B2 (de)
Keller Catalytic enantioselective conjugate addition reactions: with a focus on water
KR20230039328A (ko) 리간드 화합물, 이의 제조방법 및 이를 이용한 α,β-불포화 카르복실레이트의 제조방법
JPH06345788A (ja) 不斉触媒及びそれを用いた光学活性第2級アルコールの製造方法
McKie Synthetic and mechanistic investigations of samarium (II) iodide promoted reductive cyclization reactions
JPS5817732B2 (ja) アルデヒド類の製造方法
Mahoney Hydride-mediated homogeneous catalysis. Catalytic reductions of alpha, beta-unsaturated ketones using soluble copper (I) hydride complexes
Jali The effect of Mo (CO) ₆ as a catalyst in the carbonylation of methanol to methyl formate catalyzed by potassium methoxide under CO, syngas and H₂ atmospheres.
Curtis (--)-sparteine mediated asymmetric synthesis through conjugate addition of allylic and benzylic organolithium species: Development of a methodology and its application toward a total synthesis
JPH05255360A (ja) ジホスフィン化合物およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

17P Request for examination filed

Effective date: 20000407

17Q First examination report despatched

Effective date: 20010227

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030507

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030507

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030507

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69907589

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2198886

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20040210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080118

Year of fee payment: 10

Ref country code: IT

Payment date: 20080122

Year of fee payment: 10

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180221

Year of fee payment: 20

Ref country code: DE

Payment date: 20180214

Year of fee payment: 20

Ref country code: CH

Payment date: 20180216

Year of fee payment: 20

Ref country code: ES

Payment date: 20180301

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69907589

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190226