EP0932015B1 - Detonator - Google Patents

Detonator Download PDF

Info

Publication number
EP0932015B1
EP0932015B1 EP99100536A EP99100536A EP0932015B1 EP 0932015 B1 EP0932015 B1 EP 0932015B1 EP 99100536 A EP99100536 A EP 99100536A EP 99100536 A EP99100536 A EP 99100536A EP 0932015 B1 EP0932015 B1 EP 0932015B1
Authority
EP
European Patent Office
Prior art keywords
detonator
ignition
smd
bridge
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99100536A
Other languages
English (en)
French (fr)
Other versions
EP0932015A1 (de
Inventor
Harald Wich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Stiftung and Co KG
Original Assignee
Diehl Stiftung and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Stiftung and Co KG filed Critical Diehl Stiftung and Co KG
Publication of EP0932015A1 publication Critical patent/EP0932015A1/de
Application granted granted Critical
Publication of EP0932015B1 publication Critical patent/EP0932015B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/124Bridge initiators characterised by the configuration or material of the bridge

Definitions

  • the invention relates to an electrothermal detonator according to the preamble of Claim 1 and also extends to the use of a commercially available SMD resistor for creating such a detonator.
  • Detonators in which an ignition bridge can be reached by supplying electrical energy Evaporation is heated to the ignition charge in contact with the ignition bridge Heating up to at least its initialization temperature are widely described and in use.
  • the classic design which will be discussed in more detail below, is one self-supporting resistance wire for bridging two connection poles for feeding of the electrical ignition current.
  • the semiconductor substrate is used for the ignition bridge designed as a controllable electronic switch to ensure that only in the presence of two different control criteria, the ignition current over the Bridge can be released.
  • All of these detonators are based on technology monolithically integrated circuits with their known advantages in terms of Mass production, but also their known disadvantages in terms of yield and before all of the problems of individual settings required in practice for the respective
  • EP-A-0 248 977 Carrier for a bridge igniter for initiating ignition sets, delay sets and pyrotechnic mixtures and primary primers and primers provided at which is inserted into a metal outer ring, a pierced ceramic body, which for Includes contact pins for the power supply.
  • the ignition bridge between them Contact pins is formed between electrically conductive surfaces on the ceramic body, which flatly surround the holes.
  • Ignition bridge can be the methods of atomization or vapor deposition or Screen printing can be used.
  • An electric bridge igniter with one versus one metallic housing insulates built-in glow bridge wire is known from DE 36 13 134 A1.
  • An unwanted one voltage dependent response due to electrostatic charge shifts on both sides parasitic arcing lines with simple to avoid manufacturing technical means
  • Wire ends of the glow plug wire including the Surrounding areas of their attachment points on the Terminal poles of the bridge igniter with an insulating layer made of insulating varnish, which after a dive from arcuate bridge wire center area expires or the is dripped onto the area surrounding the attachment points.
  • DE 42 36 729 A1 describes a squib with an insulating pole body with electrically conductive Longitudinal stripes, with one arranged on the polar body Glow plug and with connecting wires, the glow plug and the connecting wires each with the longitudinal strips over Solder points are connected, and with at least one Detonator and an outer top coat that matches the detonator covered.
  • detonators work after that electrothermal principle. I.e. that by feeding electrical energy the detonator's ignition bridge is usually strongly heated until evaporation. there becomes the one in contact with the ignition bridge Ignition charge warms up beyond its initiation limit and ignition of the primer initiated.
  • Known detonators often have a very low resistance Ignition bridge on. Such low-resistance ignition bridges are however, is difficult to control electronically.
  • the same detonators are known in which the ignition bridge is one has moderate resistance.
  • Such ignition bridges the latter type are better electronic controllable, due to the small geometries of the Ignition bridges, e.g. of the wire diameter, however, they are relatively difficult to manufacture.
  • Another shortcoming known detonators is that the Resistance value of your ignition bridge always with large Resistance tolerances is affected. For example, the Resistance tolerance of a known detonator with a Resistance value of its ignition bridge of 15 ohms in the range of ⁇ 4 ohms, i.e. the resistance tolerance is on the order of ⁇ 20%.
  • a bridge wire is used in the detonator according to the invention or a bridge layer element for the ignition bridge a miniature SMD resistor (Surface Mounted Device) replaced.
  • miniature SMD resistors are on the Market readily available at low cost.
  • the Resistance value is advantageously independent of the respective design of the SMD resistor in wide Freely selectable limits. Resistance values between ⁇ 1 ohm and> kOhm are in almost all sizes of such SMD resistors available. Other advantages are that the desired resistance value within the standard series (e.g.
  • E24, E48 or E96 graded sufficiently fine is selectable; and that the resistance tolerance of the resistance value an SMD resistor forming the ignition bridge with values of ⁇ 1% from the standard range of SMD resistors can be chosen and that the responsiveness, i.e. the peak power for igniting the primer the detonator by selecting the design or
  • the size of the SMD resistor can be freely selected within wide limits is; as well as that the ignition sensitivity within wide limits by choosing the resistance technology (about Thick film or thin film resistance) and treatment the resistance layer (with or without coating) is good can be reproducibly influenced.
  • E.g. has a size 0402 SMD resistor Continuous power loss of the order of 50 to 60 mW.
  • SMD resistor Continuous power loss of the order of 50 to 60 mW.
  • a defined control of such an SMD resistor with a peak power in the range of some 10 W. are those for the initiation of the detonator primer required temperatures of the order of magnitude up to 400 ° C with a short delay time.
  • Larger Sizes such as 0603, 0805 or 1206 have accordingly higher construction losses and therefore also require correspondingly higher peak performances around the initiation temperature at the boundary layer with the detonator's primer to reach.
  • SMD resistors as the detonator's ignition bridge, it is in advantageously possible while maintaining the known mounting conditions for such SMD resistors e.g. on printed circuit boards, ceramic substrates, Transistor sockets, IC packages or the like.
  • the Responsiveness by order of magnitude a decade to vary the resistance value of the Firing bridge of SMD resistance within five To be able to choose the decades as desired, and the Resistance tolerance of the SMD resistor ⁇ than 1% to be able to specify.
  • Another very special advantage of using one known SMD resistor for the ignition bridge of the Detonator according to the invention consists in the possibility easily two or more than two "heating elements" per To be able to use detonator or flame igniter.
  • the SMD resistors are expedient interconnected on one side. This common connection and the associated with the individual SMD resistors second connectors are from the housing of the detonator led out to create the opportunity at High reliability applications with redundant ignition to be able to apply.
  • the figure shows a training in a sectional view of the detonator 10, which is made on a housing base 12 electrically insulating material contact surfaces 14 has that in thick or thin film technology are realized.
  • the contact surfaces 14 are with Connection pins 16 electrically connected, which itself extend through the housing base 12.
  • the contact surfaces 14 on the inside of the housing base 12 form connection contacts for SMD resistors 18.
  • the SMD resistors 18 form an ignition bridge 20 for one Ignition charge 22 of the detonator 10.
  • the ignition charge 22 is on the SMD resistors 18 or on the housing base 12 pressed on.
  • the detonator 10 has a housing 24 which is surrounded by a Housing sleeve 26 and a cover member 28 is formed. In there is a space 30 enclosed by the housing 24 Amplifier set 32 of the detonator 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)
  • Automotive Seat Belt Assembly (AREA)

