EP0943710B1 - Flammhemmendes elektrisch leitendes Gewebe - Google Patents

Flammhemmendes elektrisch leitendes Gewebe Download PDF

Info

Publication number
EP0943710B1
EP0943710B1 EP99104698A EP99104698A EP0943710B1 EP 0943710 B1 EP0943710 B1 EP 0943710B1 EP 99104698 A EP99104698 A EP 99104698A EP 99104698 A EP99104698 A EP 99104698A EP 0943710 B1 EP0943710 B1 EP 0943710B1
Authority
EP
European Patent Office
Prior art keywords
fabric
electrically conductive
conductive threads
threads
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99104698A
Other languages
English (en)
French (fr)
Other versions
EP0943710A2 (de
EP0943710A3 (de
Inventor
Egon Wurr
Siegfried Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurea Verpackungs GmbH and Co KG
Original Assignee
Eurea Verpackungs GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19826120A external-priority patent/DE19826120C2/de
Application filed by Eurea Verpackungs GmbH and Co KG filed Critical Eurea Verpackungs GmbH and Co KG
Publication of EP0943710A2 publication Critical patent/EP0943710A2/de
Publication of EP0943710A3 publication Critical patent/EP0943710A3/de
Application granted granted Critical
Publication of EP0943710B1 publication Critical patent/EP0943710B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/22Safety features
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/16Large containers flexible
    • B65D88/1612Flexible intermediate bulk containers [FIBC]
    • B65D88/165Flexible intermediate bulk containers [FIBC] with electrically conductive properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/43Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with differing diameters
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the invention relates to an electrically conductive fabric made of plastic fibers, plastic tapes or plastic threads for the production of high-strength packaging or lining sheets, which has electrically non-conductive and electrically conductive threads, as well as bulk material containers and liners made of this fabric, especially for shafts in civil engineering and mining.
  • a drawback of these fabrics is that a fabric having a reduced strength and ductility results because it contains yarns in which the carbon black is dispersed throughout the fiber when the carbon black is contained in the fiber in such an amount that a sufficient electrical conductivity is achieved. It should be noted that a sufficient electrical conductivity can not be achieved if the amount of soot contained in the fiber is too small. Also, flame retardant properties of the fabric are not disclosed.
  • a fabric of this type is well suited to the severe mechanical stresses involved in using the fabric for a flexible bulk material container or for a mining liner, and the electroconductive filaments woven in provide safe dissipation of electrostatic charge. It is advantageous that the modulus of elasticity of the electrically conductive threads is smaller than that of the remaining thread material weaved in warp and weft. This prevents that the electrically conductive threads of the fabric break at a lower load, as the threads of the non-conductive base fabric, whereby interruptions in the conductive grid are avoided.
  • the disadvantage is that the electrically conductive thread is highly flammable due to its high carbon content and not extinguished even in the vicinity of heavy combustible, non-electrically conductive threads of the base fabric, but pulls with destruction of the adjacent areas like a burning wick through the tissue.
  • plastics technology it is well known (see SAECHTLING: Plastic Paperback, p 58, 25th edition, Carl Hanser Verlag 1992), plastics with flame-retardant additives to put, which suffocate a flame that they - in the case of chlorine - or bromine-containing organic compounds - impede the access of oxygen to the ground substance when exposed to flame or - for example, in aluminum hydroxide - split off at high temperatures water and / or carbon dioxide.
  • a disadvantage is that additional filling of a filled with conductive carbon black or graphite plastic with a flame retardant additive greatly reduces the strength of the yarn made of such a plastic and makes it unsuitable for use in tissues for the production of high-strength packaging or linings.
  • a bulk material container which is made of a fabric in which metal threads are incorporated, can be derived via the electrostatic charges of the fabric.
  • the invention has for its object to further develop a tissue of the type mentioned, which is electrically conductive and at the same time flame retardant and thus can be used in explosive and fire-prone areas. Also, the fabric should be suitable for the production of high-strength packaging and linings.
  • the object is achieved by the metamorphosis combination of claim 1.
  • flame-retardant is meant the fire behavior of a tissue, in which, upon exposure to a flame, the inflammation of the tissue is prevented or delayed and in which the flame extinguishes spontaneously after ignition within a short period of time.
  • electrically conductive here a fabric is referred to, according to DIN 53482 measured surface resistance and Erdableitwiderstand is at least smaller than the volume resistance of the air, that is less than 10 8 ⁇ , so that a discharge of electrostatic electricity is possible.
  • threads are meant here all spun or extruded plastic fibers, plastic tapes cut from films or other plastic threads which can be processed by weaving technique.
  • the "shrinkage" of plastics is defined as the absolute change in length difference caused by relaxation or retardation processes, based on the initial length.
  • a fabric according to the present invention flame retardant properties, although the electrically conductive threads are made of combustible plastics and contain no flame retardant additives or the additives are contained at most in a small amount with which only a flame extinction is not achievable.
  • the electrically conductive threads of the fabric according to the invention are able to safely dissipate an electrostatic charge against a ground conductor via the applied metal layer or the metal particles contained therein.
  • the plastic melts in the flamed area. While the additives in the non-conductive filaments prevent ignition or cause rapid quenching, inflammation of the electrically conductive filaments is thereby prevented. that these contract strongly under the action of heat and thus avoid prolonged exposure to the flame by shrinking. Even the heat input from adjacent areas of non-conductive, almost incombustible threads leads to a rapid shrinkage of the electrically conductive threads, so that they can escape the vulnerable area even before an immediate flame exposure. The shrinking happens extremely fast.
  • At least the electrically conductive threads are shrinkable under heat. If such threads are woven into a non-shrinkable base fabric, this thread contracts when exposed to flame and as far out of the fabric as the influence of the heat introduced by the flame extends. Outside the heat-affected zone, the thread retains its mechanical and electrical properties.
  • the invention provides that the shrinkage of the electrically conductive threads in each case is greater than the shrinkage of the electrically non-conductive threads. It is therefore also possible that a likewise heat-shrinkable thread is selected for the non-conductive base fabric. Thus, the entire tissue also escapes by shrinking a flame exposure. By the relative to the shrinkage of the background fabric higher degree of shrinkage of the conductive threads ensures that the latter can escape quickly from the flame.
  • the electrically non-conductive threads in an advantageous embodiment consist of a polypropylene, which with a flame-retardant halogen-containing additive is filled and / or coated. This material is inexpensive and is therefore particularly suitable for the production of large-area fabric webs.
  • the electrically conductive threads may be made of a plastic in which the conductivity is increased via a filling with particles of metals or metal compounds or with carbonaceous particles such as carbon black or graphite. Such a filling can be effected inexpensively by adding the conductivity-increasing particles to the plastic raw material.
  • polyaniline is well suited as a conductive plastic.
  • the conductive plastic can be added as an additive to the thread material or the thread can be made entirely of a conductive plastic.
  • the conductive threads can be vaporized with silver.
  • the good electrical conductivity and the good adhesion properties of silver on the plastic enable an electrostatic conduction over the outside of the thread with a small layer thickness.
  • the vaporization of the outside of the thread can also be applied to a thread that is already equipped or filled with conductive additives, whereby the conductivity is further improved.
  • An inexpensive embodiment provides for steaming a monofilament, for example an extruded polyamide thread, with metal or providing it with conductive particles.
  • the flexibility of the thread is increased in another embodiment in which the electrically conductive threads are multifilaments.
