EP0980273A1 - Biodegradables osteosynthese-implantat - Google Patents
Biodegradables osteosynthese-implantatInfo
- Publication number
- EP0980273A1 EP0980273A1 EP98910571A EP98910571A EP0980273A1 EP 0980273 A1 EP0980273 A1 EP 0980273A1 EP 98910571 A EP98910571 A EP 98910571A EP 98910571 A EP98910571 A EP 98910571A EP 0980273 A1 EP0980273 A1 EP 0980273A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- implant
- biodegradable
- fracture
- implant according
- active ingredient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
- A61L2300/414—Growth factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
- A61L2300/604—Biodegradation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/62—Encapsulated active agents, e.g. emulsified droplets
- A61L2300/622—Microcapsules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Definitions
- the present invention relates to a biodegradable osteosynthesis implant according to the preamble of claim 1 or 2.
- Metallic implants have been used in medicine to fix broken bones for over 200 years. Through the selection of suitable biocompatible metal alloys, the mechanical resilience and above all the tissue tolerance of these implants has been optimized in the past decades so that corrosion and rejection reactions hardly occur.
- the metallic implants can lead to complications in the X-ray and tomographic diagnostic procedures.
- their main disadvantage is that metallic implants cannot be left in the body indefinitely. After the fracture has healed, a second surgical procedure must be carried out to remove the implant. This not only brings a new burden on the patient, but also means considerable costs for the second surgical intervention and for a possible second stay of the patient in the hospital. In addition, there are direct and indirect follow-up costs due to loss of work and aftercare during the second wound healing.
- implants made of resorbable polyester are far inferior in mechanical strength to the metal implants.
- implants e.g. fiber-reinforced
- suitable manufacturing processes e.g. injection molding
- implants e.g. fiber-reinforced
- the range of indications for biodegradable osteosynthesis materials per se is limited to low-stress, rapidly healing fractures. Such fractures can occur, for example, on the • skull (skull, cheekbones or upper jaw).
- the increase in the stability of the bone and the decrease in the stability of the implant are two dynamically running processes which are expressed in two oppositely running sigmoid curves.
- the curves overlap in such a way that the stability of the implant decreases to the same extent as the stability of the bone increases again.
- Figure la) shows the hypothetical course of fracture healing using only a biodegradable osteosynthesis implant, as is the case, for example, in the treatment of the fractures described above Area of the skull occurs. That .
- the implant must be able to take over the full mechanical load at time 0 and the loss of mechanical stability (minus a certain mechanical stability reserve) may only proceed so quickly that it can be compensated for by increasing the stability of the healing bone tissue.
- the loss of stability of the implant cannot be equated with the degradation or loss of mass thereof. Due to various physical and chemical processes (e.g. swelling) the implant loses mechanical stability much faster than it loses mass due to abrasion and degradation.
- an implant not only has to fix the bone fragments during fracture healing, but also has to bear the high mechanical forces acting on the bone.
- the implant can be largely freed from the latter task by external support or stabilization by means of plaster, splint or external fixator, and it only has to ensure that the fragments are fixed. This significantly extends the range of indications for biodegradable polymer implants.
- the biodegradable and resorbable implant only has to fix the bone fragments in a certain relative position to one another until the bone material newly formed between them can take over this function again and the additional fixation becomes unnecessary.
- the mechanical loads that act on the broken bones are borne by the external stabilization until the healing bone has such a high percentage of its mechanical properties has regained that no additional stabilization is necessary. This does not mean that the bone must have regained its full mechanical strength when the external stabilization is removed.
- Common to all methods is that the affected area is immobilized for a long time and that the reduced muscle activity leads to muscle loss and a deterioration in mobility. To achieve this again, time and cost-intensive therapies must be carried out after removing the external stabilizing agents.
- PHA Polylactide
- PGA polyglycolide
- PCL poly ( ⁇ -caprolactone)
- PLB poly (ß-hydroxybutyrate)
- PDS poly (p-dioxanone)
- Polylactide (PLA) and polyglycolide (PGA) and their copolymers are broken down by hydrolysis. Since the amorphous areas of partially crystalline PLA degrade faster than the crystalline areas, disintegration of the implant in the surrounding tissue can lead to irritation and inflammation (see also E. Wintermantel and SW. Ha, Biocompatible Materials and Construction, Springer Verlag , Berlin, 1996).
- a second cause of complications can be the acidic hydrolysis products of the implant.
- the acidic degradation products are removed from the inside of the implant only much more slowly than from their surface, which leads to an accumulation of acidic degradation products and an increasing acceleration of the degradation by the autocatalytically active carboxyl groups. If the remaining outer wall of the implant breaks at a later point in time of the dismantling, the acidic products can be released suddenly and thus lead to a there is a sudden drop in pH in the surrounding tissue, which can also lead to inflammatory reactions.
- GFs growth factors
- Soluble low molecular weight proteins such as insulin-like growth factors (IGFs) have long been known for their local effects on the growth of cartilage and bone (Canalis, E. and LG Raisz, Endocr. Rev. 4: 62-77, 1983) known. The same authors demonstrated a positive effect of IGF on bone DNA synthesis in periosteal and non-periosteal bone.
- IGFs insulin-like growth factors
- IGF in wound and fracture treatment
- IGF-1 insulin-like growth factors
- Somatomedin C is a basic polypeptide consisting of 70 amino acids and has a molecular weight of 7649 D.
- IGF-1 stimulates inter alia the incorporation of proteoglycan into cartilage by chondrocytes (Froger-Graillard et al., Endocrinology 124: 2365-2372, 1989) and also the synthesis of DNA, RNA and proteins.
- the slightly acidic polypeptide IGF-2 consists like IGF-
- IGF 2 consists of 67 amino acids. IGFs are primarily dependent on growth hormone (somatotropin; GH). IGF-1 is predominantly active in adults, while IGF-2 is the main growth factor in the fetus.