Description

Die Erfindung betrifft einen elektrothermischen Detonator gemäß dem Oberbegriff des Anspruches 1 und erstreckt sich auch auf die Verwendung eines handelsüblichen SMD-Widerstandes zum Erstellen eines solchen Detonators.
Detonatoren, bei denen durch Zufuhr von elektrischer Energie eine Zündbrücke bis zur Verdampfung erhitzt wird, um den mit der Zündbrücke in Berührung stehenden Anzündsatz auf mindestens seine Initialisierungstemperatur aufzuheizen, sind vielfältig beschrieben und im Einsatz. Die klassische Bauform, auf die unten noch näher eingegangen wird, ist die eines freitragenden Widerstandsdrahtes zur Überbrückung zweier Anschlußpole für das Einspeisen des elektrischen Zündstromes.
Bei der DE-A-35 37 820, die als nächstliegender Stand der Technik angesehen wird, dagegen wird vom Substrat einer integrierten Zündsteuerschaltung eine Zündbrücke in Form eines Heizelementes getragen, das aus einem Halbleiter besteht, der unterschiedliche Stromkennlinienbereiche aufweist, um infolge lawinenartigen Stromanstiegs aufgrund temperaturabhängiger Widerstandsverringerung zum zuverlässigen Durchzünden zu führen. In der US-A-4 729 315 ist ein Detonator mit einer Dünnfilmbrücke beschrieben, die auf einem Halbleitersubstrat ausgebildet ist. Auch nach US-A-5 682 008 ist ein Halbleitersubstrat als Träger für wenigstens eine Zündbrücke vorgesehen, die in diesem Falle aber in das Substrat eindiffundiert ist. Gemäß US-A 3 292 537 wird das Halbleitersubstrat für die Zündbrücke als steuerbarer elektronischer Schalter ausgelegt, um sicherzustellen, daß nur bei Vorhandensein zweier unterschiedlicher Ansteuerungskriterien der Zündstrom über die Brücke freigegeben werden kann. Alle diese Detonatoren beruhen auf Technologie der monolithisch integrierten Schaltungen mit ihren bekannten Vorteilen hinsichtlich der Massenfertigung, aber auch ihren bekannten Nachteilen hinsichtlich der Ausbeute und vor allem der Problematik in der Praxis geforderter individueller Einstellungen für die jeweilige
Ansprechcharakteristik und -toleranz des elektrothermischen Zündeffektes zur Anpassung an bestimmte Sicherheits- und Funktionsvorgaben.
In Anlehnung an den eingangs erwähnten klassischen Aufbau von elektrothermischen Detonatoren mit ihrem zu verdampfenden Widerstandsdraht ist aus der EP-A-0 248 977 ein Träger für einen Brückenzünder zum Initiieren von Anzündsätzen, Verzögerungssätzen und pyrotechnischen Mischungen sowie von Primärzündstoffen und -zündsätzen vorgesehen, bei dem in einen metallischen Außenring ein durchbohrter Keramikkörper eingebracht ist, der zur Aufnahme von Kontaktstiften für die Stromzuleitung dient. Die Zündbrücke zwischen diesen Kontaktstiften ist zwischen elektrisch leitenden Flächen auf dem Keramikkörper ausgebildet, welche die Bohrungen flächig umgeben. Für das Aufbringen dieser Flächen und der Zündbrücke können die Verfahren der Zerstäubungs- oder Aufdampftechnik bzw. des Siebdruckes eingesetzt werden.
Ein elektrischer Brückenzünder mit einem gegenüber einem metallischen Gehäuse isoliert eingebauten Glühbrückendraht ist aus der DE 36 13 134 A1 bekannt. Um ein ungewolltes spannungsabhängiges Ansprechverhalten aufgrund von elektrostatischen Ladungsverschiebungen beiderseits parasitärer Überschlagsstrecken mit einfachen fertigungstechnischen Mitteln zu vermeiden, werden die Drahtenden des Glühbrückendrahtes einschließlich der Umgebungsbereiche ihrer Befestigungspunkte auf den Anschlußpolen des Brückenzünders mit einer Isolierschicht aus Isolierlack versehen, der nach einem Tauchvorgang vom bogenförmigen Brückendraht-Mittelbereich abläuft oder der auf die Umgebung der Befestigungspunkte abgetropft wird.