  • Such a thread may consist of several fibers, of which at least one fiber is filled and / or coated with conductive particles. Equally thick fibers may be twisted together, it being also conceivable to arrange a thicker, conductive fiber around the core as a sheathing of thinner fibers with which the tear strength is increased.
  • the electrically conductive threads are made of a polyester, preferably of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • a significant advantage of the invention in terms of electrical properties is that the electrically conductive threads can be woven into warp and / or weft. If electrically conductive are woven in both the warp and the weft threads, a FARADAY cage is created in the production of bodily structures of the fabric according to the invention. Electrostatic charges can thus be derived in two dimensions and increase the safety when using the fabric in an endangered atmosphere. A load on the fabric can be due to similar strength values of electrically conductive and non-conductive threads in any direction, without causing the crack of the conductive threads.
  • the cross section of the electrically non-conductive threads is 2 times to 10 times the cross section of the electrically conductive threads.
  • the shrinking, electrically conductive fiber is not so in the Ground tissue blocks and can escape unhindered from the inflamed area.
  • every tenth to eightieth warp thread is an electrically conductive thread, whereby a balanced combination is achieved from the viewpoint of the manufacturing cost, the optical appearance of the fabric and the electrostatic properties.
  • the area of the non-conductive fabric between each two warp and weft threads enclosing a rectangle is at most 100 cm 2 . It has proved to be advantageous for both the electrical properties as well as for the production and the mechanical strength of the fabric, if the distance of the electrically conductive threads to each other in the warp direction (3) 1 to 5 cm, preferably 2.5 cm, and in Weft direction 10 cm to 60 cm, preferably 40 cm.
  • the fabric advantageously has a breaking strength of 50 N / mm 2 to 250 N / mm 2 at an elongation at break of 10% to 50%.
  • the modulus of elasticity of the electrically conductive threads is smaller than that of the non-conductive threads. This prevents that the electrically conductive threads of the fabric break at a lower load than the threads of the non-conductive base fabric. Interruptions in the conductive grid are thus avoided in any case.
  • a portion of a fabric 100 produced according to the invention is shown.
  • Both warp threads 3 and weft threads 4 are tapes made of a thermoplastic material. Such tapes are obtained in a simple manner that a film is made of a plastic, which is then cut by knives in the web direction in strips. Since standard plastics, in particular polypropylene, are suitable and the ribbons in comparison to textile yarns have a large width of about 0.5 to 5 mm, cost-effective large-area fabric can be produced.
  • electrically conductive threads 2.1, 2.2 are woven, which are drawn here for clarity better schematically as a double line; in a preferred embodiment, the electrically conductive threads have a smaller cross section than the threads of the base fabric.
  • the conductive threads 2.1, 2.2 are woven in both warp and weft, so that a discharge of electrostatic electricity in all directions of the surface can take place.
  • the electrically conductive threads 2.1, 2.2 of the preferred embodiment are twines textured from a plurality of polyester fibers, of which at least one fiber, preferably 4 to 6 fibers, is vapor-deposited with silver.
  • the electrically conductive threads 2.1, 2.2 are monoaxially stretched. The draw is effected at 4 to 10 times the original length, with a stretch ratio of 5: 1 to 6: 1 favorable for most types of plastics.
  • the stretching is carried out after heating the plastic to a temperature above the glass transition temperature of an amorphous thermoplastic or above the crystallite melting temperature of a semi-crystalline thermoplastic and is maintained during cooling. The plastic molecules are aligned by the stretching.
  • the lower region of the tissue 100 in FIG. 1 represents the tissue changes after an attempt to determine the fire behavior.
  • the test criteria were selected in accordance with DIN / EN / ISO 6941 "Measurement of the flame propagation property of vertically arranged samples", whereby an assessment in accordance with DIN 66083 can be carried out is.
  • thermoplastic warp and weft threads (3, 4) melt due to the great heat and form a crumb 7 of plastic melt. Since they are provided with flame-retardant additives, the flamed filaments 3, 4 extinguish about one to two seconds after removal of the burner flame.
  • the electrically conductive threads 2.1, 2.2 are greatly shrunk in the heat affected zone.
  • the heat supplied by the burner flame and adjacent melting ribbons made the molecular chains of the silver-vaporized polyester yarn mobile and the imposed state of stretching was degraded.
  • the relative shrinkage of the conductive threads 2.1, 2.2 causes a relative movement causing the conductive threads to pull away from the point of danger and out of the ground fabric.
  • the result is, by the shrinkage, for example, the conductive thread 2.1, a gap 8.1 in the fabric 100, in which a single warp thread is missing.
  • the weft threads 4 are all present in the region 8.1 of the gap, so that the strength of the fabric is not significantly reduced.
  • the flame does not propagate further in the tissue and the damage in the tissue is limited to the area 6 of the immediate action of flame, in particular, both the mechanical and the electrostatic properties of the tissue remain outside the directly flamed area.
  • the fabric 100 according to the invention is flame retardant, although the electrically conductive thread 2.1, 2.2 is not filled with a content of additives which alone could cause the extinction of a flame, as in the warp and weft threads 3, 4 is the case.
  • the fire behavior test is repeated on a sample of fabric 200 known in the art.
  • the fabric 200 consists of the same warp yarns 3 and wefts 4 used in the fabric 100;
  • the plastic of the threads also contains flame retardant additives.
  • the electrically conductive threads 2.1 ', 2.2' are monofilaments, which have a high proportion of carbon black, whereby a good conductivity is ensured. Flame retardant additives are not immiscible because the strength of the threads would be significantly reduced.
  • the sample is flamed in region 6 'in the same experimental setup as in the previously described example. Due to the high carbon content, rapid ignition and wicking of the electrically conductive filaments 2.1 ', 2.2' was observed. The flame pulled along the lattice-like woven threads 2.1 ', 2.2' through the fabric 200, whereby the threads 3, 4 of the background fabric were destroyed despite the contained flame retardant additives. The attempt had to be stopped at the degree of destruction of the fabric 200 shown in Fig. 2, since the flame did not extinguish by itself.
  • the electrically conductive fabric 100 With the detection of flame retardant properties of the electrically conductive fabric 100 according to the invention, it is suitable for applications in potentially explosive and / or fire-prone environments, such as those typically found in solvent processing plants and in the mining industry due to coal dust and methane gas in the air.
  • FIG. 3 shows a flexible bulk goods container 10 produced from the fabric 100, which consists of a carrying bag 15 with carrying strap designed as transport loops 17, 17 '.
  • the carrying bag 15 In its lid region 14, the carrying bag 15 has a filler neck 18 and in its bottom region 11 an outlet nozzle 19.
  • the carrier bag 5 is made of the high-strength, electrically conductive and flame-retardant synthetic fiber fabric 100.
  • a compaction of the lattice network 12 of electrically conductive threads 2.1, 2.2 can be provided to optimize the discharge behavior.
  • the material for the carrying loops 17, 17 'to ensure the discharge conductive Material incorporated.
  • Important for safety is the seamless grounding during filling and emptying, so that possible electrostatic charges are dissipated.
  • Fig. 4 shows a cross section through a shaft 30 underground.
  • the overburden 31 In horizontally advanced tunnels and shafts of large cross-section, especially when these are intended for the transport of persons and / or material, the overburden 31 must be supported.
  • this carrier 33 are pressed with hydraulic punches 32 against the mountains 31.
  • large-area lining sheets or mats are pressed with the beams 33.
  • These can be wire mesh, but they are heavy and require a lot of transport capacity.
  • a fabric web 100 according to the invention for lining the shaft 30 is a much lighter and easy to cut material available. Since the fabric 100 is high strength, it does not tear even when pressed against outstanding rocks 34.
  • About the woven mesh of electrically conductive threads 2.1, 2.2 electrostatic charges can be discharged to the earth. A possible spread of fire along the liner web is inhibited by the flame retardant properties of the fabric 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Woven Fabrics (AREA)
  • Wrappers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Conductive Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