- somatotropin somatotropin
- TGFs Transforming Growth Factors
- Bone Morphogenetic Protein BMP
- BMP Bone Morphogenetic Protein
- hOP-1 human osteogenetic protein-1
- BMP-2a recombinant human osteogenetic protein-1
- DL Griffith et al. Proc. Natl. Acad. Sci. Biophysics 93 (2): 878-883, 1996) describe the three-dimensional structure of osteogenic protein 1 (OP1; BMP-7), which can induce bone formation in vivo.
- the BMP-4 and BMP-7 are available as recombinant proteins from the BMPs which are members of the TGF beta superfamily.
- Purified recombinant BMPs appear to be able to induce osteogenesis in vivo only if they are bound to suitable carriers or carriers (E. Tsuruga et al., J. Biochem. 121: 317-324, 1997).
- Clinetics is currently testing the use of recombinant human BMP-2 (rhBMP-2) and suitable carrier materials to accelerate and ensure the healing of bone fractures and bone defects by the company Genetics Institute®. Similar to the collagen described in EP-A 0 206 801, instead of the body's own bone material (“auto graft”), the carrier materials are intended to serve as placeholders and scaffolds for the newly forming bone tissue. That in EP-A 0 206 801 Stressed collagen has a very good tissue affinity and acts as a carrier material for BMP. However, these collagen preparations only act as a carrier for the growth factors and do not serve to stabilize the fracture or to fix the bone fragments. The object of the present invention is to combine the positive clinical aspects of bioresorbable implants with those of the growth factors and to minimize the possible negative effects of bioresorbable implants.
- the growth factors (GF) that can be used in the present invention come from the group of epidermal growth factors (EGF) or insulin-like growth factors (IGF) or transforming growth factors beta (TGF-beta) or fibroblast growth factors (FGF). Suitable combinations of two or more of them can of course also be used. Many of the above growth factors are commercially available as lyophilized powders. To produce the implants according to the invention, they are converted into one of the following formulations:
- the GF is to be introduced into larger polymer bodies, this can be done by adding the GF to the polymer material before or during the extrusion process in the production of bars or band-shaped extrudates at low temperatures or subsequently using the method described by H. Zia et al. 1996 in “Encapsulation and Controlled Release” Thomas Graham House, Cambridge p. 117-130 be accomplished.
- a GF-containing film layer made of polymer material This can be done either by immersing the implant in a polymer GF solution or by coating or wrapping the implant with prefabricated polymer GF film.
- Placement in cavities or recesses of the implants is particularly suitable for the microscopic or macroscopic polymer-GF mixtures or the GF gels.
- the lumen of a banjo bolt can be filled with a positive-locking polymer GF rod after it has been screwed into the bone.
- the implants produced in this way can have all the configuration forms customary for osteosynthesis implants.
- Advantageous forms are plates, bandages, fabrics or other flat or rod-shaped elements.
- connecting elements in the form of screws, rivets, pins, nails, razor wires or cerclages are produced by the methods described above.
- growth factors that are introduced directly into the fracture area can interact with the implant.
- the growth factors present in one of the above-mentioned formulations a) to f) are brought into an injectable form and are injected directly into the fracture area or in its immediate vicinity.
- the biodegradable implant can be spatially separated from the growth factors.
- the implant is free of growth factors and the growth factors are only available in the injectable formulation.
- the growth factors injected directly into the • fracture area or in its immediate vicinity interact in an analogous manner to the implants described above with the growth factor-free biodegradable osteosynthesis implant.
- FIG. 2a shows the healing process of a fracture using an implant according to the invention and the associated growth factors.
- the solid line shows the accelerated temporal course of new bone formation, respectively the increase in the mechanical strength of the healing bone.
- the slower increase without using growth factors is shown with the dashed line.
- the implant must still be able to take on the full mechanical load at time 0, but since it only has to bear this for a much shorter period of time, it can be made from materials that are more quickly degradable.
- the reduced presence of the implant in the body also transforms the amorphous Polymer material reduced to crystallites, which in turn leads to better tissue compatibility.
- FIG. 2 b shows the use of an implant according to the invention with growth factors with additional external stabilization of the fracture. This shows the greatest advantage of the present invention.
- the accelerated bone healing here results in a substantial reduction ( ⁇ t) in the time that the external stabilizing agents have to be worn.
- ⁇ t substantial reduction
- the earlier healing of the fracture and the earlier resumption of movement of the affected area not only significantly reduce the duration of the illness, but also significantly reduce the time and financial expenditure required for aftercare.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physical Education & Sports Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Die vorliegende Erfindung betrifft ein osteosynthetisches Implantat zur mechanischen Verbindung von Frakturteilen aus polymerem biodegradablem Grundstoff zum Einsatz bei der rekonstruktiven Osteosynthese. Ein Wirkstoff, der die Regeneration von Knochengewebe im Frakturbereich fördert, wirkt so mit dem Implantat zusammen, dass er das Wachstum im Frakturbereich derart fördert, dass die mechanische Belastbarkeit der heilenden Fraktur schneller oder mindestens so schnell zunimmt, wie die Belastbarkeit des sich abbauenden biodegradablen Implantates abnimmt.
Description
Biodegradables Osteosynthese-Implantat
Die vorliegende Erfindung betrifft ein biodegradables Osteosynthese-Implantat nach dem Oberbegriff des Patentanspruches 1 oder 2.