Die DE 42 36 729 A1 beschreibt eine Zünd- bzw. Anzündpille mit einem isolierenden Polkörper mit elektrisch leitenden Längsstreifen, mit einer auf dem Polkörper angeordneten Glühbrücke und mit Anschlußdrähten, wobei die Glühbrücke und die Anschlußdrähte jeweils mit den Längsstreifen über Lötstellen verbunden sind, und mit mindestens einem Zündstoff und einem äußeren Überzugslack, der den Zündstoff bedeckt.
Alle diese Detonatoren funktionieren nach dem elektrothermischen Prinzip. D.h. daß durch Zufuhr von elektrischer Energie die Zündbrücke des Detonators üblicherweise bis zur Verdampfung stark erhitzt wird. Dabei wird der mit der Zündbrücke in Berührung befindliche Anzündsatz über seine Initiierungsgrenze hinaus erwärmt und die Zündung des Anzündsatzes eingeleitet.
Bekannte Detonatoren weisen oftmals eine sehr niederohmige Zündbrücke auf. Derartige niederohmige Zündbrücken sind jedoch nur schwer elektronisch ansteuerbar. Desgleichen sind Detonatoren bekannt, bei welchen die Zündbrücke einen moderaten Widerstandswert besitzt. Solche Zündbrücken der zuletzt genannten Art sind zwar besser elektronisch ansteuerbar, aufgrund der kleinen Geometrien der Zündbrücken, z.B. des Drahtdurchmessers, sind sie jedoch nur relativ schwer herstellbar. Ein weiterer Mangel bekannter Detonatoren besteht darin, daß der Widerstandswert ihrer Zündbrücke stets mit großen Widerstandstoleranzen behaftet ist. So beträgt bspw. die Widerstandstoleranz eines bekannten Detonators mit einem Widerstandswert seiner Zündbrücke von 15 Ohm im Bereich von ± 4 Ohm, d.h. die Widerstandstoleranz beträgt größenordnungsmäßig ± 20 %.
In Kenntnis dieser Gegebenheiten liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Detonator der eingangs genannten Art zu schaffen, der vergleichsweise kostengünstig mit besser definierten Parametern realisierbar ist, wobei der Brückenwiderstand der Zündbrücke jeden gewünschten Wert innerhalb enger Widerstandstoleranzen aufweisen kann.
Diese Aufgabe wird bei einem Detonator der eingangs genannten Art erfindungsgemäß durch die Merkmale des Kennzeichenteiles des Anspruchs 1 gelöst. Bevorzugte Ausbzw. Weiterbildungen des erfindungsgemäßen Detonators sind in den Unteransprüchen gekennzeichnet.
Bei dem erfindungsgemäßen Detonator werden ein Brückendraht oder ein Brücken-Schichtelement für die Zündbrücke durch einen Miniatur-SMD-Widerstand (Surface Mounted Device) ersetzt. Derartige Miniatur-SMD-Widerstände sind auf dem Markt ohne weiteres preisgünstig erhältlich. Der Widerstandswert ist in vorteilhafter Weise unabhängig von der jeweiligen Bauform des SMD-Widerstandes in weiten Grenzen frei wählbar. Widerstandswerte zwischen < 1 Ohm und > kOhm sind in nahezu allen Baugrößen solcher SMD-Widerstände erhältlich. Weitere Vorteile bestehen darin, daß der jeweils gewünschte Widerstandswert innerhalb der Normreihen (z.B. E24, E48 oder E96)ausreichend fein abgestuft auswählbar ist; und daß die Widerstandstoleranz des Widerstandswertes eines die Zündbrücke bildenden SMD-Widerstandes mit Werten von < 1 % aus dem Standardprogramm der SMD-Widerstände gewählt werden kann, und daß die Ansprechempfindlichkeit, d.h. die Spitzenleistung zum Zünden des Anzündsatzes des Detonators durch Auswahl der Bauform bzw. Baugröße des SMD-Widerstandes in weiten Grenzen frei wählbar ist; sowie daß die Zündempfindlichkeit in weiten Grenzen durch die Auswahl der Widerstands-Technologie (etwa Dickschicht- oder Dünnfilm-Widerstand) sowie durch die Behandlung der Widerstandschicht (mit oder ohne Coating) gut reproduzierbar beeinflußt werden kann.