  • Die Erfindung betrifft ein elektrisch leitendes Gewebe aus Kunststoffasern, Kunststoffbändchen oder Kunststoffäden zur Herstellung von hochfesten Verpackungen oder Auskleidungsbahnen, welches elektrisch nicht leitende und elektrisch leitende Fäden aufweist, sowie aus diesem Gewebe hergestellte Schüttgutbehälter und Auskleidungen, insbesondere für Schächte im Tief- und Bergbau.
  • Bei Kunststoffgeweben werden im Gebrauch in trockener Umgebung elektrostatische Ladungen, insbesondere durch Reibung, erzeugt, die sich bei Kontakt mit geerdeten Gegenständen und/oder Personen schlagartig entladen können. Die hohe Energie des überspringenden Lichtbogens kann zur Zündung explosiver Luft-/Gas- oder Luft-/Staub-Gemische führen. In einer entsprechenden Umgebung besteht zudem eine erhöhte Brandgefahr.
  • Es sind aus der DE-AS 19 28 330 Gewebe bekannt, die zur Vermeidung einer elektrostatischen Aufladung aus zwei verschiedenen Fasermaterialien bestehen, von denen das eine Fasermaterial von einem durch die gesamte Faser dispergierten, elektrisch leitenden Ruß durchsetzt und das andere Fasermaterial frei von Ruß ist.
  • Als Nachteil dieser Gewebe wird angegeben, daß sich ein Gewebe mit einer verminderten Festigkeit und Dehnbarkeit ergibt, weil es Fäden enthält, bei denen der Ruß durch die gesamte Faser hindurch dispergiert ist, wenn der Ruß in einer solchen Menge in der Faser enthalten ist, daß eine ausreichende elektrische Leitfähigkeit erreicht wird. Es wird darauf hingewiesen, daß sich eine ausreichende elektrische Leitfähigkeit nicht erreichen läßt, wenn die in der Faser enthaltene Rußmenge zu gering ist. Auch sind flammhemmende Eigenschaften des Gewebes nicht offenbart.
  • In der Patentschrift DE 39 38 414 C2 der Anmelderin ist ein Schüttgutbehälter aus einem elektrisch leitenden Gewebe offenbart, das aus Kunstfasern oder Kunststoffäden besteht und elektrisch nicht leitende und elektrisch leitende Fäden aufweist, wobei die elektrisch leitenden Fäden aus einem Polyolefin bestehen und eindispergierten Ruß und/oder Graphit enthalten und sowohl in der Kette als auch im Schuß eingewebt sind.
  • Ein Gewebe dieser Art ist für die starken mechanischen Beanspruchungen, wie sie bei der Verwendung des Gewebes für einen flexiblen Schüttgutbehälter oder für eine Auskleidungsbahn im Bergbau auftreten, gut geeignet und durch die eingewebten elektrisch leitenden Fäden wird eine sichere Ableitung von elektrostatischer Ladung erreicht. Vorteilhaft ist, daß der Elastizitätsmodul der elektrisch leitenden Fäden kleiner ist als der des übrigen in Kette und Schuß verwebten Fadenmaterials. Hierdurch wird verhindert, daß die elektrisch leitenden Fäden des Gewebes bei einer geringeren Belastung brechen, als die Fäden des nicht leitenden Grundgewebes, wodurch Unterbrechungen im leitfähigen Gitter vermieden werden.
  • Nachteilig ist, daß der elektrisch leitende Faden aufgrund seines hohen Kohlenstoffgehalts in starkem Maße brennbar ist und auch in der Umgebung von schwerer brennbaren, nicht elektrisch leitenden Fäden des Grundgewebes nicht verlöscht, sondern sich unter Zerstörung der benachbarten Bereiche wie ein brennender Docht durch das Gewebe zieht.
  • In der Kunststofftechnik ist es allgemein bekannt (vgl. SAECHTLING: Kunststoff-Taschenbuch, S. 58, 25. Auflage, Carl Hanser Verlag 1992), Kunststoffe mit flammhemmenden Additiven zu versetzen, welche eine Flamme dadurch ersticken, daß sie - im Falle der chlor- oder bromhaltigen organische Verbindungen - bei Flammeinwirkung den Sauerstoffzutritt zu der Grundsubstanz erschweren oder - beispielsweise bei Aluminiumhydroxid - bei hohen Temperaturen Wasser und/oder Kohlendioxid abspalten.
  • Nachteilig ist, daß eine zusätzliche Füllung eines mit leitfähigem Ruß- oder Graphit gefüllten Kunststoffs mit einem flammhemmenden Zusatzstoff die Festigkeitswerte des aus einem solchen Kunststoff hergestellten Fadens stark herabsetzt und diesen zur Verwendung in Geweben zur Herstellung hochfester Verpackungen oder Auskleidungen ungeeignet macht.
  • Weiterhin ist aus der GB 21 01 559 A1 ein Schüttgutbehälter bekannt, der aus einem Gewebe hergestellt ist, in das Metallfäden eingearbeitet sind, über die elektrostatische Aufladungen des Gewebes abgeleitet werden können.
  • Nachteilig bei dieser Lösung ist es allerdings, daß diese aus Vollmetall gezogenen Fäden nur als Kettfäden in das Gewebe eingearbeitet werden, was die Ableitfähigkeit insgesamt beeinträchtigt. Vor allem ist das Dehnungsverhalten der Metallfasern oder -fäden sehr abweichend von dem Dehnungsverhalten des übrigen Gewebes. Dies führt leicht zum Bruch der Metallfäden und damit zu einer Unterbrechung der Ableitung. Durch solche Unterbrechungspunkte wird im Falle der statischen Aufladung die Gefahr der Funkenbildung und Explosion stark erhöht. Auch sind keinerlei Eigenschaften des Grundgewebes offenbart, die es für einen Einsatz in brandgefährdeten Bereichen geeignet erscheinen lassen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Gewebe der eingangs genannten Art weiterzuentwickeln, das elektrisch leitend und zugleich flammhemmend ist und somit in explosions-und brandgefährdeten Bereichen einsetzbar ist. Auch soll das Gewebe zur Herstellung hochfester Verpackungen und Auskleidungen geeignet sein.
  • Erfindungsgemäß wird die Aufgabe durch die Metkmalskombination des Anspruchs 1 gelöst.
  • Mit "flammhemmend" wird hier das Brandverhalten eines Gewebes bezeichnet, bei dem bei Einwirkung einer Flamme die Entzündung des Gewebes verhindert oder verzögert wird und bei dem nach erfolgter Entzündung innerhalb einer kurzen Zeitspanne die Flamme von selbst verlöscht.
  • Als "elektrisch leitend" wird hier ein Gewebe bezeichnet, dessen nach DIN 53482 gemessener Oberflächenwiderstand und Erdableitwiderstand zumindest kleiner als der Durchgangswiderstand der Luft, also kleiner als 108 Ω ist, so daß eine Ableitung elektrostatischer Elektrizität ermöglicht ist.
