EP0949479B1 - Halbleiterzünder - Google Patents

Halbleiterzünder Download PDF

Info

Publication number
EP0949479B1
EP0949479B1 EP99106969A EP99106969A EP0949479B1 EP 0949479 B1 EP0949479 B1 EP 0949479B1 EP 99106969 A EP99106969 A EP 99106969A EP 99106969 A EP99106969 A EP 99106969A EP 0949479 B1 EP0949479 B1 EP 0949479B1
Authority
EP
European Patent Office
Prior art keywords
semiconductor
ignition
igniter according
semiconductor layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99106969A
Other languages
English (en)
French (fr)
Other versions
EP0949479A1 (de
Inventor
Horst Laucht
Gerhard Dr. Müller
Wolfgang Welser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
ZF Airbag Germany GmbH
Original Assignee
TRW Airbag Systems GmbH
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Airbag Systems GmbH, EADS Deutschland GmbH filed Critical TRW Airbag Systems GmbH
Publication of EP0949479A1 publication Critical patent/EP0949479A1/de
Application granted granted Critical
Publication of EP0949479B1 publication Critical patent/EP0949479B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/13Bridge initiators with semiconductive bridge

Definitions

  • the invention relates to a semiconductor igniter, in particular for the Gas generator of a protection system for vehicle occupants, according to the generic term of claim 1.
  • Semiconductor fuses of this type which are mainly due to hot wire fuses their much lower susceptibility to interference more and more spread find are known from EP 0 762 073 A1 or US 5,309,841 and consist of a heavily p-doped or n-doped semiconductor layer between end contact pieces on an electrically insulated or non-conductive Carrier is arranged and during the passage of current to produce a ionized semiconductor plasma suddenly heated or evaporated and thereby the ignition - usually by way of a primary ignition charge - is triggered. Out Due to a high ignition efficiency, it is necessary to use a thermal Insert insulation layer between the semiconductor layer and the carrier.
  • the patent specification DE 197 02 118 C1 shows for example a squib for triggering a Airbags, with a carrier and a chip, the lightly doped silicon and two electrodes having.
  • the two electrodes are separated by a highly doped silicon area, which is intended as a heating zone.
  • a free space is as thermal insulation to the wearer intended.
  • the object of the invention is to design a semiconductor igniter of the type mentioned in the introduction, that in a simple manner in terms of production and while maintaining high ignition efficiency great structural strength is achieved.
  • the semiconductor igniter according to the invention is especially for a gas generator Protection system suitable for vehicle occupants and has a bridge-like semiconductor layer, the end portions and an intermediate ignition gap area, wherein the semiconductor layer is connected at the end to electrical contact areas to heat in an ignition-triggering manner during the passage of current in the area of the ignition, and continue to do so a carrier is provided on which the semiconductor layer is applied at the end sections and is firmly connected to the carrier, as well as a thermal insulation layer that is trench-shaped is incorporated into the carrier.
  • the thermal insulation layer lies between the firing range and the carrier and it is local to the firing range limited.
  • the semiconductor layer is at the end sections molded integrally to the carrier according to claim 2, whereby an even safer Bond between the semiconductor layer and carrier is achieved.
  • the thermal insulation layer from a porous, the semiconductor layer in the ignition gap area to produce supporting material, namely according to claim 4 on production simple way in that the carrier material itself, for example is locally porosized electrochemically.
  • the carrier material itself, for example is locally porosized electrochemically.
  • porous Material according to claim 5 preferably oxidized to the thermal conductivity to further reduce the insulation layer.
  • the semiconductor layer as claimed 6 preferred to be designed as a free-standing bridge structure in the ignition zone area, namely according to claim 7 expediently such that the first porosified insulation material is removed by etching, so that as thermal Insulation layer an air-filled under the ignition gap area and, if desired, evacuable cavity through which the thermal ignition energy losses can be reduced even more.
  • the semiconductor layer is im Ignition zone range from an explosive combustion when heated Ignition enhancer surrounded, which after reaching a relative low temperature levels of non-electrically generated heat for the ignition process is made available.
  • the ignition enhancer expediently in the form of a with regard to one low ignition delay thin coating applied to the semiconductor layer.