Metallische Implantate werden in der Medizin seit über 200 Jahren zur Fixierung von Knochenbrüchen verwendet. Durch die Auswahl geeigneter biokompatibler Metallegierungen ist es in den letzten Jahrzehnten gelungen die mechanische Belastbarkeit und vor allem die Gewebeverträglichkeit dieser Implantate so zu optimieren, dass Korrosion und Abstossungsreaktionen kaum noch auftreten. Durch die metallischen Implantate kann es Komplikationen bei der röntgen- und tomographischen Diagnoseverfahren kommen. Ihr entscheidender Nachteil liegt jedoch darin, dass metallische Implantate nicht unbegrenzt lange im Körper gelassen werden können. Es muss also nach Abheilen der Fraktur ein zweiter chirurgischer Eingriff zum Entfernen des Implantates vorgenommen werden. Dies bringt nicht nur eine erneute Belastung des Patienten mit sich, sondern bedeutet auch erhebliche Kosten für den zweiten chirurgischen Eingriff und für einen allfälligen zweiten Aufenthalt des Patienten im Spital. Zusätzlich entstehen direkte und indirekte Folgekosten durch Arbeitsausfall und Nachbehandlung während der zweiten Wundheilung. Es sind daher seit geraumer Zeit Anstrengungen unternommen worden die metallischen Werkstoffe durch biodegradable Polymere zu ersetzen, wodurch sich das Entfernen des Implantates nach Abheilen der Fraktur erübrigt.
Die Verwendung einer biodegradablen Platte aus Polylaktid in der Osteosynthes'e wurde erstmals von D.E. Cutright und E.E. Hunsuck (Journal of Oral Surgery 33: 28-34, 1972) beschrieben .
In der Entwicklung -neuer biodegradabler Implantate wurde lange Zeit ein Weg beschritten, der darauf abzielte, metallische Implantate zu ersetzen. Das bedeutet, dass das Implantat einerseits die Knochenfragmente fixieren und andererseits die auf den Knochen einwirkenden mechanischen Kräfte tragen musste.
Die Implantate aus resorbierbaren Polyestern sind allerdings in der mechanischen Belastbarkeit den Implantaten aus Metall weit unterlegen. Durch geeignete Herstellungsverfahren (z.B. Spritzgussverfahren) und den Einsatz optimierter Materialmischungen konnten zwar Implantate (z.B. faserverstärkt) hergestellt werden, die hohen Zugbelastungen standhalten können, die Biegefestigkeit solcher Werkstücke ist jedoch immer noch relativ gering und weit unterhalb derer von Metallimplantaten. Es hat sich daher klar gezeigt, dass der Indikationsbereich der bioabbaubaren Osteosynthesematerialien per se auf wenig belastete, schnell heilende Frakturen beschränkt ist. Solche Frakturen können zum Beispiel am •Schädel (Schädeldach, Jochbein oder Oberkiefer) auftreten.
Wie in Figur 1 dargestellt, sind die Zunahme der Stabilität des Knochens und die Abnahme der Stabilität des Implantates zwei dynamisch verlaufende Prozesse, die in zwei gegensätzlich verlaufenden sigmoiden Kurven zum Ausdruck kommen. Idealerweise überlagern sich die Kurven derartig, dass die Stabilität des Implantates im gleichen Ausmass abnimmt, wie die Stabilität des Knochens wieder zunimmt. In Abbildung la) ist der hypothetische Verlauf der Frakturheilung unter alleinigem Einsatz eines biodegradablen Osteosynthese-Implantates dargestellt, wie es zum Beispiel bei der Behandlung der oben beschriebenen Frakturen im
Bereich des Schädels vorkommt. Das. Implantat muss zum Zeitpunkt 0 die volle mechanische Belasrung übernehmen können und der Verlust an mechanischer Stabilität (abzüglich einer bestimmten mechanischen Stabilitätsreserve) darf nur so schnell voranschreiteπ, dass er durch Zunahme der Stabilität des heilenden Knochengewebes kompensiert werden kann.
Aus Figur la) ist auch ersichtlich, dass der Stabilitätsverlust des Implantates nicht mit dem Abbau oder Masseverlust desselben gleichgesetzt werden kann. Durch verschieden physikalische und chemische Prozesse (wie z.B. Quellung) verliert das Implantat viel schneller an mechanischer Stabilität als es durch Abrasion und Degradation an Masse verliert.
Im Allgemeinen muss ein Implantat während der Frakturheilung die Knochenfragmente nicht nur fixieren, sondern gleichzeitig auch die hohen, auf den Knochen einwirkenden, mechanischen Kräfte tragen. Durch eine externe Stützung oder Stabilisierung mittels Gips, Schiene oder Fixateur extern kann das Implantat von der letztgenannten Aufgabe weitgehend befreit werden, und es muss lediglich die Fixierung der Fragmente gewährleisten. Dies erweitert den Indikationsbereich biodegradabler Polymerimplantate ganz entscheidend.
Wie in Figur lb) dargestellt, muss das biodegradable und resorbable Implantat die Knochenfragmente nur solange in einer bestimmten relativen Lage zueinander fixieren, bis das zwischen ihnen neugebildete Knochenmaterial diese Funktion wieder übernehmen kann und die zusätzliche Fixierung unnötig wird. Die mechanischen Belastungen, die auf den gebrochenen Knochen wirken, werden dagegen solange von der externen Stabilisierung getragen, bis der heilende Knochen einen so hohen Prozentsatz seiner mechanischen Eigenschaften
wiedererlangt hat, dass keinerlei zusatzliche Stabilisierung mehr notig ist. Dies bedeutet nicht, dass der Knochen beim Entfernen der externen Stabilisation schon seine volle mechanische Belastbarkeit wiedererlangt haben muss. Allen Methoden ist gemeinsam, dass der betroffene Bereich für längere Zeit ruhiggestellt wird, und die verminderte Muskelaktivitat zu Muskelabbau und einer Verschlechterung der Beweglichkeit fuhren. Um diese wieder zu erreichen, müssen nach Entfernen der externen Stabilisierungsmittel zeit- und kostenintensive Therapien durchgeführt werden.
Polylaktid (PLA) , Polyglykolid (PGA), Poly (ε-caprolacton) (PCL), Poly (ß-hydroxybutyrat) (PHB) oder Poly (p-dioxanon) (PDS) und ihre Co-Polymere werden im Organismus zu den entsprechenden Degradationsprodukten abgebaut und können entweder in den Metabolismus einfliessen oder vom Korper über Urin oder die Atmung ausgeschieden werden.