  • Unter "Fäden" sollen hier alle gesponnenen oder extrudierten Kunststoffasern, aus Folien geschnittene Kunststoffbändchen oder sonstige Kunststoffäden verstanden werden, die webtechnisch verarbeitbar sind.
  • Der "Schrumpf" von Kunststoffen ist definiert als die durch Relaxations- oder Retardationsvorgänge bewirkte absolute Längenänderungsdifferenz, bezogen auf die Ausgangslänge.
  • Überraschenderweise weist ein Gewebe gemäß der vorliegenden Erfindung flammhemmende Eigenschaften auf, obwohl die elektrisch leitenden Fäden aus brennbaren Kunststoffen hergestellt sind und keine flammhemmenden Zusatzstoffe enthalten oder die Zusatzstoffe allenfalls in einer geringen Menge enthalten sind, mit der allein ein Verlöschen einer Flamme nicht erreichbar ist.
  • Die elektrisch leitenden Fäden des erfindungsgemäßen Gewebes vermögen über die aufgebrachte Metallschicht oder die enthaltenen Metallpartikel eine elektrostatische Aufladung sicher gegen einen Erdleiter abzuleiten.
  • Bei der Einwirkung einer Flamme auf das erfindungsgemäße Gewebe schmilzt der Kunststoff im beflammten Bereich. Während die Zusatzstoffe in den nicht leitenden Fäden ein Entzünden verhindern oder ein schnelles Verlöschen bewirken, wird die Entzündung der elektrisch leitenden Fäden dadurch verhindert, daß diese sich unter Wärmeeinwirkung stark zusammenziehen und sich damit einer längeren Einwirkung der Flamme durch Schrumpfen entziehen. Schon die Wärmeeinleitung aus benachbarten Bereichen nicht leitender, nahezu unbrennbarer Fäden führt zu einem schnellen Schrumpfen der elektrisch leitenden Fäden, so daß sich diese bereits vor einer unmittelbaren Flammeneinwirkung dem gefährdeten Bereich entziehen können. Das Schrumpfen geschieht außerordentlich rasch.
  • Um diesen Effekt zu erzielen, sind nach der Erfindung wenigstens die elektrisch leitenden Fäden unter Wärmeeinwirkung schrumpfbar. Werden solche Fäden in einem nicht schrumpfbaren Grundgewebe eingewebt, zieht sich dieser Faden bei Flammeneinwirkung zusammen und soweit aus dem Gewebe heraus, wie der Einfluß der durch die Flamme eingebrachten Wärme reicht. Außerhalb der Wärmeeinflußzone behält der Faden seine mechanischen und elektrischen Eigenschaften.
  • Die Erfindung sieht vor, daß der Schrumpf der elektrisch leitenden Fäden in jedem Fall größer ist als der Schrumpf der elektrisch nicht leitenden Fäden. Möglich ist daher auch, daß für das nicht leitende Grundgewebe ein ebenfalls wärmeschrumpfbarer Faden gewählt ist. Somit entzieht sich auch das Gesamtgewebe durch Schrumpfen einer Flammeneinwirkung. Durch den relativ zum Schrumpf des Grundgewebes höheren Schrumpfungsgrad der leitende Fäden ist sichergestellt, daß letztere sich rasch der Flammeinwirkung entziehen können.
  • Gute Ergebnisse bei der Brennbarkeitsprüfung werden erzielt, wenn der Schrumpf der elektrisch leitenden Fäden das 1,2 bis 4fache, vorzugsweise das 2fache, des Schrumpfs der elektrisch nicht leitenden Fäden beträgt.
  • Die elektrisch nicht leitenden Fäden bei einer vorteilhaften Ausführungsform bestehen aus einem Polypropylen, das mit einem flammhemmenden halogenhaltigen Additiv gefüllt und/oder beschichtet ist. Dieses Material ist kostengünstig und eignet sich daher besonders für die Fertigung großflächiger Gewebebahnen.
  • Die elektrisch leitenden Fäden können aus einem Kunststoff hergestellt sein, bei dem über eine Füllung mit Partikeln von Metallen oder Metallverbindungen oder mit kohlenstoffhaltigen Partikeln wie Ruß oder Graphit die Leitfähigkeit erhöht ist. Eine solche Füllung kann kostengünstig durch Zumischung der leitfähigkeitserhöhenden Partikel zum Kunststoff-Rohstoff bewirkt werden.
  • Es ist aber auch möglich, einen bereits an sich elektrisch leitfähigen Kunststoff zur Fadenherstellung zu verwenden, wodurch ein homogener Faden erhalten wird. Für die vorliegende Erfindung ist Polyanilin als leitfähiger Kunststoff gut geeignet. Der leitfähige Kunststoff kann als Zusatz dem Fadenwerkstoff zugegeben werden oder der Faden kann vollständig aus einem leitfähigen Kunststoff bestehen.
  • Die leitenden Fäden können mit Silber bedampft sein. Die gute elektrische Leitfähigkeit und die guten Haftungseigenschaften von Silber an dem Kunststoff ermöglichen eine elektrostatische Leitung über die Fadenaußenseite bei einer geringen Schichtdicke. Die Bedampfung der Fadenaußenseite kann auch bei einem Faden angewandt werden, der bereits mit leitfähigserhöhenden Zusätzen ausgerüstet oder gefüllt ist, wodurch die Leitfähigkeit weiter verbessert wird.
  • Eine kostengünstige Ausbildungsform sieht vor, ein Monofilament, beispielsweise einen extrudierten Polyamidfaden, mit Metall zu bedampfen oder mit leitfähigen Partikeln auszurüsten.
  • Die Flexibilität des Fadens ist erhöht bei einer weiteren Ausführungsform, bei der die elektrisch leitenden Fäden Multifilamente sind. Ein solcher Zwirn kann aus mehreren Fasern bestehen, von denen wenigstens eine Faser mit leitfähigen Partikeln gefüllt und/oder beschichtet ist. Es können gleich dicke Fasern miteinander verdrillt sein, wobei auch denkbar ist, um eine dickere, leitende Faser herum als Kern eine Ummantelung aus dünneren Fasern anzuordnen, mit denen die Reißfestigkeit erhöht ist.
  • Um auch hohe Kräften aufnehmen und die elektrostatische Ableitung dabei sicherstellen zu können, sind die elektrisch leitenden Fäden aus einem Polyester, vorzugsweise aus Polyethylenterephtalat (PET), hergestellt.
  • Ein wesentlicher Vorteil der Erfindung hinsichtlich der elektrischen Eigenschaften ist es, daß die elektrisch leitenden Fäden in Kette und/oder in Schuß eingewebt sein können. Wenn sowohl bei den Kett- als auch den Schußfäden elektrisch leitende eingewebt sind, wird bei der Herstellung körperhafter Gebilde aus dem erfindungsgemäßen Gewebe ein FARADAY-Käfig geschaffen. Elektrostatische Ladungen können somit zweidimensional abgeleitet werden und erhöhen die Sicherheit bei Verwendung des Gewebes in gefährdeter Atmosphäre. Eine Belastung des Gewebes kann dabei aufgrund gleichartiger Festigkeitswerte von elektrisch leitenden und nicht leitenden Fäden in beliebige Richtung erfolgen, ohne daß es zum Riß der leitenden Fäden kommt.