  • porous insulation layer it is for reinforcement of the ignition pulse either optionally or additionally also possible porous insulation material according to claim 10 with a gaseous or to impregnate metal-containing ignition reinforcing agents.
  • the semiconductor layer is preferably in several to each other parallel and mutually insulated bridge bridges to the beam divided, whereby with a comparatively large bridge width, which create large contact areas for those above the semiconductor layer ignition charge located is advantageous on the way between the Bridges existing gaps a thermal easily Formation of insulation layer on the underside of the bridge.
  • the semiconductor layer is as operated in the reverse direction, when the breakdown voltage is exceeded ignition-triggering heating semiconductor element with at least one p-n transition, thus approximately as a pair of anti-parallel diodes. hereby the susceptibility to interference of the semiconductor igniter is further reduced and received a distinctly short, sharp ignition pulse.
  • the carrier and the semiconductor layer expediently made of differently doped silicon, for example in the form of a Silicon wafers.
  • the semiconductor igniter shown in FIGS. 1 and 2 contains a carrier 2 in Form of a weakly p-doped silicon wafer, one in the carrier 2 trench-shaped thermal insulation layer 4, a semiconductor bridge 6, also made of silicon, but heavily n-doped, which is in the ignition gap area 8 supported on the thermal insulation layer 4 and on the bridge end sections 10, 12 under the same material, mechanically stronger Connection is applied directly to the carrier 2, as well as electrical Bridge end sections 10, 12 contact pieces 14, 16 covering a large area the via connection elements 18, 20 with the - not shown - ignition electronics stay in contact.
  • the thermal insulation layer 4 is made of the carrier material itself in the Made that the carrier 2 in electro- or photochemical way one limited locally to the ignition gap area 8 of the semiconductor bridge 6 Zone is porosized.
  • the thermal insulation layer 4 ensures that the electrically generated Heat is largely converted into ignition energy, so that the ignition gap material abruptly heated and thereby the ignition in the above of the semiconductor bridge 6 arranged primary ignition charge (not shown).
  • those kept free by the thermal insulation layer 4 End sections 10, 12 is the semiconductor bridge 6 with regard to the acting thermal and mechanical loads securely anchored to the carrier 2.
  • the porous silicon layer can improve the thermal protective effect 4 at least on the area areas adjoining the ignition section area 8 be oxidized.
  • the semiconductor bridge 106 at its end portions 110 and 112 integrally formed on the carrier 102 the semiconductor bridge 106 from the carrier 102 by different doping, namely on the semiconductor bridge 106 a strong n- and in the area of the carrier 102 a weak p-silicon doping, is delimited.
  • the Thermal insulation layer in this embodiment from an air-filled and, if desired, evacuable, trench-shaped in the carrier material incorporated cavity 104.
  • the semiconductor bridge 206 in the ignition gap area 208 into a plurality of bridge webs 24 parallel to one another divided to a wide bridge width for a large area Initiation of the primary ignition charge located above the semiconductor bridge 206 is advantageous, the electrochemical etching process for porosizing the Insulation layer 204 over the spaces between the bridge webs 24 without problems, ie without an excessively high driving depth and thus the thickness of the Insulation layer 206 to be able to perform.
  • the semiconductor bridge 206 can also have parallel bridge webs 24 with a large number be provided by etching holes or slots, via which the etching process to produce the thermal insulation layer 204.
  • the semiconductor bridge 206 is also on the bridge webs 24 kind of a semiconductor element provided with several p-n junctions, that is about - as shown - designed as an antipolar diode pair 26, which is operated in the reverse direction and changes when the Breakdown voltage heated to generate an ignition pulse. This will reduce the sensitivity to interference the semiconductor igniter further reduced and an even steeper Receive ignition pulse.
  • the semiconductor bridge typically has a wall thickness between 1 and 10 ⁇ m, a length between 20 and 1000 ⁇ m and a width between 20 and 300 microns (according to FIG. 4, the bridge length is about 100 microns and the Bridge width about 200 ⁇ m), the thickness of the thermal insulation layer corresponds to approximately half the bridge or web width and is approx. 30 ⁇ m, that of the metallic ignition reinforcement layer 22 at approximately 0.5 ⁇ m and the Semiconductor detonators have a total height of around 500 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)
  • Carpets (AREA)