Polylaktid (PLA) und Polyglykolid (PGA) und ihre Co-Polymere werden durch Hydrolyse abgebaut. Da die amorphen Bereiche von teilkristallmem PLA schneller degradieren als die kristallinen Bereiche kann es nach der Desintegration des Implantates im umliegenden Gewebe durch die Kπstallite zu Irritationen und Entzündungen kommen (siehe dazu auch E. Wintermantel und S-W. Ha, Biokompatible Werkstoffe und Bauweisen, Springer Verlag, Berlin, 1996) . Eine zweite Ursache von Komplikationen können die sauren Hydrolyseprodukte des Implantates sein. Die sauren Degradationsprodukte werden aus dem Inneren des Implantates nur wesentlich langsamer entfernt als von deren Oberflache, was zu einer Anhäufung von sauren Abbauprodukten und einer zunehmenden Beschleunigung des Abbaus durch die autokatalytisch wirkenden Carboxylgruppen fuhrt. Bricht zu einem spateren Zeitpunkt des Abbaus die verbleibende aussere Wand des Implantates, so kann es zu einer schlagartigen Freisetzung der sauren Produkte und damit zu einem
plötzlichen pH-Abfall im umliegenden Gewebe kommen, was ebenfalls zu Entzündungssreaktionen führen kann.
Die Geschwindigkeit der Knochenheilung kann durch verschiedene Wachstümsfaktoren (growth factors, GFs) beschleunigt werden. Lösliche niedermolekulare Proteine wie die Insulinähnlichen Wachstumsfaktoren (Insuline Like Growth Factors, IGFs) sind seit längerem für ihre lokale Wirkung auf das Wachstum von Knorpel und Knochen (Canalis, E. und L.G. Raisz, Endocr. Rev. 4: 62-77, 1983) bekannt. Von den selben Autoren wurde eine positive Wirkung von IGF auf die Knochen- DNA Synthese im periostalen und nicht-periostalen Knochen nachgewiesen .
Ein Vorteil der Verwendung von IGF bei der Wund- und Frakturbehandlung ist, dass IGF keine bisher bekannte Verwandtschaft mit Onkogenen aufweist.
Es werden zwei insulinähnliche Wachstumsfaktoren im Handel angeboten. IGF-1 (auch als Somatomedin C bekannt) ist ein basisches Polypeptid bestehend aus 70 Aminosäuren und weist ein Molekulargewicht von 7649 D auf. IGF-1 stimuliert unter anderem den Einbau von Proteoglycan in Knorpel durch Chondrozyten (Froger-Graillard et al . , Endocrinology 124: 2365-2372, 1989) und ausserdem die Synthese von DNS, RNS und Proteinen. Das leicht saure Polypeptid IGF-2 besteht wie IGF-
1 aus 4 Domänen und hat ein Molekulargewicht von 7471 D. IGF-
2 besteht aus 67 Aminosäuren. IGFs sind hauptsächlich abhängig von Wachstumshormon (Somatotropin; GH) . IGF-1 ist überwiegend bei Erwachsenen aktiv, während IGF-2 der Hauptwachstumsfaktor beim Fötus ist.
Aus der Gruppe der Transformierenden Wachstumsfaktoren
(Transforming Growth Factors, TGFs) sind verschiedene
Wirkstoffe bekannt, die wachstumsstimulierend wirken und die
Wundheilung fördern. Die Proteine, die .als Bone Morphogenetic Protein (BMP) bekannt sind, können die ektopische Osteogenese induzieren. Von Sampath et al . (J. Biol . Chem. 27: 20352-62, 1992) wurde für das rekombinante humane Osteogenetic Protein- 1 (hOP-1; BMP-2a) gezeigt, dass es die Knochenbildung in vivo ebenso stimuliert, wie die Osteoblasten Proliferation und Differentiation in vitro. D.L. Griffith et al . (Proc. Natl . Acad. Sei. Biophysics 93(2): 878-883, 1996) beschreiben die dreidimensionale Struktur des osteogenen Protein 1 (OP1; BMP- 7), das die Knochenbildung in Vivo induzieren kann.
Von den BMPs, die Mitglieder der TGF beta Ueberfamilie sind, sind zusätzlich zum BMP-2 das BMP-4 und BMP-7 als rekombinante Proteine erhältlich.
Gereinigte rekombinante BMPs scheinen in vivo nur dann in der Lage zu sein die Osteogenese zu induzieren, sofern sie gebunden an geeignete Trägerstoffe oder Carrier vorliegen (E. Tsuruga et al., J. Biochem. 121: 317-324, 1997).
In klinischen Studien wird von der Firma Genetics Institute® derzeit der Einsatz von rekombinanten menschlichen BMP-2 (rhBMP-2) und geeigneten Trägermaterialien zur Beschleunigung und Sicherstellung der Heilung von Knochenfrakturen und Knochendefekten erprobt. Die Trägermaterialien sollen ähnlich wie das in der EP-A 0 206 801 beschriebene Kollagen an Stelle von körpereigenem Knochenmaterial („auto graft") als Platzhalter und Gerüst für das, sich neu bildende, Knochengewebe dienen. Das in der EP-A 0 206 801 beanspruchte Kollagen besitzt eine sehr gute Gewebeaffinität und fungiert als Trägermaterial für BMP. Diese Kollagenpräparate wirken jedoch lediglich als Träger für die Wachstumsfaktoren, und übernehmen keine Funktion zur Stabilisierung des Bruches oder bei der Fixierung der Knochenfragmente.
Aufgabe der vorliegenden Erfindung ist es die positiven klinischen Aspekte von bioresorbablen Implantaten mit denen der Wachstumsfaktoren zu verbinden und die möglichen negativen Wirkungen von bioresorbablen Implantaten zu minimieren.