  • Um das Entziehen des schrumpfenden Fadens bei Flammeinwirkung zu verbessern, ist es vorteilhaft, daß der Querschnitt der elektrisch nicht leitenden Fäden das 2fache bis 10fache des Querschnitts der elektrisch leitenden Fäden beträgt. Die schrumpfende, elektrisch leitende Faser wird so nicht im Grundgewebe blockiert und kann sich ungehindert dem beflammten Bereich entziehen.
  • Bei einer weiteren Ausführungsform der Erfindung ist jeder zehnte bis achtzigste Kett- bzw. Schußfaden ein elektrisch leitender Faden ist, wodurch unter dem Gesichtspunkt der Herstellungskosten, der optischen Erscheinung des Gewebes und der elektrostatischen Eigenschaften eine ausgewogene Kombination erreicht ist.
  • Um eine Bildung von "Inseln" von elektrostatisch isolierenden Gewebeabschnitten inmitten des Gitters aus elektrisch leitenden Fäden zu vermeiden, beträgt die Fläche des nichtleitenden Gewebes zwischen jeweils zwei, ein Rechteck einschließenden Kett- und Schußfäden höchstens 100 cm2. Es hat sich als vorteilhaft sowohl für die elektrischen Eigenschaften als auch für die Fertigung und die mechanische Belastbarkeit des Gewebes erweisen, wenn der Abstand der elektrisch leitenden Fäden zueinander in Kettrichtung (3) 1 bis 5 cm, vorzugsweise 2,5 cm, beträgt und in Schußrichtung 10 cm bis 60 cm, vorzugsweise 40 cm, beträgt.
  • Umgebungseinflüsse wie die Luftfeuchtigkeit können den erforderlichen Oberflächenwiderstand und den Erdableitwiderstand, bei welchen eine Ladungsableitung erreicht wird, beeinflussen. Die Widerstände sollten so klein wie möglich sein, um in jedem Fall eine sichere Ableitung elektrostatischer Ladungen zu bewirken. Es ist daher ein wesentlicher Vorteil der Erfindung, daß bei der Erfindung aufgrund der guten Leitfähigkeit der elektrisch leitenden Fäden und der geeigneten Anordnung der Fäden im Gewebe ein Oberflächenwiderstand und ein Erdableitwiderstand (nach DIN 53 482) von kleiner als 104 Ω - bei gleichzeitigen flammhemmenden Eigenschaften des Gewebes und guten mechanischen Festigkeitswerten - erzielbar ist.
  • Um zur Herstellung hochfester Verpackungen oder Auskleidungsbahnen geeignet zu sein, hat das Gewebe vorteilhafterweise eine Bruchfestigkeit von 50 N/mm2 bis 250 N/mm2 bei einer Bruchdehnung von 10% bis 50%.
  • Vorteilhaft ist, daß der Elastizitätsmodul der elektrisch leitenden Fäden kleiner ist als der der nicht leitenden Fäden. Hierdurch wird verhindert, daß die elektrisch leitenden Fäden des Gewebes bei einer geringeren Belastung brechen als die Fäden des nicht leitenden Grundgewebes. Unterbrechungen im leitfähigen Gitter werden also in jedem Fall vermieden.
  • Die Erfindung wird anhand eines Beispiels näher erläutert, das in der Zeichnung dargestellt ist. Die Figuren zeigen im einzelnen:
  • Fig. 1
    ein erfindungsgemäßes Gewebe nach einem Beflammungsversuch in Draufsicht,
    Fig. 2
    ein Gewebe gemäß dem Stand der Technik nach einem Beflammungsversuch als Vergleichsbeispiel in Draufsicht,
    Fig. 3
    einen aus dem Gewebe gemäß der Erfindung hergestellten Schüttgutbehälter in perspektivischer Ansicht, und
    Fig. 4
    einen mit dem erfindungsgemäßen Gewebe ausgekleideten Schacht im Untertage-Bergbau in schematischer Schnittdarstellung.
  • In Fig. 1 ist ein Abschnitt eines nach der Erfindung hergestellten Gewebes 100 dargestellt. Sowohl Kettfäden 3 als auch Schußfäden 4 sind Bändchen aus einem thermoplastischen Kunststoff. Solche Bändchen werden auf einfache Weise dadurch erhalten, daß eine Folie aus einem Kunststoff hergestellt wird, die anschließend durch Messer in Bahnrichtung in Bändchen geschnitten wird. Da auch Standardkunststoffe, insbesondere Polypropylen, geeignet sind und die Bändchen im Vergleich zu textilen Garnen eine große Breite von ca. 0,5 bis 5 mm haben, können kostengünstig großflächige Gewebe hergestellt werden. In das Gewebe 100 sind elektrisch leitende Fäden 2.1, 2.2 eingewebt, die hier zur besseren Darstellung schematisch als Doppellinie gezeichnet sind; bei einer bevorzugten Ausführungsform haben die elektrisch leitenden Fäden einen kleineren Querschnitt als die Fäden des Grundgewebes. Die leitenden Fäden 2.1, 2.2 sind sowohl in Kette, als auch in Schuß eingewebt, so daß eine Ableitung von elektrostatischer Elektrizität in allen Richtungen der Fläche erfolgen kann.
  • Die elektrisch leitenden Fäden 2.1, 2.2 der bevorzugten Ausführungsform sind Zwirne, die aus mehreren Polyesterfasern texturiert sind, von denen wenigstens eine Faser, vorzugsweise 4 bis 6 Fasern, mit Silber bedampft ist. Die elektrisch leitenden Fäden 2.1, 2.2 sind monoaxial verstreckt. Die Verstreckung wird auf das 4 bis 10fache der Ausgangslänge bewirkt, wobei ein Streckungsverhältnis von 5 : 1 bis 6 : 1 für die meisten Kunststoffsorten günstig ist. Die Verstreckung wird nach Erwärmung des Kunststoffs auf eine Temperatur oberhalb der Glasübergangstemperatur eines amorphen Thermoplasten bzw. oberhalb der Kristallitschmelztemperatur eines teilkristallinen Thermoplasten durchgeführt und wird während der Abkühlung aufrechterhalten. Die Kunststoffmoleküle werden durch die Verstreckung ausgerichtet. Die durch das Abkühlen eingefrorene Konfiguration von in Verstreckungsrichtung ausgerichteten Molekülen entspricht nicht dem thermodynamischen Gleichgewichtszustand, so daß sich ein innerer Spannungszustand ergibt. Eine erneute Erwärmung, die die Moleküle beweglich macht, führt zu einem Abbau dieser Spannungen und damit zu einer zumindest teilweisen Rückbildung der aufgezwungenen Verformung. Der Effekt wird auch als "memory-effect" bezeichnet.
  • Werden also nun die elektrisch leitenden Fäden 2.1, 2.2 einer starken Erwärmung, beispielsweise durch eine offene Flamme oder durch die Wärme von Schmelze an benachbarten Fäden 3, 4 im Gewebe, ausgesetzt, so ziehen sich die leitenden Fasern 2.1, 2.2 zusammen und ihre Länge im erwärmten Bereich beträgt nur noch einen Bruchteil der Ausgangslänge.
  • Beispiel (vgl. Fig. 1)