Description

Die Erfindung bezieht sich auf einen Halbleiterzünder, insbesondere für den Gasgenerator eines Schutzsystems für Fahrzeuginsassen, nach dem Oberbegriff des Patentanspruchs 1.
Halbleiterzünder dieser Art, die gegenüber Hitzdrahtzündern vor allem wegen ihrer wesentlich geringeren Störempfindlichkeit mehr und mehr Verbreitung finden, sind aus der EP 0 762 073 A1 oder der US 5 309 841 bekannt und bestehen aus einer stark p-oder n-dotierten Halbleiterschicht, die zwischen endseitigen Kontaktstücken auf einem elektrisch isolierten oder nichtleitenden Träger angeordnet ist und sich beim Stromdurchgang unter Erzeugung eines ionisierten Halbleiterplasmas schlagartig erhitzt bzw. verdampft und dadurch die Zündung - zumeist auf dem Wege einer Primärzündladung - auslöst. Aus Gründen einer hohen Zündeffizienz ist es dabei erforderlich, eine thermische Isolationsschicht zwischen die Halbleiterschicht und den Träger einzufügen. Hierdurch verschlechtert sich jedoch die mechanische Bindung der Halbleiterschicht zum Träger, und es besteht die Gefahr, daß sich die Halbleiterschicht unter der Wirkung thermischer oder dynamischer Belastungen, wie sie vor allem bei Verwendung in einem Kraftfahrzeug auftreten, ablöst und dadurch der Halbleiterzünder funktiononsunfähig wird.
Die Patentschrift DE 197 02 118 C1 (Basis für den Oberbegriff des Anspruchs 1) zeigt beispielsweise eine Zündpille zum Auslösen eines Airbags, mit einem Träger und einem Chip, der gering dotiertes Silizium und zwei Elektroden aufweist. Die beiden Elektroden sind durch einen hoch dotierten Siliziumbereich getrennt, der als Heizzone vorgesehen ist. Ein freier Raum ist als Wärmeisolierung zum Träger vorgesehen. Die damit verbundenen Nachteile in bezug auf die Festigkeit sind oben erwähnt.
Aufgabe der Erfindung ist es, einen Halbleiterzünder der eingangs genannten Art so auszubilden, dass auf fertigungsmäßig einfache Weise und unter Beibehalt einer hohen Zündeffizienz eine große konstruktive Festigkeit erzielt wird.
Diese Aufgabe ist erfindungsgemäß durch den im Patentanspruch 1 gekennzeichneten Halbleiterzünder gelöst.
Der erfindungsgemäße Halbleiterzünder ist insbesondere für einen Gasgenerator eines Schutzsystems für Fahrzeuginsassen geeignet und hat eine brückenartige Halbleiterschicht, die Endabschnitte und einen dazwischen liegenden Zündstreckenbereich umfasst, wobei die Halbleiterschicht endseitig an elektrische Kontaktbereiche angeschlossen ist, um sich beim Stromdurchgang im Zündstreckenbereich zündauslösend zu erhitzen, wobei weiterhin ein Träger vorgesehen ist, auf dem die Halbleiterschicht an den Endabschnitten aufgebracht und fest mit dem Träger verbunden ist, sowie eine thermische Isolationsschicht, die grabenförmig in den Träger eingearbeitet ist. Dabei liegt die thermische Isolierschicht zwischen dem Zündstreckenbereich und dem Träger und sie ist örtlich auf den Zündstreckenbereich begrenzt.
Durch die Ausgestaltung wird eine besonders große konstruktive Festigkeit erzielt, wobei dennoch eine hohe Zündeffizienz gewährleistet ist. Es wird eine hinsichtlich der einwirkenden Belastungen äußerst stabile Abstützung der Halbleiterschicht garantiert und die Funktionszuverlässigkeit des Halbleiterzünders ohne aufwendige Zusatzmaßnahmen signifikant verbessert. Dennoch bleibt die für eine hohe Zündeffizienz benötigte, thermische Abschirmung des Zündstreckenbereichs in vollem Umfang erhalten. Vorteilhaft wirkt sich dabei die räumliche Begrenzung der thermischen Isolationsschicht auf den Zündstreckenbereich der Halbleiterschicht in Verbindung mit einer stoffgleichen und dementsprechend festen Anbindung der Brücken-Endabschnitte unmittelbar an den Träger aus.
In besonders bevorzugter Ausgestaltung der Erfindung ist die Halbleiterschicht an den Endabschnitten nach Anspruch 2 einstückig an den Träger angeformt, wodurch eine noch sicherere Bindung zwischen Halbleiterschicht und Träger erreicht wird.
Aus Gründen einer weiteren Stabilitätserhöhung bei zugleich hoher thermische Schutzwirkung empfiehlt es sich nach Anspruch 3, die thermische Isolationsschicht aus einem porösen, die Halbleiterschicht im Zündstreckenbereich stützenden Material herzustellen, und zwar nach Anspruch 4 auf fertigungsmäßig einfache Weise dadurch, daß das Trägermaterial selbst zB auf elektrochemischem Wege örtlich porosiziert ist. In diesem Fall ist das porosizierte Material nach Anspruch 5 vorzugsweise oxidiert, um die Wärmeleitfähigkeit der Isolationsschicht weiter zu verrringern.