Diese Aufgabe löst ein Implantat mit den Merkmalen des Patentanspruches 1 durch die kombinatorische Wirkung des schnelleren Wachstums im Frakturbereich, die ein Implantat von geringerem Volumen zulässt.
Die Wachstumsfaktoren (GF) , die in der vorliegenden Erfindung zum Einsatz kommen können stammen aus der Gruppe der Epidermalen Wachstumsfaktoren (EGF) oder der Insulinähnlichen Wachstumsfaktoren (IGF) oder der Transformierenden Wachstumsfaktoren beta (TGF-beta) oder der Fibroblasten Wachstumsfaktoren (FGF). Es können natürlich auch geeignete Kombinationen von zwei oder mehreren davon eingesetzt werden. Viele der obigen Wachstumsfaktoren sind im Handel als lyophilisierte Pulver erhältlich. Zur Herstellung der erfindungsgemässen Implantate werden sie in eine der folgenden Formulierungen überführt:
a) In eine Lösung mit einem geeigneten Lösungsmittel, wie zum Beispiel Wasser oder 0. IM Essigsäure für IGF, wobei Konzentrationen von 1-10 ng/ml vorteilhaft sind.
b) In ein Lyogel oder ein Xerogel eingelagert.
c) In biodegradables Material eingekapselt oder eingelagert, wobei die Einkapselung des GF in Mikrokapseln aus einem geeigneten biodegradablen Material wie Polylaktid zum Beispiel mittels „in water drying" von w/o/w - Emulsionen erfolgen kann. Massive Mikrosphären können aus einem GF-
Polymer-Lösungsmittel-Gemisch zum Beispiel mittels „spray- drying" hergestellt werden.
Soll der GF in grössere Polymerkörper eingebracht werden, so kann dies durch Beimengung der GF zum Polymermaterial vor oder während des Extrusionsprozesses bei der Produktion von Stangen oder bandförmigen Extrudaten bei niederen Temperaturen oder nachträglich mittels der von H. Zia et al . 1996 in „Encapsulation and Controlled Release" Thomas Graham House, Cambridge p. 117-130 beschriebene Infusionstechnik bewerkstelligt werden.
d) An Trägerproteine oder andere Trägerstoffe kovalent gebunden .
e) Als Gemenge mit geeigneten Hilfsstoffen.
f) Als reines lyophilisiertes Pulver.
All die oben genannten Formulierungen sind wohl dokumentiert und können Lehrbüchern wie zum Beispiel D.R. Karsa und R.A. Stephenson 1996 „Chemical Aspects of Drug Delivery Systems" Thomas Graham House, Cambridge oder D.R. Karsa und R.A. 'Stephenson 1993 „Encapsulation and Controlled Release" Thomas Graham House, Cambridge oder dem Journal of Controlled Release von Elsevier Science oder der Produktinformation verschiedener Anbieter, wie zum Beispiel SIGMA-ALDRICH® oder PROMEGA, entnommen werden.
Die Hitzestabilität aller in Frage kommender Wachstumsfaktoren, ausser des EGF, ist sowohl in Lösung wie auch lyophilisiert sehr begrenzt. Um Implantate mit den gewünschten mechanischen Eigenschaften zu erhalten sind nach dem derzeitigen Stand der Technik Verarbeitungstemperaturen, z.B. beim Spritzgussprozess, von über 100 °C nötig. Eine direkte Beimengung der Wachstumsfaktoren zu den Polymeren vor
oder wahrend der Herstellung des Implantates ist deshalb nicht sinnvoll.
Es wurden daher verschiedene Methoden entwickelt, wie die fertigen Implantate mit den, nach den oben beschriebenen Methoden, formulierten GFs beladen werden können:
a) Kovalente Bindung der GFs an die Oberflachen des Polymermaterials des Implantates. Zur Optimierung des Anlagerungsprozesses können die Oberflachen zum Beispiel mittels „plasma treatment" vorbehandelt werden, wie es von H. Thissen et al . 1996 am internationalen Symposium über „Biodegradable Materials" in Hamburg beschrieben wurde.
b) Aufbringen einer GF-haltigen Filmschicht aus Polymermaterial . Dies kann entweder durch Tauchen des Implantates in eine Polymer-GF-Losung geschehen oder durch Beschichten oder Umwickeln des Implantates mit vorgefertigtem Polymer-GF-Film.
c) Unterbringung in Hohlräumen oder Aussparungen der Implantate eignet sich vor allem für die mikro- oder makroskopischen Polymer-GF-Gemische oder die GF-Gele. Es kann zum Beispiel das Lumen einer Hohlschraube nach deren Eindrehen in den Knochen mit einem formschlussigen Polymer- GF-Stab gefüllt werden.
d) Klebstoffe
Die so hergestellten Implantate können alle für Osteosynthese-Implantate gebräuchlichen Ausgestaltungsformen aufweisen. Vorteilhafte Formen sind Platten, Bandagen, Gewebe oder andere flächige oder stangenformige Elemente. Des weiteren werden Verbindungselemente in der Gestalt von Schrauben, Nieten, Stiften, Nageln, Spickdrahten oder Cerclagen nach den oben beschriebenen Methoden hergestellt.
Zusätzlich zu den, im oder am Implantat ein- oder aufgelagerten, Wachstumsfaktoren können Wεchstumsfaktoren die direkt in den Frakturbereich eingebracht werden mit dem Implantat zusammenwirken. Dazu sind die in einer der oben angeführten Formulierung a) bis f) vorliegenden Wachstumsfaktoren in eine injektionsfähige Form gebracht und werden direkt in den Frakturbereich oder in dessen unmittelbare Nähe injiziert.
