EP0973178B1 - Procédé de commande du mouvement d'une armature d'un vérin électromagnétique - Google Patents

Procédé de commande du mouvement d'une armature d'un vérin électromagnétique Download PDF

Info

Publication number
EP0973178B1
EP0973178B1 EP99112676A EP99112676A EP0973178B1 EP 0973178 B1 EP0973178 B1 EP 0973178B1 EP 99112676 A EP99112676 A EP 99112676A EP 99112676 A EP99112676 A EP 99112676A EP 0973178 B1 EP0973178 B1 EP 0973178B1
Authority
EP
European Patent Office
Prior art keywords
armature
coil
valve
controller
lifting valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99112676A
Other languages
German (de)
English (en)
Other versions
EP0973178A3 (fr
EP0973178A2 (fr
Inventor
Ralf Cosfeld
Konrad Reif
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19832196A external-priority patent/DE19832196A1/de
Priority claimed from DE19836297A external-priority patent/DE19836297B4/de
Priority claimed from DE1998155775 external-priority patent/DE19855775A1/de
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0973178A2 publication Critical patent/EP0973178A2/fr
Publication of EP0973178A3 publication Critical patent/EP0973178A3/fr
Application granted granted Critical
Publication of EP0973178B1 publication Critical patent/EP0973178B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/40Methods of operation thereof; Control of valve actuation, e.g. duration or lift
    • F01L2009/4086Soft landing, e.g. applying braking current; Levitation of armature close to core surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/123Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil

Definitions

  • the invention relates to a method for controlling the movement of an anchor an electromagnetic actuator, in particular for actuating a Gas exchange stroke valves of an internal combustion engine, the armature oscillating between two electromagnet coils at least against the force a return spring by alternating energization of the solenoid coils is moved, and with an approach of the anchor to the first energized coil during the so-called catching process the electrical voltage applied to the coil capturing the armature is reduced becomes.
  • DE 195 30 121 A1 Regarding the technical environment, reference is made to DE 195 30 121 A1.
  • a preferred application for an electromagnetic actuator the features of claim 1 is the electromagnetically actuated valve train of internal combustion engines, i.e. the gas exchange stroke valves of a reciprocating piston internal combustion engine are actuated in such a way by actuators Operated way, i.e. oscillatingly opened and closed.
  • the globe valves are individually or also in groups via electromechanical actuators, the so-called actuators moves, the time for opening and closing each Lift valves can be chosen essentially completely freely. This can the valve timing of the internal combustion engine optimally to the current Operating state (this is defined by speed and load) as well as to the respective requirements with regard to consumption, torque, emissions, Comfort and responsiveness of a driven by the internal combustion engine Be adapted to the vehicle.
  • the essential components of a known actuator for actuating the lift valves of an internal combustion engine are an armature and two electromagnets for holding the armature in the "lift valve open” or “lift valve closed” position with the associated electromagnetic coils, and also return springs for the movement of the armature between the positions "lift valve open” and “lift valve closed”.
  • armature and two electromagnets for holding the armature in the "lift valve open” or “lift valve closed” position with the associated electromagnetic coils, and also return springs for the movement of the armature between the positions "lift valve open” and “lift valve closed".
  • FIG. 1 which shows such an actuator with an associated lift valve in the two possible end positions of the lift valve and actuator armature, and the course of the armature stroke between the two states or positions of the actuator / lift valve unit shown z or armature path between the two solenoid coils and also the course of the current flow I in the two solenoid coils is shown over time t in accordance with a known state of the art (compared to DE 195 30 121 A1 mentioned earlier).
  • FIG. 1 the closing process of an internal combustion engine lift valve is shown, which is designated by reference number 1 and which in this case moves in the direction of its valve seat 30.
  • a valve closing spring 2a acts on this lifting valve 1, furthermore the actuator designated in its entirety with 4 acts on the stem of the lifting valve 1 - here with the interposition of a (not absolutely necessary) hydraulic valve lash compensation element 3.
  • this consists of a push rod 4c acting on the stem of the lift valve 1, which carries an armature 4d which is guided in an oscillating, longitudinally displaceable manner between the electromagnetic coils 4a, 4b.
  • a valve opening spring 2b also acts on the end of the push rod 4c facing away from the stem of the lifting valve 1.
  • the closing process of the lift valve 1 will now be briefly described below, ie in FIG. 1 the transition from the left-hand state to the state on the right-hand side; in between, the corresponding courses of the electric currents I flowing in the coils 4a, 4b and the course of the stroke or the path coordinate z of the armature 4d are plotted over time t.
  • the make coil 4a becomes one suitable time (the current I for the coil 4a is in the 1-t diagram shown in a solid line), whereby this coil 4a Anchor 4d captures - this is the so-called catching process -, and finally in the position shown on the right side "lift valve closed” holds. After the armature 4d is securely caught by the coil 4a in this, moreover, switched to a lower holding current level (see l-t diagram).
  • the electrical voltage is generated by the energy supply kept constant, and the coil current I of the internal combustion engine lift valves 1 assigned actuators 4 by a control unit controlled in such a way that the necessary forces for opening, Closing and holding the or the lift valves 1 in the desired Position.
  • the coil current I during the so-called catching process in which one of the two coils 4a, 4b seeks to capture anchor 4d from said controller or regulated by a control unit by clocking to a constant value, which is large enough to secure the anchor 4d under all conditions capture.
  • the force of the catching electromagnetic coil 4a or 4b on the armature 4d approximately proportional to the current I and vice versa proportional to the distance between coil and armature.
  • a constant current I set so the magnetic force acting on the armature 4d increases with its approach to the respective coil 4a or 4b catching it inversely proportional to the remaining gap, causing the armature acceleration and armature speed increase.