Wahlweise ist es aber auch möglich, die Halbleiterschicht, wie nach Anspruch 6 bevorzugt, als im Zündstreckenbereich freistehende Brückenstruktur auszubilden, nämlich nach Anspruch 7 zweckmäßigerweise derart, daß das zunächst porosizierte Isolationsmaterial ätztechnisch entfernt wird, so daß als thermische Isolationsschicht ein den Zündstreckenbereich untergreifender, luftgefüllter und gewünschtenfalls evakuierbarer Hohlraum entsteht, durch den die thermischen Zündenergieverluste noch stärker reduziert werden.
In besonders bevorzugter Weise ist die Halbleiterschicht nach Anspruch 8 im Zündstreckenbereich von einem bei Erhitzung explosionsartig verbrennenden Zündverstärkungsmittel umgeben, wodurch nach Erreichen eines relativ niedrigen Temperaturniveaus nicht-elektrisch generierte Wärme für den Zündprozeß zur Verfügung gestellt wird. Nach Anspruch 9 wird das Zündverstärkungsmittel zweckmäßigerweise in Form einer im Hinblick auf einen geringen Zündverzug dünnen Beschichtung auf die Halbleiterschicht aufgebracht. Bei Verwendung einer porösen Isolationsschicht ist es zur Verstärkung des Zündimpulses wahlweise oder zusätzlich aber auch möglich, das poröse Isolationsmaterial nach Anspruch 10 mit einem gasförmigen oder metallhaltigen Zündverstärkungsmittel zu imprägnieren.
Nach Anspruch 11 ist die Halbleiterschicht vorzugsweise in mehrere, zueinander parallele und gegenseitig und zum Träger thermisch isolierte Brückenstege unterteilt, wodurch sich bei einer vergleichsweise großen Brückenbreite, die zur Schaffung großer Kontaktflächen für die oberhalb der Halbleiterschicht befindliche Zündladung von Vorteil ist, auf dem Wege über die zwischen den Brückenstegen vorhandenen Zwischenräume problemlos eine thermische Isolationsschicht auf der Brückenunterseite ausbilden läßt.
In besonders bevorzugter Weise ist die Halbleiterschicht nach Anspruch 12 als in Sperrichtung betriebenes, sich bei Überschreiten der Durchbruchspannung zündauslösend erhitzendes Halbleiterelement mit mindestens einem p-n Übergang, also etwa als antiparallel geschaltetes Diodenpaar, ausgebildet. Hierdurch wird die Störempfindlichkeit des Halbleiterzünders weiter reduziert und ein ausgeprägt kurzer, scharfer Zündimpuls erhalten.
Nach Anspruch 13 schließlich sind der Träger und die Halbleiterschicht zweckmäßigerweise aus unterschiedlich dotiertem Silizium, zB in Form eines Siliziumwafers, hergestellt.
Die Erfindung wird nunmehr anhand mehrerer Ausführungsbeispiele in Verbindung mit den Zeichnungen näher erläutert. Es zeigen in stark schematisierter Darstellung:
Fig. 1
die Aufsicht eines erfindungsgemäßen Halbleiterzünders in stark vergrößertem Maßstab;
Fig. 2
einen Schnitt des Halbleiterzünders nach Fig. 1 längs der Linie I-I;
Fig. 3
ein zweites Ausführungsbeispiel eines Halbleiterzünders mit einstückig angeformter Halbleiterbrücke in einer der Fig. 2 entsprechenden Darstellung; und
Fig. 4
ein weiteres Ausführungsbeispiel eines Halbleiterzünders mit einer mehrteiligen Halbleiterbrücke in der Aufsicht.
Der in den Fig. 1 und 2 gezeigte Halbleiterzünder enthält einen Träger 2 in Form eines schwach p-dotierten Siliziumwafers, eine in den Träger 2 grabenförmig eingearbeitete thermische Isolationsschicht 4, eine Halbleiterbrücke 6, ebenfalls aus Silizium, jedoch stark n-dotiert, welche im Zündstreckenbereich 8 auf der thermischen Isolationsschicht 4 abgestützt und an den Brücken-Endabschnitten 10, 12 unter stoffgleicher, mechanisch fester Anbindung unmittelbar auf den Träger 2 aufgebracht ist, sowie elektrische, die Brücken-Endabschnitte 10, 12 großflächig bedeckende Kontaktstücke 14, 16, die über Anschlußelemente 18, 20 mit der - nicht gezeigten - Zündelektronik in Verbindung stehen.
Die thermische Isolationsschicht 4 wird aus dem Trägermaterial selbst in der Weise hergestellt, daß der Träger 2 auf elektro- oder fotochemischem Wege in einer örtlich auf den Zündstreckenbereich 8 der Halbleiterbrücke 6 begrenzten Zone porosiziert wird. Beim Stromdurchgang durch die Halbleiterbrücke 6 sorgt die thermische Isolationsschicht 4 dafür, daß die elektrisch generierte Wärme weitgehend in Zündenergie umgesetzt wird, so daß sich das Zündstreckenmaterial schlagartig erhitzt und dadurch die Zündung in der oberhalb der Halbleiterbrücke 6 angeordneten Primärzündladung (nicht gezeigt) auslöst. An den von der thermischen Isolationsschicht 4 hingegen freigehaltenen Endabschnitten 10, 12 ist die Halbleiterbrücke 6 hinsichtlich der einwirkenden thermischen und mechanischen Belastungen sicher am Träger 2 verankert. Zur Verbesserung der thermischen Schutzwirkung kann die poröse Siliziumschicht 4 zumindest an den an den Zündstreckenbereich 8 angrenzenden Fächenbereichen oxidiert sein.