Bspw. besitzt ein SMD-Widerstand der Baugröße 0402 eine Dauerverlustleistung von größenordnungsmäßig 50 bis 60 mW. Durch eine definierte Ansteuerung eines solchen SMD-Widerstandes mit einer Spitzenleistung im Bereich einiger 10 W sind die für die Initiierung des Anzündsatzes des Detonators erforderlichen Temperaturen von größenordnungsmäßig bis 400°C mit kurzer Verzögerungszeit erreichbar. Größere Baugrößen wie bspw. 0603, 0805 oder 1206 besitzen entsprechend höhere Bauverlustleistungen und erfordern daher auch entsprechend höhere Spitzenleistungen, um die Initiierungstemperatur an der Grenzschicht zum Anzündsatz des Detonators zu erreichen.
Durch die erfindungsgemäße Anwendung an sich bekannter SMD-Widerstände als Zündbrücke des Detonators ist es in vorteilhafter Weise möglich, unter Beibehaltung der an bekannten Montagebedingungen für solche SMD-Widerstände bspw. auf Leiterplatten, Keramiksubstraten, Transistorsockeln, IC-Gehäusen o.dgl. die Ansprechempfindlichkeit wunschgemäß um größenordungsmäßig eine Dekade zu variieren, den Widerstandswert des die Zündbrücke bildenden SMD-Widerstandes innerhalb von fünf Dekaden wunschgemäß frei wählen zu können, und die Widerstandstoleranz des SMD-Widerstandes < als 1% spezifizieren zu können. In weiterer vorteilhafter Weise ist es möglich, den die Zündbrücke des Detonators bildenden SMD-Widerstand auf Standard-SMD-Bestückungsmaschinen bestücken und mit Standardverfahren der SMD-Technik auf dem Gehäuseboden des Detonators elektrisch leitend fixieren zu können. Diese Fixierung erfolgt zweckmäßigerweise durch Löten, bei dem es sich um ein Reflow-Löten, um ein Vaporphase-Löten o.dgl. handeln kann. Aufgrund dieser an sich bekannten Technologie sind die Herstellungskosten zur Realisierung der Zündbrücke des erfindungsgemäßen Detonators vergleichsweise klein.
Ein weiterer, ganz besonderer Vorteil der Anwendung eines an sich bekannten SMD-Widerstandes für die Zündbrücke des erfindungsgemäßen Detonators besteht in der Möglichkeit, problemlos zwei oder mehr als zwei "Heizelemente" pro Detonator bzw. Flammzündmittel einsetzen zu können. Kommen mehrere solcher SMD-Widerstände als "Heizelemente" zur Anwendung, so werden die SMD-Widerstände zweckmäßigerweise einseitig zusammengeschaltet. Dieser gemeinsame Anschluß und die zu den einzelnen SMD-Widerständen zugehörigen zweiten Anschlüsse werden aus dem Gehäuse des Detonators herausgeführt, um die Möglichkeit zu schaffen, bei Hochzuverlässigkeitsanwendungen eine redundante Zündung anwenden zu können.
Weitere Einzelheiten, Merkmale und Vorteile ergeben sich aus der nachfolgenden Beschreibung eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles des erfindungsgemäßen Detonators.
Die Figur zeigt in einer Schnittdarstellung eine Ausbildung des Detonators 10, der an einem Gehäuseboden 12 aus elektrisch isolierendem Material Kontaktflächen 14 aufweist, die in Dick- oder Dünnschichttechnologie realisiert sind. Die Kontaktflächen 14 sind mit Anschlußpins 16 elektrisch leitend verbunden, die sich durch den Gehäuseboden 12 erstrecken.
Die Kontaktflächen 14 auf der Innenseite des Gehäusebodens 12 bilden Anschlußkontakte für SMD-Widerstände 18. Die SMD-Widerstände 18 bilden eine Zündbrücke 20 für einen Anzündsatz 22 des Detonators 10. Der Anzündsatz 22 ist auf die SMD-Widerstände 18 bzw. auf den Gehäuseboden 12 aufgepreßt.
Der Detonator 10 weist ein Gehäuse 24 auf, das von einer Gehäusehülse 26 und einem Deckelelement 28 gebildet ist. In dem vom Gehäuse 24 umschlossenen Raum 30 befindet sich ein Verstärkersatz 32 des Detonators 10.
Bezugsziffernliste:
10
Detonator
12
Gehäuseboden
14
Kontaktfläche
16
Anschlußpin
18
SMD-Widerstand
20
Zündbrücke
22
Anzündsatz
24
Gehäuse
26
Gehäusehülse
28
Deckelelement
30
Gehäuse-Innenraum
32
Verstärkersatz