  • the object of the present invention to show further improvements, ie a simple, practical and efficient method for reducing the speed of impact of an armature of an electromagnetic actuator is to be demonstrated.
  • the solution to this problem is characterized in that the braking phase of the catching process is followed by a braking phase in which a clocked electrical voltage is applied to the coil until the armature hits it, the respective switching times and the voltage-pulse ratio of a controller can be determined on the basis of a target trajectory describing the anchor target movement.
  • the controller also determines the sign of the constant voltage value in addition to the voltage-pulse ratio, ie either a positive or a negative voltage value or the voltage value "zero" is clocked "to the coil catching the armature.
  • the known one is proposed Current regulation or the also known (to be determined empirically) Voltage reduction during the catching process through regulation to replace which during the so-called braking phase of the catching process shortly before the armature hits the magnet coil that catches it electrical voltage is applied to this coil in a controlled manner, namely clocked, the respective switching times for switching off and switching on the electrical voltage (as well as its sign if necessary) based on a target trajectory describing the target anchor movement can be determined.
  • trajectory is known to the person skilled in control engineering and describes a trajectory of a path to be moved controlled by a controller Object in a state space, in this case the Path curve of the armature between the two electromagnetic coils.
  • Prefers contains this target trajectory above or depending on the Time (as usual with "t") Values for the position of the anchor (in the following also called “path coordinate”), for its speed and for the acceleration of the anchor, i.e. it is quasi a simple table of values that either fix in a suitable control unit can be stored or depending on current boundary conditions can be individually calculated in a manner explained in more detail later can.
  • the initial size of the control concept or of the controller 10 is that at which the anchor 4d (see FIG. 1) for the catching coil 4a or 4b. applied voltage U.
  • This voltage U preferably has one constant value and is clocked by the controller 10 the respective coil 4a or 4b applied, the controller 10 still the Can determine the sign of the electrical voltage, i.e. it is clocked either a positive or a negative voltage value or the voltage value "Zero" is applied to the coil 4a or 4b catching the armature 4d.
  • the position of the armature is referred to directly as "z" in the following, without using the explanatory term "path coordinate". From this path coordinate or anchor position z, the movement speed z ⁇ of the armature and the armature acceleration are obtained by derivation once or twice over time t can be estimated or ascertained.
  • the value z and the quantities z ⁇ derived from it, are determined by the observer 11 and communicated to the controller 10 as so-called estimated values 21.
  • Another input variable of the control concept described here is that of the observer 11 when determining the estimated values 21 is processed, which determined in the respective coils 4a, 4b (cf. FIG. 1) Current flow I (as a result of the applied voltage U).
  • FIG. 3a The sequence of figures 3a, 3b, 3c, 3d explained below shows the individual phases of the regulation according to the invention during the catching process of the armature 4d by one of the two coils 4a, 4b in a system according to FIG. 1:
  • the individual phases according to the invention namely the catching phase FP, the braking phase BP and the holding phase HP following the armature impact on the coil are identified in FIG. 3a.
  • this switch-on time t 1 can in principle be freely selected within certain limits; it only has to be ensured that the anchor 4d can still be caught at all.
  • the voltage U is switched on when the armature position z exceeds a certain selectable threshold value.
  • this threshold value can also be variable, as a result of which additional boundary conditions, such as different external forces acting on the lifting valve 1 to be moved (such as gas forces in particular) can be taken into account at different operating points of the internal combustion engine.
  • the voltage supply to the respective coil 4a or 4b capturing the armature 4d is first interrupted in this after the known catching phase FP at time t 2 , as a result of which this braking phase BP is started, in which the constant electrical voltage U clocked and preferably with variable sign applied to the relevant coil 4a, 4b (and thus a current flow I is initiated).
  • the respective points in time for switching off and switching on the voltage U (which is constant in terms of amount) (ie the so-called voltage-pulse ratio) and here in addition the sign of the voltage U (ie the choice between a negative or a positive voltage value) are determined by the controller 10.
  • the armature 4d (see Fig. 1) already in its flight phase, i.e. before the actual impact, are braked in a controlled manner, in the so-called braking phase BP. Indeed should this braking phase BP be the opening and closing time of the Actuator 4 actuates internal combustion engine lift valve 1 no more than necessary extend.