Um den Zündimpuls zu verstärken, ist die poröse Isolationsschicht 4 mit einem explosiven Gas oder Gasgemisch befüllt, welches bei Erwärmung der Zündstrecke 8 schlagartig verbrennt und dadurch zusätzliche Wärmeenergie für den Zündprozeß zur Verfügung stellt. Stattdessen können die porösen Oberflächen der Isolationsschicht 4 auch mit einer dünnen, zündverstärkenden, etwa mit Hilfe des sog. Sol-Gel-Verfahrens abgeschiedenen metallhaltigen Beschichtung, zB aus Al, Mg, Titanhydrid oder dgl., belegt sein.
Bei dem Halbleiterzünder nach Fig. 3, wo die dem ersten Ausführungsbeispiel entsprechenden Elemente durch ein um 100 erhöhtes Bezugszeichen gekennzeichnet sind, ist die Halbleiterbrücke 106 an ihren Endabschnitten 110 und 112 einstückig an den Träger 102 angeformt, wobei die Halbleiterbrücke 106 vom Träger 102 durch unterschiedliche Dotierung, nämlich an der Halbleiterbrücke 106 eine starke n- und im Bereich des Trägers 102 eine schwache p-Siliziumdotierung, abgegrenzt ist. Ein weiterer Unterschied liegt darin, daß die thermische Isolationsschicht bei dieser Ausführungsform aus einem luftgefüllten und gewünschtenfalls evakuierbaren, grabenförmig in das Trägermaterial eingearbeiteten Hohlraum 104 besteht. Zu diesem Zweck wird das Trägermaterial unterhalb des späteren Zündstreckenbereichs 108 zunächst wiederum auf elektro- oder fotochemischem Wege porosiziert, und anschließend wird das poröse Siliziummaterial durch Unterätzen entfernt, so daß der den Zündstreckenbereich 108 untergreifende, sich bis zu den Brücken-Endabschnitten 110, 112 erstreckende Hohlraum 104 entsteht. Alternativ kann der Hohlraum 104 auch unmittelbar mit Hilfe eines plasmatechnischen Ätzangriffs herausgearbeitet werden. Zur Zündverstärkung ist wiederum eine dünne, in diesem Fall auf den Zündstreckenbereich 108 aufgebrachte metallische Beschichtung 22 aus Al, Mg, Titanhydrid oder dgl. vorgesehen. Im übrigen ist die Bau- und Funktionsweise des Halbleiterzünders nach Fig. 3 die gleiche wie beim ersten Ausführungsbeispiel.
Bei dem Halbleiterzünder nach Fig. 4, wo die den vorherigen Ausführungsbeispielen entsprechenden Elemente durch ein um 200 erhöhtes Bezugszeichen gekennzeichnet sind, sind der Träger 202 und die Halbleiterbrücke 206 in gleicher Weise wie nach Fig. 3 einstückig aus einem Siliziumwafer gefertigt, jedoch ist hier das porosizierte Siliziummaterial unterhalb des Zündstreckenbereichs 208 nicht weggeätzt, sondern als thermische Isolationsschicht 204 verblieben. Weiterhin ist die Halbleiterbrücke 206 im Zündstreckenbereich 208 in mehrere, zueinander parallele Brückenstege 24 unterteilt, um bei einer großen Brückenbreite, die für eine großflächige Initiierung der oberhalb der Halbleiterbrücke 206 befindlichen Primärzündladung von Vorteil ist, den elektrochemischen Ätzprozeß zur Porosizierung der Isolationsschicht 204 über die Zwischenräume zwischen den Brückenstegen 24 problemlos, dh ohne übermäßig hohe Eintreibtiefe und damit Dicke der Isolationsschicht 206, durchführen zu können. Anstelle einer Unterteilung in parallele Brückenstege 24 kann die Halbleiterbrücke 206 auch mit einer Vielzahl von Ätzlöchern oder -schlitzen versehen sein, über die dann der Ätzprozeß zur Herstellung der thermischen Isolationsschicht 204 durchgeführt wird.
Nach Fig. 4 ist die Halbleiterbrücke 206 ferner an den Brückenstegen 24 nach Art eines mit mehreren p-n Übergängen versehenen Halbleiterelements, also etwa - wie gezeigt - als antipolar geschaltetes Diodenpaar 26, ausgebildet, welches in Sperrrichtung betrieben wird und sich bei Überschreiten der Durchbruchspannung zündimpulserzeugend erhitzt. Hierdurch wird die Störempfindlichkeit des Halbleiterzünders weiter reduziert und ein noch steilerer Zündimpuls erhalten.
Typischerweise besitzt die Halbleiterbrücke eine Wandstärke zwischen 1 und 10 µm, eine Länge zwischen 20 und 1000 µm und eine Breite zwischen 20 und 300 µm (gemäß Fig. 4 beträgt die Brückenlänge etwa 100 µm und die Brückenbreite etwa 200 µm), die Dicke der thermischen Isolationsschicht entspricht etwa der halben Brücken- bzw Stegbreite und liegt bei ca. 30 µm, die der metallischen Zündverstärkungsschicht 22 bei ca. 0,5 µm und der Halbleiterzünder hat eine Gesamthöhe von etwa 500 µm.