In einer weiteren vorteilhaften Ausführungsform der vorliegenden Erfindung kann das biodegradable Implantat räumlich getrennt von den Wachstumsfaktoren vorliegen. Das Implantat ist dabei frei von Wachstuir.sfaktoren und die Wachstumsfaktoren liegen ausschliesslich in der injektionsfähigen Formulierung vor. Die direkt • in den Frakturbereich oder in dessen unmittelbare Nähe injizierten Wachstumsfaktoren wirken dabei in analoger Weise zu den oben beschriebenen Implantaten mit dem wachstumsfaktorenfreien biodegradablen Osteosynthese-Implantat zusammen.
In Figur 2a) ist der Heilungsprozess einer Fraktur unter Verwendung eines erfindungsgemässen Implantates und der zugehörigen Wachstumsfaktoren dargestellt. Die durchgezogene Linie zeigt den beschleunigten zeitlichen Verlauf der Knochenneubildung, respektive die Zunahme der mechanischen Belastbarkeit des heilenden Knochens. Die langsamere Zunahme ohne Einsatz von Wachstumsfaktoren ist miz der gestrichelten Linie dargestellt. Zwar muss das Implantat zum Zeitpunkt 0 immer noch die volle mechanische Belastung übernehmen können, da es diese aber nur noch für eine viel kürzere Zeitspanne tragen muss, kann es aus Materialien hergestellt werden, die schneller abbaubar sind. Durch die verkürzte Präsenzzeit des Implantates im Körper wird auch die Umwandlung von amorphem
Polymermaterial zu Kristalliten verringert, was wiederum in einer besseren Gewebsverträglichkeit führt.
In Figur 2b) ist der Einsatz eines erfindungsgemässen Implantates mit Wachstumsfaktoren mit zusätzlicher externer Stabilisierung des Bruches dargestellt. Hier zeigt sich der grösste Vorteil der vorliegenden Erfindung. Zusätzlich zu den zu 2a) beschriebenen Vorteilen resultiert die beschleunigte Knochenheilung hier in einer wesentlichen Verringerung (Δt) der Zeit, die die externen Stabilisierungsmittel getragen werden müssen. Das frühere Abheilen des Bruches und die frühere Wiederaufnahme der Bewegung des betroffenen Bereiches verringern nicht nur die Krankheitsdauer ganz entscheidend, sondern vermindern auch den zur Nachbehandlung nötigen Zeit- und Finanzaufwand ganz wesentlich.
Für den Fachmann ist es offensichtlich, dass sich die Lehre aus der vorliegenden Erfindung nicht nur in der Humanmedizin anwenden lässt, sondern die vorliegende Erfindung analog in der Veterinärmedizin für praktisch alle Vertebraten eingesetzt werden kann. Idealerweise werden dabei die Wachstumsfaktoren der entsprechenden Tierarten oder Gattungen eingesetzt .
Claims
1. Implantat aus polymerem biodegradablem Grundstoff zum Einsatz bei der rekonstruktiven Osteosynthese unter Beibezug von Wirkstoffen, die die Regeneration von Knochengewebe im Frakturbereich fördern, dadurch gekennzeichnet, dass der polymere biodegradable Grundstoff ein osteosynthetisches Implantat zur mechanischen Verbindung von Frakturteilen darstellt, wobei der Wirkstoff so im Implantat eingearbeitet ist, dass er das Wachstum im Frakturbereich derart fördert, dass die mechanische Belastbarkeit der heilenden Fraktur schneller oder mindestens so schnell zunimmt, wie die Belastbarkeit des sich abbauenden biodegradablen Implantates abnimmt.
2. Implantat aus polymerem biodegradablem Grundstoff zum Einsatz bei der rekonstruktiven Osteosynthese unter Beibezug von Wirkstoffen, die die Regeneration von Knochengewebe im Frakturbereich fördern, dadurch gekennzeichnet, dass der polymere biodegradable Grundstoff ein osteosynthetisches Implantat zur mechanischen Verbindung von Frakturteilen darstellt, wobei der Wirkstoff so mit dem Implantat zusammenwirkend ist, dass er das Wachstum im Frakturbereich derart fördert, dass die mechanische Belastbarkeit der heilenden Fraktur schneller oder mindestens so schnell zunimmt, wie die Belastbarkeit des sich abbauenden biodegradablen Implantates abnimmt.
3. Implantat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wirkstoff mindestens einer aus der Gruppe der Epidermalen Wachstumsfaktoren (EGF) oder der
Insulinähnlichen Wachstumsfaktoren (IGF) oder der
Transformierenden Wachstumsfaktoren beta (TGF-beta) oder der Fibrobalasten Wachstumsfaktoren (FGF) oder eine Kombination davon ist.
4. Implantat nach Anspruch 3, dadurch gekennzeichnet, dass der Wirkstoff ein knochenmorphogenetisches Protein (bone morphogenetic protein, BMP) ist.
5. Implantat nach Anspruch 3, dadurch gekennzeichnet, dass der Wirkstoff insulinähnilcher Wachstumsfaktor 1
( Insuline-Like-Growth-Factor, IGF-1) ist.
6. Implantat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der biodegradable Grundstoff ein Polymer aus einem Polylaktid (PLA) oder einem Polyglykolid (PGA) oder einem Poly (ε-caprolacton) (PCL) oder einem Poly(ß- hydroxybutyrat ) (PHB) oder einem Poly (p-dioxanon) (PDS) oder eine Mischung davon ist.
7. Implantat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Implantat eine Platte, eine Bandage, ein Gewebe oder ein anderes, eine andere flächige oder stangenförmige Gestalt aufweisendes, Element ist.
8. Implantat nach Anspruch 7, dadurch gekennzeichnet, dass das Implantat ein Verbindungselement in der Gestalt einer Schraube, einer Niete, eines Stiftes eines Nagels, eines Spickdrahtes oder einer Cerclage ist.
9. Implantat nach Anspruch 1, dadurch gekennzeichnet, dass der Wirkstoff in einer oder einer Kombination folgender Formulierungen anliegt, a) in Lösung b) in ein Gel eingelagert
c) in biodegradables Material eingekapselt oder eingelagert d) an Trägerproteine oder andere Trägerstoffe gebunden e) als Gemenge mit geeigneten Hilfsstoffen f) als reines lyophilisiertes Pulver.