  • Suitable state variables for the armature movement must now be selected for the design of a controller 10 that meets these requirements.
  • the armature acceleration is preferred here chosen as the third state variable, since it also represents an easily interpreted variable as a direct derivative of the anchor speed z ⁇ .
  • the control can also be set up with other state variables.
  • the controller 10 can now use a so-called target trajectory 20 to carry out its desired function, namely to have the armature 4d placed as smoothly and smoothly as possible on the respective electromanet coil 4a, 4b, which depends on the Time t correlating values for the position z, the speed z ⁇ , and the acceleration of the anchor 4d contains.
  • This target trajectory 20 is therefore nothing other than a value table of target values, which is shown in simplified form in FIG.
  • the controller 10 corrects this by suitably switching the voltage U on or off (including any necessary variation of its sign).
  • the detailed design of the controller 10 can be done by various methods of linear and non-linear control theory and will not be dealt with here.
  • FIGS. 3b, 3c, 3d Here again are the position z over the time t (FIG. 3b), the (desired) armature speed z ⁇ (FIG. 3c), and the (desired) armature acceleration (Fig.3d) in each case in the final phase of the armature movement, ie before the armature 4d strikes the coil 4a or 4b capturing it.
  • This essentially shows the time period between t 2 (this is the end point of the catching phase FP, at which the constant voltage is switched off and the actual control process is started) and the touchdown time t 4 , ie essentially the braking phase BP is shown.
  • the capture phase FP To the left of t 2 is the capture phase FP, in which the armature 4d moves toward the coil capturing it, with the acceleration, as can be seen in this catching phase FP not only decreases, but even already assumes negative values, since with this approach movement, for example to the coil 4a, the associated return spring 2b (cf. FIG. 1) is tensioned, ie the armature 4d is z z ⁇ in its flight speed this return spring 2b already braked.
  • the actual control process begins at time t 2 , ie the braking phase BP is started.
  • This braking phase BP is now to be designed in an ideal manner by the controller 10 such that the armature 4d is gently placed on the coil 4a (or 4b), ie the acceleration must occur at the time of placement t 4 be back to zero.
  • z (t) z 0 + ⁇ 0 • t + ⁇ 1 / 2 • t 2 + ⁇ 2 / 3 • t 3
  • z (t) z 0 + z 0 • t + ⁇ 0 / 2 • t 2 + ⁇ 1 / 6 • t 3 + ⁇ 2 / 12 • t 4
  • the constants z 0 , z ⁇ 0 , ⁇ 0 , ⁇ 1 and ⁇ 2 are from the continuity conditions for to determine z ⁇ and z at time t 3 , two of these constants being freely selectable.
  • the values for ⁇ 0 and the position of the vertex of said parabola (at time t s ) can preferably be chosen as desired within certain limits.
  • the said target trajectory as here by one piece each To represent straight lines and a parabola.
  • Others may as well do mathematical-geometric Functions such as polynomials, a sine function or the like can be used.
  • the controller 10 requires three state variables for the execution of its function, preferably the armature position z, the movement speed z ⁇ of the armature 4d and the armature acceleration , In principle, it is possible to measure these state variables using suitable sensors. However, in order to save sensors or to replace expensive sensors by inexpensive sensors, at least two of these state variables can also be reconstructed by a so-called observer 11, who has already been briefly mentioned in connection with FIG.
  • an actuator model is connected in parallel to the actuator 4, which is fed with an actual variable that is important for the actuator 4, namely with the variable of the current flow I determined in the respective coil 4a, 4b.
  • the armature position estimated on this basis can be compared with the actual measured armature position z and additionally transmitted to the observer 11 as an input variable, and the difference from this can then be fed back to the variables or so-called state variables of the actuator model via a correction function.
  • the observer 11 compares the estimated values for (here) the armature position z, the movement speed z ⁇ of the armature 4d and the armature acceleration the actual values for this.
  • the values z, z ⁇ can also be used to characterize the actuator state.
  • the correction function just mentioned can be designed by various methods of linear or non-linear control theory and will not be dealt with in more detail here.
  • the proposed complete state feedback enables the representation of arbitrarily low impingement speeds of the armature 4d on the respective electromagnetic coil 4a or 4b.
  • the armature 4d without jerk ie with an acceleration strikes the respective coil from the value "zero", so that the noise generated by this impact is minimized at time t 4 .
  • the target trajectory calculated in the background or in a suitable control electronics the real-time computation effort is kept low during the actual control process.