Claims (13)

  1. Halbleiterzünder, insbesondere für einen Gasgenerator eines Schutzsystems für Fahrzeuginsassen, mit
    einer brückenartigen Halbleiterschicht (6; 106; 206), die Endabschnitte (10, 12; 110, 112; 210, 212) und einen dazwischen liegenden Zündstreckenbereich (8; 108; 208) umfasst, wobei die Halbleiterschicht (6; 106; 206) endseitig an elektrische Kontaktbereiche angeschlossen ist, um sich beim Stromdurchgang im Zündstreckenbereich (8; 108; 208) zündauslösend zu erhitzen,
    einem Träger (2; 102; 202), auf dem die Halbleiterschicht (6; 106; 206) an den Endabschnitten (10, 12; 110, 112; 210, 212) aufgebracht und fest mit dem Träger (2; 102; 202) verbunden ist, und
    einer thermischen Isolationsschicht (4; 104; 204),
    dadurch gekennzeichnet, dass
    die thermische Isolationsschicht (4; 104; 204) grabenförmig in den Träger (2; 102; 202) eingearbeitet ist, wobei die thermische Isolationsschicht (4; 104; 204) zwischen dem Zündstreckenbereich (8; 108; 208) und dem Träger (2; 102; 202) liegt und örtlich auf den Zündstreckenbereich (8; 108; 208) begrenzt ist.
  2. Halbleiterzünder nach Anspruch 1,
    dadurch gekennzeichnet, daß
    die Halbleiterschicht (106; 206) an den Endabschnitten (110, 112; 210; 212) einstückig an den Träger (102; 202) angeformt ist.
  3. Halbleiterzünder nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß
    die thermische Isolationsschicht (4; 204) aus einem porösen, die Halbleiterschicht (6;206) im Zündstreckenbereich (8; 208) stützenden Material besteht.
  4. Halbleiterzünder nach Anspruch 3,
    dadurch gekennzeichnet, daß
    das poröse Isolationsmaterial aus porosiziertem Trägermaterial besteht.
  5. Halbleiterzünder nach Anspruch 3 oder 4,
    dadurch gekennzeichnet, daß
    das poröse Isolationsmaterial oxidiert ist.
  6. Halbleiterzünder nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die thermische Isolationsschicht aus einem aus dem Trägermaterial herausgeätzten Hohlraum (104) besteht.
  7. Halbleiterzünder nach Anspruch 6 in Verbindung mit einem der Ansprüche 3 bis 5,
    dadurch gekennzeichnet, daß
    der Hohlraum (104) durch Entfernen des porösen Isolationsmaterials gebildet ist.
  8. Halbleiterzünder nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Halbleiterschicht (6; 106; 206) im Zündstreckenbereich (8; 108; 208) von einem bei Erhitzung explosionsartig verbrennenden Zündverstärkungsmittel (22) umgeben ist.
  9. Halbleiterzünder nach Anspruch 8,
    dadurch gekennzeichnet, daß
    das Zündverstärkungsmittel (22) aus einer auf die Halbleiterschicht (106) örtlich aufgebrachten Beschichtung besteht.
  10. Halbleiterzünder nach Anspruch 8 in Verbindung mit einem der Ansprüche 3 bis 5,
    gekennzeichnet durch
    ein in das poröse Isolationsmaterial (4; 204) eingebrachtes, gasförmiges oder metallhaltiges Zündverstärkungsmittel.
  11. Halbleiterzünder nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Halbleiterschicht (206) in mehrere, zueinander parallele, gegenseitig und zum Träger (202) thermisch isolierte Brückenstege (24) unterteilt ist.
  12. Halbleiterzünder nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Halbleiterschicht (206) im Zündstreckenbereich (208) als in Sperrrichtung betriebenes, bei Überschreiten der Durchbruchspannung zündauslösend erhitztes Halbleiterelement (Diodenpaar 26) mit mindestens einem p-n Übergang ausgebildet ist.
  13. Halbleiterzünder nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    der Träger (2; 102; 202) und die Halbleiterschicht (6; 106; 206) aus unterschiedlich dotiertem Silizium bestehen.
EP99106969A 1998-04-09 1999-04-09 Halbleiterzünder Expired - Lifetime EP0949479B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19815928 1998-04-09
DE19815928A DE19815928C2 (de) 1998-04-09 1998-04-09 Halbleiterzünder mit verbesserter konstruktiver Festigkeit