  • Der untere Bereich des Gewebes 100 in Fig. 1 stellt die Gewebeveränderungen nach einem Versuch zur Ermittlung des Brandverhaltens dar. Die Prüfkriterien wurden entsprechend DIN/EN/ISO 6941 "Messung der Flammenausbreitungseigenschaftung vertikal angeordneter Proben" gewählt, wodurch eine Beurteilung gemäß der DIN 66083 durchführbar ist.
  • Eine Brennerflamme wurde in einem Bereich 6 unter einem Winkel von 30° gegen die untere Kante 5 einer Gewebeprobe 100 gerichtet. In dem direkt beflammten Bereich 6 schmilzen die thermoplastischen Kett- und Schußfäden (3, 4) aufgrund der großen Wärme und bilden eine Kruste 7 aus Kunststoffschmelze. Da sie mit flammhemmenden Zusatzstoffen versehen sind, verlöschen die beflammten Fäden 3, 4 etwa ein bis zwei Sekunden nach dem Entfernen der Brennerflamme.
  • Die elektrisch leitenden Fäden 2.1, 2.2 sind in der Wärmeeinflußzone stark geschrumpft. Durch die von Brennerflamme und benachbarten schmilzenden Bändchen zugeführte Wärme wurden die Molekülketten des silberbedampften Polyesterzwirns beweglich und der aufgezwungene Verstreckungszustand wurde abgebaut.
  • Da die elektrisch nicht leitenden Fäden 3, 4 des in diesem Beispiel dargestellten Gewebes 100 nicht schrumpfen, wird mit dem Schrumpf der leitenden Fäden 2.1, 2.2 eine Relativbewegung hervorgerufen, mit der sich die leitenden Fäden von der Gefahrenstelle weg und aus dem Grundgewebe hinaus ziehen. Es entsteht, durch den Schrumpf beispielsweise des leitenden Fadens 2.1, eine Lücke 8.1 im Gewebe 100, in der ein einzelner Kettfaden fehlt. Die Schußfäden 4 sind in dem Bereich 8.1 der Lücke jedoch sämtlich vorhanden, so daß die Festigkeit des Gewebes nicht wesentlich vermindert wird.
  • Die Flamme breitet sich also nicht weiter im Gewebe aus und die Schadstelle im Gewebe bleibt auf den Bereich 6 der unmittelbaren Flammeinwirkung beschränkt, insbesondere bleiben außerhalb des direkt beflammten Bereichs sowohl die mechanischen als auch die elektrostatischen Eigenschaften des Gewebes erhalten.
  • Überraschenderweise hat sich demnach gezeigt, daß das erfindungsgemäße Gewebe 100 flammhemmend ist, obwohl der elektrisch leitende Faden 2.1, 2.2 nicht mit einem Gehalt an Zusatzstoffen gefüllt ist, der allein das Erlöschen einer Flamme bewirken könnte, wie es bei den Kett- und Schußfäden 3,4 der Fall ist.
  • Vergleichsbeispiel (vgl. Fig. 2)
  • Der Versuch zur Ermittlung des Brandverhaltens wird an einer Probe aus einem aus dem Stand der Technik bekannten Gewebe 200 wiederholt. Das Gewebe 200 besteht aus denselben Kettfäden 3 und Schußfäden 4, die im Gewebe 100 verwendet wurden; der Kunststoff der Fäden enthält ebenfalls flammhemmende Zusatzstoffe.
  • Die elektrisch leitenden Fäden 2.1', 2.2' sind Monofilamente, die einen hohen Anteil an Ruß aufweisen, wodurch eine gute Leitfähigkeit sichergestellt ist. Flammhemmende Zusatzstoffe sind nicht beimischbar, da die Festigkeit der Fäden wesentlich herabgesetzt werden würde.
  • Die Probe wird in derselben Versuchsanordnung wie beim zuvor beschriebenen Beispiel im Bereich 6' beflammt. Aufgrund des hohen Kohlenstoffgehalts wurde ein rasches Entzünden und dochtartiges Abbrennen der elektrisch leitenden Fäden 2.1', 2.2' beobachtet. Die Flamme zog sich entlang der gitterartig eingewebten Fäden 2.1', 2.2' durch das Gewebe 200, wobei auch die Fäden 3, 4 des Grundgewebes trotz der enthaltenen flammhemmenden Zusatzstoffe zerstört wurden. Der Versuch mußte bei dem in Fig. 2 wiedergegebenen Grad der Zerstörung des Gewebes 200 abgebrochen werden, da die Flamme nicht von selbst verlöschte.
  • Mit dem Nachweis flammhemmender Eigenschaften des erfindungsgemäßen elektrisch leitenden Gewebes 100 ist dieses für Anwendungen in explosions- und/oder brandgefährdeter Umgebung geeignet, wie sie typischerweise in Lösemittel verarbeitenden Betrieben und im Bergbau aufgrund von Kohlenstaub und Methangas in der Luft unter Tage gegeben ist.
  • Figur 3 zeigt einen aus dem Gewebe 100 hergestellten flexiblen Schüttgutbehälter 10, der aus einem Tragbeutel 15 mit als Transportschlaufen 17, 17' ausgebildeten Tragegurt besteht. In seinem Deckelbereich 14 weist der Tragbeutel 15 einen Einfüllstutzen 18 und in seinem Bodenbereich 11 einen Auslaufstutzen 19 auf. Der Tragbeutel 5 ist aus dem hochfesten, elektrisch leitenden und flammhemmendem Kunstfasergewebe 100 hergestellt. Im Kragenbereich 16, im Deckelbereich 14 sowie im Bereich des Einfüll- 18 und Auslaufstutzens 19 kann zur Optimierung des Ableitverhaltens eine Verdichtung des Gitternetzes 12 aus elektrisch leitenden Fäden 2.1, 2.2 vorgesehen werden. Ebenso ist in das Material für die Trageschlaufen 17, 17' zur Gewährleistung der Ableitung leitfähiges Material eingearbeitet. Wichtig für die Sicherheit ist die lückenlose Erdung während der Befüllung und Entleerung, damit mögliche elektrostatische Aufladungen abgeleitet werden.
  • Fig. 4 zeigt einen Querschnitt durch einen Schacht 30 unter Tage. Bei horizontal vorgetrieben Tunneln und Schächten großen Querschnitts muß, insbesondere wenn diese für den Personen- und/oder Materialtransport vorgesehen sind, das Deckgebirge 31 abgestützt werden. Dazu werden Träger 33 mit hydraulischen Stempeln 32 gegen das Gebirge 31 gedrückt. Um zwischen den Trägern 33 das Herabfallen von aus dem Gebirge 31 herausbrechenden, kleineren Gesteinsbrocken 34 zu verhindern, werden großflächige Auskleidungsbahnen oder -matten mit den Trägern 33 angepreßt. Dies können Drahtmatten sein, die allerdings schwer sind und entsprechend viel Transportkapazität benötigen. Bei Verwendung einer erfindungsgemäßen Gewebebahn 100 zur Auskleidung des Schachtes 30 steht ein wesentlich leichteres und einfach zuschneidbares Material zur Verfügung. Da das Gewebe 100 hochfest ist, reißt es auch beim Anpreßen gegen herausragende Gesteinsbrocken 34 nicht. Über das eingewebte Gitter aus elektrisch leitenden Fäden 2.1, 2.2 können elektrostatische Ladungen gegen die Erde abgeleitet werden. Ein mögliches Ausbreiten eines Feuers entlang der Auskleidungsbahn wird durch die flammhemmenden Eigenschaften des Gewebes 100 unterbunden.