  • the calculation of the target trajectory in the preferred application mentioned allows adaptation during operation of the internal combustion engine, depending on its current operating state, such as, for example, speed, load torque, temperature, wear and more. Furthermore, the problem of measuring all the required quantities is solved by using the observer 11 based on the measured quantities valve lift or armature position z and coil current I.
  • FIG. 5 differs from that of FIGS. 1, 4 in that an opening and a closing movement of the lift valve 1 is shown in FIG. 5 , ie the time axis (t) extends over a longer period of time than in the figures 1, 4 .
  • the above-mentioned controller can thus set a floating position of the armature 4d in a quasi-fictitious end position, in which the armature 4d remains at least slightly spaced from the normally open coil 4a that previously released it.
  • the opening coil 4b (cf. also FIG . 1)
  • a target trajectory 20c which keeps the armature 4d at least slightly at a short distance from the corresponding electromagnetic coil or closer coil 4a can be provided.
  • the armature 4d is first moved to the position z 2 , which corresponds to the placement of the lift valve 1 on its valve seat 30 (see FIG . 1 ). Subsequently, the armature 4d is moved into the position z 1 , which corresponds to its own mechanical end position, in which it therefore comes to rest on the make coil 4a.
  • armature 4d instead of the mechanical end positions of the armature 4d on the electromagnetic coils 4a, 4b, generally fictitious or so-called quasi-end positions of the armature 4d (lying between z 0 and z 1 ) can be approached, that is, target trajectories (not shown in the figures) are provided here move the lifting valve 1, for example, into its end positions and keep the armature 4d at a distance from the respective electromagnetic coil 4a or 4b.
  • a so-called floating position of the armature 4d is set in a fictitious or quasi-end position in which the armature 4d remains at least slightly spaced from the coil 4a or 4b capturing it.
  • the regulated system namely the electromagnetic Valve train for the gas exchange stroke valve 1, which has the desired behavior.
  • this system under consideration the desired target trajectory in the desired operating state brought and this until the conclusion of the respective Movement sequence no longer leaves.
  • This can be done under suitable Prerequisites due to a discontinuous control signal analogous to a two-point controller can be achieved.
  • the desired operating conditions regardless of deviations or faults be chosen so that the regulated system is largely independent of deviations and disturbances.
  • the armature of the electromagnetic Actuator controlled in terms of its movement is that the one closer to the anchor and consequently energized Coil applied electrical voltage is regulated clocked and that Voltage-clock ratio of a controller based on the armature target movement descriptive target trajectory is determined.
  • the calculation of the target trajectory is an adaptation even during operation the engine allows, depending on their current operating status, such as speed, load torque, temperature, Wear and more.
  • the dynamic behavior actually depends of the actuator in particular due to the gas exchange valve acting gas forces essentially from the load condition and from the speed the internal combustion engine. It can also change component temperatures and especially the temperature of the engine lubricating oil as well as general signs of wear to a change the mechanical properties of the actuator.
  • the following shows how at least one of the adjustments mentioned can be carried out in a particularly efficient manner. Therefore can in particular adapt to different internal combustion engine operating states in terms of their type in advance using a numerical Optimization algorithm done and in an electronic control unit be filed. Furthermore, an additional adjustment of the controller and / or the target trajectories to changing external boundary conditions Operation of the internal combustion engine in an at least temporarily running Background process.
  • Adaptation to different internal combustion engine operating conditions should be done in advance, so that the result of this adjustment can be stored in an electronic control unit.
  • Dependent on works from the current operating state of the internal combustion engine then the controller with the corresponding adaptation or accesses one of these Operating state adjusted target trajectory back.
  • the fact of Pre-adaptation means that this adaptation is based on simulations and / or be carried out on the basis of test bench measurements can.
  • the use of a numeric for this adjustment Optimization algorithm proposed.
  • the whole Control process for the armature movement using at least one suitable one Quality criterion can be optimized.
  • An example of such a quality criterion is the speed at which the anchor hits the current one Electromagnetic coil, or the armature acceleration at the time of impact.
  • the adaptation to changing boundary conditions should when operating the internal combustion engine in an at least temporarily running Background process. It must be ensured here that the corresponding electronic control unit has sufficient computing capacity is made available for this so-called ongoing adaptation to enable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Claims (12)