10. Implantat nach Anspruch 9, dadurch gekennzeichnet, dass die Wirkstofformulierung in oder auf die Implantate gelagert ist, mittels a) kovalenter Bindung an das Polymermaterial b) einer wirkstoffhaltigen Filmschicht aus Polymermaterial c) Unterbringung in Hohlräumen oder Aussparungen der Implantate d) Klebstoff.
11. Implantat nach Anspruch 2, dadurch gekennzeichnet, dass der Wirkstoff in einer oder einer Kombination folgender Formulierungen anliegt, a) in Lösung b) in ein Gel eingelagert c) in biodegradables Material eingekapselt oder eingelagert d) an Trägerproteine oder andere Trägerstoffe gebunden e) als Gemenge mit geeigneten Hilfsstoffen f) als reines lyophilisiertes Pulver.
12. Implantat nach Anspruch 11, dadurch gekennzeichnet, dass die Wirkstofformulierung injektionsfähig ist zur Applikation in den Frakturbereich.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH88497 | 1997-04-16 | ||
CH88497 | 1997-04-16 | ||
CH78098 | 1998-04-01 | ||
CH78098 | 1998-04-01 | ||
PCT/CH1998/000133 WO1998046289A1 (de) | 1997-04-16 | 1998-04-08 | Biodegradables osteosynthese-implantat |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0980273A1 true EP0980273A1 (de) | 2000-02-23 |
Family
ID=25685667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98910571A Withdrawn EP0980273A1 (de) | 1997-04-16 | 1998-04-08 | Biodegradables osteosynthese-implantat |
Country Status (5)
Country | Link |
---|---|
US (1) | US6214008B1 (de) |
EP (1) | EP0980273A1 (de) |
JP (1) | JP2001519818A (de) |
AU (1) | AU6493598A (de) |
WO (1) | WO1998046289A1 (de) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000180A1 (de) * | 1998-06-29 | 2000-01-06 | White Spot Ag | Verwendung von wachstumsfaktoren zur arzneimittelherstellung |
AU2001279073B2 (en) * | 2000-07-28 | 2006-08-24 | Christopher J. Murphy | Transplant media |
EP1420718A4 (de) * | 2000-09-29 | 2005-12-28 | Endovasc Ltd Inc | Resorbierbare prothese für eine medizinische behandlung |
US7294187B2 (en) * | 2001-01-24 | 2007-11-13 | Ada Foundation | Rapid-hardening calcium phosphate cement compositions |
US6793725B2 (en) | 2001-01-24 | 2004-09-21 | Ada Foundation | Premixed calcium phosphate cement pastes |
US7709029B2 (en) * | 2001-01-24 | 2010-05-04 | Ada Foundation | Calcium-containing restoration materials |
CA2447618A1 (en) * | 2001-05-23 | 2002-11-28 | Tanabe Seiyaku Co., Ltd. | A composition for regenerative treatment of cartilage disease |
MXPA03010679A (es) | 2001-05-23 | 2004-03-02 | Tanabe Seiyaku Co | Una composicion para acelerar la cicatrizacion de fractura osea. |
US6955716B2 (en) | 2002-03-01 | 2005-10-18 | American Dental Association Foundation | Self-hardening calcium phosphate materials with high resistance to fracture, controlled strength histories and tailored macropore formation rates |
KR100496353B1 (ko) * | 2002-04-15 | 2005-06-20 | 서울산업대학교 산학협력단 | 약물방출 능을 가진 생분해성 고분자를 이용한 조직공학용생분해성 고분자 지지체 및 그의 제조 방법 |
JP4824549B2 (ja) * | 2003-05-02 | 2011-11-30 | サーモディクス,インコーポレイティド | 制御放出型の生体活性物質デリバリー・デバイス |
US8246974B2 (en) * | 2003-05-02 | 2012-08-21 | Surmodics, Inc. | Medical devices and methods for producing the same |
US20050090828A1 (en) * | 2003-08-04 | 2005-04-28 | Alford J. W. | Orthopedic hole filler |
US20050085814A1 (en) * | 2003-10-21 | 2005-04-21 | Sherman Michael C. | Dynamizable orthopedic implants and their use in treating bone defects |
US7699879B2 (en) * | 2003-10-21 | 2010-04-20 | Warsaw Orthopedic, Inc. | Apparatus and method for providing dynamizable translations to orthopedic implants |
US20050136764A1 (en) * | 2003-12-18 | 2005-06-23 | Sherman Michael C. | Designed composite degradation for spinal implants |
US7942913B2 (en) * | 2004-04-08 | 2011-05-17 | Ebi, Llc | Bone fixation device |
US20060024350A1 (en) * | 2004-06-24 | 2006-02-02 | Varner Signe E | Biodegradable ocular devices, methods and systems |
WO2006023130A2 (en) * | 2004-08-12 | 2006-03-02 | Surmodics, Inc. | Biodegradable controlled release bioactive agent delivery device |
US8697139B2 (en) | 2004-09-21 | 2014-04-15 | Frank M. Phillips | Method of intervertebral disc treatment using articular chondrocyte cells |
US7527640B2 (en) * | 2004-12-22 | 2009-05-05 | Ebi, Llc | Bone fixation system |
US7955364B2 (en) * | 2005-09-21 | 2011-06-07 | Ebi, Llc | Variable angle bone fixation assembly |
JP5538881B2 (ja) * | 2006-04-25 | 2014-07-02 | テレフレックス・メディカル・インコーポレイテッド | リン酸カルシウムポリマー複合材料および方法 |
DE102006060958A1 (de) | 2006-12-20 | 2008-06-26 | Jennissen, Herbert P., Prof. Dr. | Verfahren zur Herstellung einer Polymermatrix, daraus bestehende Implantate sowie deren Verwendung |
US8870871B2 (en) * | 2007-01-17 | 2014-10-28 | University Of Massachusetts Lowell | Biodegradable bone plates and bonding systems |
CA2680586A1 (en) * | 2007-03-26 | 2008-10-02 | Mei Wei | Electrospun apatite/polymer nano-composite scaffolds |