Claims (21)

  1. Elektrisch leitendes Gewebe (100) aus Kunststoffasern, Kunststoffbändchen oder Kunststoffäden zur Herstellung von hochfesten Verpackungen oder Auskleidungsbahnen, welches elektrisch nicht leitende (3,4) und elektrisch leitende Fäden (2.1, 2.2) aufweist, wobei die elektrisch nicht leitenden Fäden (3,4) mit einem flammhemmenden Zusatzstoff ausgerüstet, beschichtet oder gefüllt sind, wobei die elektrisch leitenden Fäden (2.1, 2.2) aus einem thermoplastischen Kunststoff bestehen, der mit wenigstens einem die Leitfähigkeit erhöhenden Zusatz ausgerüstet oder in fein dispergierter Form gefüllt ist, oder wobei die elektrisch leitenden Fäden (2.1, 2.2) mit wenigstens einem die Leitfähigkeit erhöhenden Zusatz beschichtet sind und wobei wenigstens die elektrisch leitenden Fäden (2.1, 2.2) mittels Wärmeeinwirkung in ihrer Länge schrumpfbar sind, wobei der Schrumpf der elektrisch leitenden Fäden (2.1, 2.2) größer ist als der Schrumpf der elektrisch nicht leitenden Fäden (3, 4).
  2. Gewebe (100) nach Anspruch 1, dadurch gekennzeichnet, daß bei Wärmeeinwirkung der Schrumpf der elektrisch leitenden Fäden (2.1, 2.2) das 1,2 bis 4fache, vorzugsweise das 2fache, des Schrumpfs der elektrisch nicht leitenden Fäden (3, 4) beträgt.
  3. Gewebe (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der die Leitfähigkeit erhöhende Zusatz ein Metall oder eine Metallverbindung, vorzugsweise in Partikelform, ist.
  4. Gewebe (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der die Leitfähigkeit erhöhende Zusatz Kohlenstoff in Form von Ruß und/oder Graphit oder ein anorganischer leitfähigkeitserhöhender Stoff ist.
  5. Gewebe (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der die Leitfähigkeit erhöhende Zusatz ein intrinsisches Polymer, vorzugsweise Polyanilin, ist.
  6. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die elektrisch leitenden Fäden (2.1, 2.2) mit Silber beschichtet sind.
  7. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die elektrisch leitenden Fäden (2.1, 2.2) Monofilamente sind.
  8. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die elektrisch leitenden Fäden (2.1, 2.2) Multifilamente sind, von denen wenigstens eine Faser mit die Leitfähigkeit erhöhenden Zusätzen ausgerüstet ist.
  9. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die elektrisch leitenden Fäden (2.1, 2.2) aus einem Polyester, vorzugsweise aus Polyethylenterephtalat (PET), hergestellt sind.
  10. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die elektrisch leitenden Fäden (2.1, 2.2) in Kette (3) und/oder in Schuß (4) eingewebt sind.
  11. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die elektrisch nicht leitenden Fäden (3, 4) aus einem Polypropylen bestehen, das mit einem flammhemmenden halogenhaltigen Additiv gefüllt und/oder beschichtet ist.
  12. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Querschnitt der elektrisch nicht leitenden Fäden (3, 4) das 2fache bis 10fache des Querschnitts der elektrisch leitenden Fäden (2.1, 2.2) beträgt.
  13. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Elastizitätsmodul der elektrisch leitenden Fäden (2.1, 2.2) kleiner ist als der Elastizitätsmodul des übrigen in Kette (3) und Schuß (4) verwebten Fadenmaterials.
  14. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Abstand der elektrisch leitenden Fäden (2.1, 2.2) zueinander in Kettrichtung (3) 1 bis 5 cm, vorzugsweise 2,5 cm, beträgt und in Schußrichtung (4) 10 cm bis 60 cm, vorzugsweise 40 cm, beträgt.
  15. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß jeder zehnte bis achtzigste Kett-(3) bzw. Schußfaden (4) ein elektrisch leitender Faden (2.1, 2.2) ist.
  16. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß der Oberflächenwiderstand und/oder der Erdableitwiderstand des Gewebes kleiner als 104 Ω ist.
  17. Gewebe (100) nach wenigstens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Bruchfestigkeit des Gewebes (100) 50 N/mm2 bis 250 N/mm2 bei einer Bruchdehnung von 10% bis 50% beträgt.
  18. Schüttgutbehälter (10), der aus einem flexiblen Tragbeutel und daran befestigten Tragvorrichtungen, wie Tragschlanfe (17, 17'), -öse, -gurt oder ähnliches, besteht und bei dem wenigstens der Tragbeutel aus einem hochfesten Gewebe (100) nach wenigstens einem der Ansprüchen 2 bis 17 hergestellt worden ist.
  19. Schüttgutbehälter (10) nach Anspruch 18, dadurch gekennzeichnet, daß der Schüttgutbehälter in seinem Deckel-(14) und Kragenbereich (16) eine gegenüber dem übrigen Gewebe des Tragbeutels erhöhte Anzahl von elektrisch leitenden Fäden aufweist.
  20. Schüttgutbehälter (10) nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß bei Verwendung von Tragschlaufen (17, 17') auch diese aus einem hochfesten Gewebe (100) nach wenigstens einem der Ansprüchen 1 bis 17 hergestellt worden sind.
  21. Auskleidung (30) für Berg- und Tiefbauschächte, die aus aus einem hochfesten Gewebe (100) nach wenigstens einem der Ansprüchen 2 bis 17 hergestellt worden ist.
EP99104698A 1998-03-20 1999-03-10 Flammhemmendes elektrisch leitendes Gewebe Expired - Lifetime EP0943710B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19812406 1998-03-20
DE19812406 1998-03-20
DE19826120A DE19826120C2 (de) 1998-03-20 1998-06-12 Flammhemmendes, elektrisch leitendes Gewebe
DE19826120 1998-06-12