  1. Procédé pour la commande du mouvement d'un induit (4d) d'un actionneur électromagnétique (4), en particulier pour l'actionnement d'une soupape de distribution des gaz (1) d'un moteur à combustion interne, dont l'induit (4d) est déplacé en oscillation entre deux bobines d'électro-aimants (4a, 4b), à chaque fois à l'encontre de la force d'au moins un ressort de rappel (2a, 2b), par alimentation alternée des bobines d'électro-aimants (4a, 4b), et lorsque l'induit (4d) se rapproche de la bobine alimentée initialement (4a ou 4b), pendant ce qu'on appelle le processus d'attraction, la tension électrique (U) appliquée à la bobine (4a, 4b) qui attire l'induit est réduite,
    caractérisé en ce qu'
    à la phase d'attraction (FP) du processus d'attraction, fait suite une phase de freinage (BP) dans laquelle, jusqu'au moment de l'impact de l'induit (4d) sur la bobine (4a, 4b), une tension électrique (U) commandée par cycles est appliquée à cette bobine, les instants de commutation et le rapport de cycle de la tension étant déterminés ici par un régulateur (10) sur la base d'une trajectoire de consigne (20) qui décrit le déplacement de consigne de l'induit.
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'
    on applique par cycles, soit une valeur de tension positive, soit une valeur de tension négative, soit la valeur de tension "zéro" sur la bobine 4a ou 4b qui attire l'induit 4d.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    le régulateur (10) compare à la trajectoire de consigne (20) des valeurs estimées (21) obtenues parallèlement au déplacement de l'induit pour ce déplacement.
  4. Procédé selon une des revendications précédentes,
    caractérisé en ce que (
    Figure 00290001
    )
    la trajectoire de consigne (20) contient, en fonction du temps, des valeurs pour la course (z), pour la vitesse (Z ˙) et pour l'accélération ( ) de l'induit (4d).
  5. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    la trajectoire de consigne (20) est calculée, entre autres, sur la base de la condition marginale consistant en ce que l'accélération de l'induit (4d) doit avoir la valeur « zéro » à l'instant de l'impact sur la bobine d'électro-aimant (4a, 4b).
  6. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    différentes trajectoires de consigne (20a, 20b, 20c, ...) sont prévues pour différents déroulements du déplacement de l'induit (4d) et/ou de la soupape (1) de distribution des gaz.
  7. Procédé selon la revendication 6,
    caractérisé en ce qu'
    il est prévu, en supplément d'une trajectoire de consigne (20a) qui amène la soupape (1) à sa position entièrement ouverte, au moins une trajectoire de consigne (20b) qui ouvre seulement partiellement la soupape (1).
  8. Procédé selon la revendication 7,
    caractérisé en ce que
    la soupape (1) est maintenue près de sa position de fermeture par la trajectoire de consigne (20b) qui l'ouvre seulement partiellement.
  9. Procédé selon une des revendications précédentes,
    caractérisé en ce que,
    pour le processus de fermeture de la soupape (1), est prévue une trajectoire de consigne (20c) qui maintient l'induit (4d) au moins brièvement légèrement espacé de la bobine d'électro-aimant correspondante (4a).
  10. Procédé selon une des revendications précédentes,
    caractérisé en ce qu'
    il est prévu des trajectoires de consigne (20) qui amènent la soupape (1) dans ses positions extrêmes et, en même temps, maintiennent l'induit (4d) espacé de la bobine d'électro-aimant correspondante (4a ou 4b).
  11. Procédé selon une des revendications précédentes,
    selon lequel
    le régulateur (10) et/ou les trajectoires de consigne (20a, 20b, 20c, ...) est ou sont adaptés à différents états de fonctionnement du moteur à combustion interne,
    caractérisé en ce que
    le mode de l'adaptation a été exécuté au préalable au moyen d'un algorithme d'optimisation numérique et est enregistré dans une unité de commande électronique.
  12. Procédé selon la revendication 11,
    selon lequel
    le régulateur (10) et/ou les trajectoires de consigne (20a, 20b, 20c) est ou sont adaptés en supplément à des conditions marginales extérieures variables,
    caractérisé en ce que
    l'adaptation s'effectue pendant le fonctionnement du moteur à combustion interne, dans un processus d'arrière-plan qui se déroule au moins temporairement.
EP99112676A 1998-07-17 1999-07-02 Procédé de commande du mouvement d'une armature d'un vérin électromagnétique Expired - Lifetime EP0973178B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19832196 1998-07-17
DE19832196A DE19832196A1 (de) 1998-07-17 1998-07-17 Verfahren zur Reduzierung der Auftreffgeschwindigkeit eines Ankers eines elektromagnetischen Aktuators
DE19836297A DE19836297B4 (de) 1998-08-11 1998-08-11 Verfahren zur Bewegungssteuerung eines Ankers eines elektromagnetischen Aktuators zur Betätigung eines Gaswechsel-Hubventiles einer Brennkraftmaschine
DE19836297 1998-08-11
DE1998155775 DE19855775A1 (de) 1998-07-17 1998-12-03 Verfahren zur Bewegungssteuerung eines Ankers eines elektromagnetischen Aktuators zur Betätigung eines Gaswechsel-Hubventiles einer Brennkraftmaschine
DE19855775 1998-12-03