US20100121285A1 (en) * | 2007-05-07 | 2010-05-13 | Illi Oskar E | Means for the application of active substances in the ear canal of a patient |
EP2475316B8 (de) | 2009-09-10 | 2016-07-13 | Woodwelding AG | Vorrichtung zur implantierung in einen menschlichen körper oder tierkörper für signalverabreichung oder -erfassung im körper |
EP2855030B1 (de) | 2012-06-01 | 2019-08-21 | SurModics, Inc. | Vorrichtung und verfahren zur beschichtung von ballonkathetern |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11090468B2 (en) | 2012-10-25 | 2021-08-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
WO2020112816A1 (en) | 2018-11-29 | 2020-06-04 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4655777A (en) * | 1983-12-19 | 1987-04-07 | Southern Research Institute | Method of producing biodegradable prosthesis and products therefrom |
JPH0662679B2 (ja) | 1985-06-21 | 1994-08-17 | 新田ゼラチン株式会社 | 組織親和性コラ−ゲンとその製法 |
FI81498C (fi) * | 1987-01-13 | 1990-11-12 | Biocon Oy | Kirurgiska material och instrument. |
US5470829A (en) | 1988-11-17 | 1995-11-28 | Prisell; Per | Pharmaceutical preparation |
SE8804164A0 (sv) * | 1988-11-17 | 1990-05-18 | Per Prisell | Farmaceutisk beredning |
FR2689400B1 (fr) * | 1992-04-03 | 1995-06-23 | Inoteb | Materiau pour prothese osseuse contenant des particules de carbonate de calcium dispersees dans une matrice polymere bioresorbable. |
ATE164304T1 (de) * | 1992-04-28 | 1998-04-15 | Donald R Huene | Absorbierbare knochenschraube und werkzeug zum einsetzen derselben |
US5522841A (en) * | 1993-05-27 | 1996-06-04 | United States Surgical Corporation | Absorbable block copolymers and surgical articles fabricated therefrom |
US5522895A (en) * | 1993-07-23 | 1996-06-04 | Rice University | Biodegradable bone templates |
WO1996000592A2 (en) * | 1994-06-28 | 1996-01-11 | Board Of Regents, The University Of Texax System | Biodegradable fracture fixation plates and uses thereof |
CN1136922C (zh) * | 1995-05-01 | 2004-02-04 | 株式会社三养社 | 可植入的可生物再吸收的膜及其制备方法 |
-
1998
- 1998-04-08 AU AU64935/98A patent/AU6493598A/en not_active Abandoned
- 1998-04-08 EP EP98910571A patent/EP0980273A1/de not_active Withdrawn
- 1998-04-08 WO PCT/CH1998/000133 patent/WO1998046289A1/de not_active Application Discontinuation
- 1998-04-08 US US09/403,235 patent/US6214008B1/en not_active Expired - Fee Related
- 1998-04-08 JP JP54334398A patent/JP2001519818A/ja active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO9846289A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU6493598A (en) | 1998-11-11 |
JP2001519818A (ja) | 2001-10-23 |
WO1998046289A1 (de) | 1998-10-22 |
US6214008B1 (en) | 2001-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998046289A1 (de) | Biodegradables osteosynthese-implantat | |
DE69118535T2 (de) | Osteo-induktive pharmazeutische formulierungen | |
DE69432596T2 (de) | Zusammensetzungen für verabreichung von osteogenen proteinen | |
JP4414218B2 (ja) | 骨誘導性タンパク質のためのリン酸カルシウム送達ビヒクル | |
Bax et al. | Bone morphogenetic protein-2 increases the rate of callus formation after fracture of the rabbit tibia | |
CN108135702B (zh) | 具有氧化固醇药物负载的植入物和使用方法 | |
DE69738398T2 (de) | Biokeramische zusammensetzung | |
EP2094323B1 (de) | Behandlung von osteoporose | |
DE602004005477T2 (de) | Injizierbare feste Calciumphosphat-Stäbe zur Abgabe von osteogenen Proteinen | |
US9308190B2 (en) | Methods and compositions to enhance bone growth comprising a statin | |
JP2007533376A (ja) | 遅延凝固リン酸カルシウムペースト | |
US8673019B2 (en) | Use of anti-inflammatory compounds with allograft tissue implantation | |
DE69915881T2 (de) | Sequenzierte inkorporation von kortikalknochentransplantaten | |
DE60016614T2 (de) | Zusammensetzungen zur abgabe osteogener proteine | |
CN108392680B (zh) | 一种可塑形全降解硬组织填充生物材料 | |
EP0885617A2 (de) | Implantatmaterial mit einer Träger-Wirkstoff-Kombination | |
IIIi et al. | Stimulation of fracture healing by local application of humoral factors integrated in biodegradable implants | |
WO1996000592A2 (en) | Biodegradable fracture fixation plates and uses thereof | |
Blokhuis | Formulations and delivery vehicles for bone morphogenetic proteins: latest advances and future directions | |
EP2214733B1 (de) | Bioverbundmaterial für die kontrollierte freisetzung von wirkstoffen | |
EP1091730A1 (de) | Verwendung von wachstumsfaktoren zur arzneimittelherstellung | |
AU2008247320B2 (en) | A method for treating inflammation and controlled-release material capable of providing same | |
EP2104520B1 (de) | Verfahren zur herstellung eines produktes mit polymermatrix, daraus bestehende implantate sowie deren verwendung | |
DE10305810A1 (de) | Knochenfüllmaterial | |
Gradinger et al. | Bioaktive Oberflächenbeschichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990909 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20030210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030821 |