Publications (3)

Publication Number Publication Date
EP0943710A2 EP0943710A2 (de) 1999-09-22
EP0943710A3 EP0943710A3 (de) 2004-01-21
EP0943710B1 true EP0943710B1 (de) 2006-05-17

Family

ID=26044830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99104698A Expired - Lifetime EP0943710B1 (de) 1998-03-20 1999-03-10 Flammhemmendes elektrisch leitendes Gewebe

Country Status (3)

Country Link
EP (1) EP0943710B1 (de)
DE (2) DE29823441U1 (de)
PL (1) PL332116A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821528A1 (fr) * 2001-03-02 2002-09-06 Fabregue Gestion Et Distrib Ve Vetement de securite bi-couche
CN104762722B (zh) * 2015-03-27 2016-08-17 陕西锦澜科技有限公司 一种涤棉阻燃防静电面料及其制备方法
DE102015219911A1 (de) 2015-10-14 2017-04-20 Robert Bosch Gmbh Faden zur Herstellung eines elektrisch leitenden Gewebes, Verfahren zur Herstellung des Fadens, elektrisch leitendes Gewebe und Verfahren zu dessen Herstellung sowie Kleidungsstück
US10400366B2 (en) * 2017-06-14 2019-09-03 Apple Inc. Fabric items having strands varying along their lengths
CN108194142A (zh) * 2017-12-25 2018-06-22 河北煤炭科学研究院 隐性裂隙带探测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2104929A (en) * 1981-07-06 1983-03-16 Milliken Ind Ltd Industrial fabrics
DE3938414C2 (de) * 1989-08-19 1994-04-14 Eurea Verpackung Schüttgutbehälter aus einem gewebten Tragbeutel und daran befestigten Tragvorrichtungen
DE19612225A1 (de) * 1996-03-27 1997-10-02 Rotecno Ag Einsatz von Niederdruck-Plasmen zur Erzeugung elektrisch leitfähiger, textiler Fäden
DE29710701U1 (de) * 1997-06-19 1997-08-28 Schulte, Klaus, Dr., 44149 Dortmund Dauerhaft ableitfähiges Gewebe für den Untertageeinsatz

Also Published As

Publication number Publication date
EP0943710A2 (de) 1999-09-22
PL332116A1 (en) 1999-09-27
DE29823441U1 (de) 1999-06-02
DE59913425D1 (de) 2006-06-22
EP0943710A3 (de) 2004-01-21

Similar Documents

Publication Publication Date Title
EP0413886B1 (de) Hochfestes Kunstfaser-Gewebe sowie aus diesem hergestellte Schüttgutbehälter und Tragegurte.
DE69518625T2 (de) Elektrisch leitende bänder und dazuhörendes herstellungsverfahren
DE10048765C2 (de) Antistatisches Gewebe für flexible Schüttgutbehälter
DE69224484T2 (de) Elektrostatische ableitbarer textilvliesstoff
DE602004006505T2 (de) Elektromagnetischer abschirmmantel, der zum beispiel kabelbündel für die luftfahrt schützen soll
DE69417757T2 (de) Schutzbekleidung
DE3880271T2 (de) Eine schwallwirkungsvermindernde, antistatische und flammverzoegernde struktur fuer entflammbare fluessigkeiten enthaltende behaelter.
DE4221380C2 (de) Flexibler Schüttgutbehälter
WO2019115430A1 (de) Sicherungsseil zur sicherung von beweglichen gegenständen
DE102014115437B4 (de) Verfahren zur Herstellung von Sicherheitsstrukturen bei einem Flächenelement und Flächenelement
EP3831992B1 (de) Gewebe und personenschutzkleidung
EP0943710B1 (de) Flammhemmendes elektrisch leitendes Gewebe
DE19826120C2 (de) Flammhemmendes, elektrisch leitendes Gewebe
EP1636406B1 (de) Angelschnur
EP1491668B1 (de) Textiler Faden
EP1564319B1 (de) Untertage einsetzbare, aus dauerhaft antistatischem und dauerhaft flammhemmendem Gewebe bestehende Bahn
DE102012106920A1 (de) Textiles Flächengebilde für flammhemmende Schutzkleidung mit hoher Sichtbarkeit
DE20013839U1 (de) Textiler Verbundstoff
DE102015103533B4 (de) Verfahren zur Herstellung von Sicherheitsstrukturen bei einem Flächenelement und Flächenelement
DE2737343A1 (de) Flexibler, gasundurchlaessiger schlauch
DE19930093B4 (de) Flexibler Schüttgutbehälter
DE9417151U1 (de) Elektrisch leitfähiges mehrschichtiges Band
DE10331177A1 (de) Verbundkonstruktion
DE10040589C1 (de) Schnittschutzkleidung
DE69827943T2 (de) Herstellungsverfahren für in Erdbau anwendbarem Gitter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 65D 88/16 B

Ipc: 7H 03F 5/00 B

Ipc: 7E 21F 17/00 B

Ipc: 7E 21D 11/38 B

Ipc: 7D 03D 15/12 B

Ipc: 7D 03D 15/00 A

17P Request for examination filed

Effective date: 20040226

AKX Designation fees paid

Designated state(s): DE ES GB

AXX Extension fees paid

Extension state: SI

Payment date: 20040226

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB

AX Request for extension of the european patent

Extension state: SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060517

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59913425

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060828

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130328

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59913425

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59913425

Country of ref document: DE

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141001