Publications (3)

Publication Number Publication Date
EP0973178A2 EP0973178A2 (fr) 2000-01-19
EP0973178A3 EP0973178A3 (fr) 2001-03-21
EP0973178B1 true EP0973178B1 (fr) 2004-09-29

Family

ID=27218517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99112676A Expired - Lifetime EP0973178B1 (fr) 1998-07-17 1999-07-02 Procédé de commande du mouvement d'une armature d'un vérin électromagnétique

Country Status (4)

Country Link
US (1) US6196172B1 (fr)
EP (1) EP0973178B1 (fr)
JP (1) JP2000049012A (fr)
DE (1) DE59910632D1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19918095C1 (de) * 1999-04-21 2000-10-12 Siemens Ag Schaltung zur Steuerung mindestens eines jeweils elektromechanisch betätigten Ein- und Auslaßventils einer Brennkraftmaschine
IT1311131B1 (it) * 1999-11-05 2002-03-04 Magneti Marelli Spa Metodo per il controllo di attuatori elettromagnetici perl'azionamento di valvole di aspirazione e scarico in motori a
IT1311376B1 (it) * 1999-12-23 2002-03-12 Magneti Marelli Spa Metodo per la stima delle posizioni di fine corsa di organi mobili diattuatori elettromagnetici per l'azionamento di valvole di aspirazione
DE10012988A1 (de) * 2000-03-16 2001-09-20 Bayerische Motoren Werke Ag Verfahren zum Betrieb eines elektromagnetischen Aktors
JP2002231530A (ja) * 2001-02-07 2002-08-16 Honda Motor Co Ltd 電磁アクチュエータ制御装置
KR100398005B1 (ko) * 2001-05-07 2003-09-19 현대자동차주식회사 커먼레일 인젝터의 니들 변위 추정시스템
US6681728B2 (en) 2001-11-05 2004-01-27 Ford Global Technologies, Llc Method for controlling an electromechanical actuator for a fuel air charge valve
KR20030037504A (ko) * 2001-11-06 2003-05-14 현대자동차주식회사 터보차저 엔진의 가변밸브 타이밍을 가지는밸브구동시스템 및 그를 위한 제어방법
US6644253B2 (en) * 2001-12-11 2003-11-11 Visteon Global Technologies, Inc. Method of controlling an electromagnetic valve actuator
DE10205385A1 (de) * 2002-02-09 2003-08-28 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205383B4 (de) * 2002-02-09 2007-04-12 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205384A1 (de) * 2002-02-09 2003-08-21 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205389A1 (de) * 2002-02-09 2003-08-28 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205387A1 (de) * 2002-02-09 2003-08-21 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
US6729314B2 (en) * 2002-02-11 2004-05-04 Eaton Corporation Staged translation control algorithm for reduction in impact force
DE10206031B4 (de) * 2002-02-14 2007-08-30 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10206033B4 (de) * 2002-02-14 2010-05-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
US6741441B2 (en) * 2002-02-14 2004-05-25 Visteon Global Technologies, Inc. Electromagnetic actuator system and method for engine valves
DE10244337B4 (de) * 2002-09-24 2008-09-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10244518B4 (de) * 2002-09-25 2005-12-22 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10257693B4 (de) * 2002-12-11 2008-01-03 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10318246A1 (de) * 2003-03-31 2004-11-11 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10318244A1 (de) * 2003-03-31 2004-11-18 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10318245B4 (de) * 2003-03-31 2008-03-20 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10325706B4 (de) * 2003-06-06 2007-05-03 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE602004032582D1 (de) * 2004-11-05 2011-06-16 Gen Electric Elektrischer kontaktor und zugeordnetes kontaktor-schliesssteuerverfahren
CN101203931B (zh) * 2005-06-16 2012-04-04 西门子公司 电磁开关设备及其操作方法
SE529328C2 (sv) * 2005-11-15 2007-07-10 Johan Stenberg Styrsystem samt metod för styrning av elektromagnetiskt drivna pumpar
FR2916799B1 (fr) * 2007-05-30 2013-06-07 Valeo Sys Controle Moteur Sas Procede et dispositif de commande de soupape avec plusieurs phases de levee, procede d'alimentation d'un moteur
RU2480854C1 (ru) * 2011-12-07 2013-04-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ управления резонансным электромагнитным приводом
US9428164B2 (en) 2013-02-28 2016-08-30 Bendix Commercial Vehicle Systems Llc Valve assembly
WO2020101580A1 (fr) 2018-11-12 2020-05-22 Ozyegin Universitesi Système d'actionnement pour réaliser un atterrissage souple et son procédé de commande
DE102022202027A1 (de) 2022-02-28 2023-08-31 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Gasventils, Steuergerät