Publications (2)

Publication Number Publication Date
EP0949479A1 EP0949479A1 (de) 1999-10-13
EP0949479B1 true EP0949479B1 (de) 2002-09-18

Family

ID=7864104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99106969A Expired - Lifetime EP0949479B1 (de) 1998-04-09 1999-04-09 Halbleiterzünder

Country Status (6)

Country Link
US (1) US6220164B1 (de)
EP (1) EP0949479B1 (de)
JP (1) JP2000028298A (de)
AT (1) ATE224529T1 (de)
DE (1) DE19815928C2 (de)
ES (1) ES2181330T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940341B2 (en) 2013-03-06 2021-03-09 Airbus Canada Limited Partnership Interface between fire suppressant conduit and cargo compartment of an aircraft

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222949A (zh) * 1997-05-30 1999-07-14 日立造船株式会社 破坏装置和破坏方法以及该破坏方法使用的保持构件
DE10006528C2 (de) * 2000-02-15 2001-12-06 Infineon Technologies Ag Fuseanordnung für eine Halbleitervorrichtung
WO2002057705A2 (en) * 2001-01-22 2002-07-25 Smi Technology (Pty) Limited An initiating device for an electronic detonator
FR2827377B1 (fr) * 2001-07-13 2003-12-05 Poudres & Explosifs Ste Nale Dispositif d'allumage pour microcharges pyrotechniques
DE10162413B4 (de) * 2001-12-19 2006-12-21 Robert Bosch Gmbh Integriertes Spreng- oder Zündelement und dessen Verwendung
DE10204833B4 (de) 2002-02-06 2005-11-10 Trw Airbag Systems Gmbh & Co. Kg Mikroelektronisch-Pyrotechnisches Bauteil
US7951247B2 (en) * 2002-10-01 2011-05-31 Lawrence Livermore National Security, Llc Nano-laminate-based ignitors
DE10241363A1 (de) * 2002-09-06 2004-03-18 Flexiva Automation & Anlagenbau Gmbh Pyrotechnisches Zündsystem
US7942989B2 (en) * 2002-12-10 2011-05-17 The Regents Of The University Of California Porous silicon-based explosive
JP3803636B2 (ja) 2002-12-26 2006-08-02 本田技研工業株式会社 バス接続用点火装置
WO2006058349A1 (en) * 2004-11-24 2006-06-01 The University Of Pretoria Detonator device
JP4902542B2 (ja) 2005-09-07 2012-03-21 日本化薬株式会社 半導体ブリッジ、点火具、及びガス発生器
IL210260A (en) * 2010-12-26 2015-08-31 Rafael Advanced Defense Sys A tiny system for securing a shatter chain
CN102278769A (zh) * 2011-08-12 2011-12-14 南京理工大学 孔内嵌导电含能材料的点火器件及其制法
RU2522323C1 (ru) * 2012-12-29 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Микроэлектромеханический взрыватель
RU2522362C1 (ru) * 2012-12-29 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана (МГТУ им. Н.Э. Баумана) Микроэлектромеханический взрыватель изохорический
US9500448B1 (en) * 2015-06-09 2016-11-22 Reynolds Systems, Inc. Bursting switch

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550989B2 (de) 1973-03-26 1980-12-22
US3882324A (en) * 1973-12-17 1975-05-06 Us Navy Method and apparatus for combustibly destroying microelectronic circuit board interconnections
JPS5150587A (en) * 1974-10-30 1976-05-04 Nippon Telegraph & Telephone Handotaisochino seizohoho
GB2038548B (en) 1978-10-27 1983-03-23 Nippon Telegraph & Telephone Isolating semiconductor device by porous silicon oxide
JPS592185B2 (ja) * 1980-02-04 1984-01-17 日本電信電話株式会社 半導体基体内への絶縁領域の形成法
US4484523A (en) 1983-03-28 1984-11-27 The United States Of America As Represented By The Secretary Of The Navy Detonator, solid state type I film bridge
JPH0792358B2 (ja) * 1987-09-14 1995-10-09 日本工機株式会社 電気式点火装置用点火器
US4831933A (en) * 1988-04-18 1989-05-23 Honeywell Inc. Integrated silicon bridge detonator
US4976200A (en) * 1988-12-30 1990-12-11 The United States Of America As Represented By The United States Department Of Energy Tungsten bridge for the low energy ignition of explosive and energetic materials
US5113764A (en) * 1989-09-25 1992-05-19 Olin Corporation Semiconductor bridge (SCB) packaging system
JPH0418371A (ja) * 1990-05-11 1992-01-22 Alps Electric Co Ltd サーマルヘッドおよびその製造方法
US5088413A (en) * 1990-09-24 1992-02-18 Schlumberger Technology Corporation Method and apparatus for safe transport handling arming and firing of perforating guns using a bubble activated detonator
US5080016A (en) * 1991-03-20 1992-01-14 The United States Of America As Represented By The Department Of Energy Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation
US5309841A (en) 1991-10-08 1994-05-10 Scb Technologies, Inc. Zener diode for protection of integrated circuit explosive bridge
US5285727A (en) * 1992-04-02 1994-02-15 The United States Of America As Represented By The Secretary Of The Army Semiconductor ignitor
US5327834A (en) * 1992-05-28 1994-07-12 Thiokol Corporation Integrated field-effect initiator
US5370054A (en) * 1992-10-01 1994-12-06 The United States Of America As Represented By The Secretary Of The Army Semiconductor slapper
IL109841A0 (en) * 1994-05-31 1995-03-15 Israel State Monolithic semiconductor igniter for explosives and pyrotechnic mixtures and process for its manufacture
FR2738334A1 (fr) * 1995-09-05 1997-03-07 Motorola Semiconducteurs Dispositif allumeur a semiconducteur, pour declenchement pyrotechnique, et procede de formation d'un tel dispositif
DE19702118C1 (de) * 1997-01-22 1998-03-26 Siemens Ag Zündpille

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940341B2 (en) 2013-03-06 2021-03-09 Airbus Canada Limited Partnership Interface between fire suppressant conduit and cargo compartment of an aircraft

Also Published As

Publication number Publication date
JP2000028298A (ja) 2000-01-28
DE19815928A1 (de) 1999-11-04
ATE224529T1 (de) 2002-10-15
ES2181330T3 (es) 2003-02-16
DE19815928C2 (de) 2000-05-11
EP0949479A1 (de) 1999-10-13
US6220164B1 (en) 2001-04-24

Similar Documents

Publication Publication Date Title
EP0949479B1 (de) Halbleiterzünder
DE19854269B4 (de) Dünnschichtsolarzellenanordnung sowie Verfahren zur Herstellung derselben
DE2159530B2 (de) Verfahren zum Herstellen einer Halbleiteranordnung
DE2633324C2 (de) Verfahren zum Herstellen von Halbleiterbauelementen hoher Sperrspannungsbelastbarkeit
WO1997041583A1 (de) Pyrotechnisches sicherungselement für stromkreise
EP0680064A2 (de) Mikromechanisches Bauteil mit einem Schaltelement als beweglicher Struktur, Mikrosystem und Herstellverfahren
DE19934560B4 (de) Photovoltaikmodul mit integriert serienverschalteten Zellen und Herstellungsverfahren hierfür
EP0135704B1 (de) Widerstandsheizelement
EP0914587A1 (de) Dünnschichtanzündelement für pyrotechnische wirkmassen und verfahren zu dessen herstellung
WO2001024274A1 (de) Thyristor mit spannungsstossbelastbarkeit in der freiwerdezeit
DE19732380B4 (de) Anzündelement für pyrotechnische Wirkmassen mit einer Dämmschicht
WO1999009597A1 (de) Hochspannungsbauelement und verfahren zu seiner herstellung
DE1464880A1 (de) Elektronische Schaltanordnung unter Verwendung von sperrschichtfreien Halbleiter-Schaltelementen
EP1042809B1 (de) Integrierte schaltungsanordnung sowie verwendung einer solchen schaltungsanordnung
DE2903426C2 (de) Elektromagnetische Lichtbogenlöscheinrichtung
EP1282145A1 (de) Verfahren und Vorrichtung zum selbstgezündeten pyrotechnischen Kurzschliessen
DE102019209477B4 (de) Blitzschutz-Funkenstrecke
DE2751485A1 (de) Verfahren zum herstellen von halbleiterkoerpern mit definiertem, durch aetzen erzielten und mit einem glas abgedeckten randprofil
DE102013226026A1 (de) Vorrichtung und Verfahren zum Trennen einer elektrischen Verbindung zwischen einem ersten Leiter und einem zweiten Leiter
DE2241217C3 (de) Thyristor mit erhöhter Ein- und Durchschaltgeschwindigkeit
DE10244316A1 (de) Pyrotechnischer Schalter
WO2004030107A1 (de) Halbeleiterdiode und verfahren zur ihrer herstellung
DE2237086A1 (de) Steuerbares halbleitergleichrichterelement
DE19931082B4 (de) Abgleichbares Halbleiterbauelement
WO1986003340A1 (en) Semiconductor device provided with a metal layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991218

17Q First examination report despatched

Effective date: 20000306

AKX Designation fees paid

Free format text: AT ES FR GB IT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRW AIRBAG SYSTEMS GMBH & CO. KG

Owner name: EADS DEUTSCHLAND GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT ES FR GB IT SE

REF Corresponds to:

Ref document number: 224529

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2181330

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040312

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040402

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040422

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050314

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050409

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050411

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060403

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060409

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050411

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430