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307683C1 (de) * 1983-03-04 1984-07-26 Klöckner, Wolfgang, Dr., 8033 Krailling Verfahren zum Aktivieren einer elektromagnetisch arbeitenden Stelleinrichtung sowie Vorrichtung zum Durchfuehren des Verfahrens
DD217071A1 (de) * 1983-07-28 1985-01-02 Mikroelektronik Zt Forsch Tech Verfahren zum ansteuern eines elektromagnetischen antriebes
US5481187A (en) * 1991-11-29 1996-01-02 Caterpillar Inc. Method and apparatus for determining the position of an armature in an electromagnetic actuator
DE19529151A1 (de) * 1995-08-08 1997-02-13 Fev Motorentech Gmbh & Co Kg Verfahren zum Schalten eines elektromagnetischen Aktuators
DE19530121A1 (de) * 1995-08-16 1997-02-20 Fev Motorentech Gmbh & Co Kg Verfahren zur Reduzierung der Auftreffgeschwindigkeit eines Ankers an einem elektromagnetischen Aktuator
DE29615396U1 (de) * 1996-09-04 1998-01-08 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Elektromagnetischer Aktuator mit Aufschlagdämpfung
DE19640659B4 (de) * 1996-10-02 2005-02-24 Fev Motorentechnik Gmbh Verfahren zur Betätigung eines elektromagnetischen Aktuators mit Beeinflussung des Spulenstroms während der Ankerbewegung
JPH10205314A (ja) * 1996-12-13 1998-08-04 Fev Motorentechnik Gmbh & Co Kg ガス交換弁の電磁弁駆動部を制御する方法
DE19733137A1 (de) * 1997-07-31 1999-02-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung von elektromagnetischen Aktuatoren zur Betätigung von Gaswechselventilen an Kolbenbrennkraftmaschinen
US5991143A (en) * 1998-04-28 1999-11-23 Siemens Automotive Corporation Method for controlling velocity of an armature of an electromagnetic actuator

Also Published As

Publication number Publication date
DE59910632D1 (de) 2004-11-04
US6196172B1 (en) 2001-03-06
JP2000049012A (ja) 2000-02-18
EP0973178A3 (fr) 2001-03-21
EP0973178A2 (fr) 2000-01-19

Similar Documents

Publication Publication Date Title
EP0973178B1 (fr) Procédé de commande du mouvement d'une armature d'un vérin électromagnétique
DE60102131T2 (de) Verfahren zur Steuerung eines elektromagnetischen Ventilantriebes in einem nockenwellenlosen Motor
DE19640659A1 (de) Verfahren zur Betätigung eines elektromagnetischen Aktuators mit Beeinflussung des Spulenstroms während der Ankerbewegung
EP1134364B1 (fr) Procédé pour le fonctionnement d'actionneurs électromagnétiques
DE19832196A1 (de) Verfahren zur Reduzierung der Auftreffgeschwindigkeit eines Ankers eines elektromagnetischen Aktuators
EP0973177B1 (fr) Procédé de commande du mouvement d'une armature d'un vérin électromagnétique
DE19832198A1 (de) Regelungsverfahren für die Endphasen-Bewegung eines Ankers eines elektromagnetischen Aktuators
DE19531435B4 (de) Verfahren zur Anpassung der Steuerung eines elektromagnetischen Aktuators an betriebsbedingte Veränderungen
DE10200283A1 (de) Steuer/Regeleinrichtung zur Steuerung/Regelung eines elektromagnetischen Aktuators
EP1101016A1 (fr) Procede de commande de la position de fin de course d'une valve de commutation des gaz actionnee par un actuateur electromagnetique dans un moteur a combustion interne
EP2501916B1 (fr) Procédé et dispositif pour l'actionnement d'une soupape de commande de quantité
DE19836297B4 (de) Verfahren zur Bewegungssteuerung eines Ankers eines elektromagnetischen Aktuators zur Betätigung eines Gaswechsel-Hubventiles einer Brennkraftmaschine
DE10062107C5 (de) Aktorregelung
DE10318245B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10325706B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10318244A1 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205385A1 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE19905492C1 (de) Verfahren zur elektromagnetischen Steuerung der Gaswechselventile von Brennkraftmaschinen
DE10206031B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205383B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10257693B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205387A1 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE10205384A1 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE19922969A1 (de) Verfahren zum Betrieb eines elektromagnetischen Ventiltriebs zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
DE10244518B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010406

AKX Designation fees paid

Free format text: DE FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040929

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59910632

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080728

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731