Claims (5)

  1. Elektrothermischer Detonator (1) mit einem eine Zündbrücke (20) für einen Anzündsatz (22) bildenden elektrischen Widerstand, der an einem Gehäuseboden (12) für ein Detonator-Gehäuse (24) mit Anschlußkontakten (14) elektrisch leitend fixiert ist, dadurch gekennzeichnet, daß die Widerstand ein handelsüblicher SMD-Widerstand (18) ist.
  2. Detonator nach Anspruch 1,
    dadurch gekennzeichnet, daß der Anzündsatz (22) auf den auf dem Gehäuseboden (12) fixierten mindestens einen SMD-Widerstand (18) gepreßt ist.
  3. Detonator nach Anspruch 2,
    dadurch gekennzeichnet, daß der Anzündsatz (22) mit einem Verstärkersatz (32) kombiniert ist.
  4. Detonator nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß mindestens zwei SMD-Widerstände (18) einseitig zusammengeschaltet sind, wobei der gemeinsame Anschluß (16) und die zu den SMD-Widerständen zugehörigen Einzelanschlüsse (16) mit den entsprechenden Anschlußkontakten (14) des Gehäusebodens (12) kontaktiert sind.
  5. Verwendung eines handelsüblichen SMD-Widerstandes (18) als Zündbrücke (20) für einen elektrothermischen Detonator (10) zum Initieren eines Anzündsatzes (22).
EP99100536A 1998-01-23 1999-01-13 Detonator Expired - Lifetime EP0932015B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19802432 1998-01-23
DE19802432A DE19802432A1 (de) 1998-01-23 1998-01-23 Detonator

Publications (2)

Publication Number Publication Date
EP0932015A1 EP0932015A1 (de) 1999-07-28
EP0932015B1 true EP0932015B1 (de) 2001-08-16

Family

ID=7855407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99100536A Expired - Lifetime EP0932015B1 (de) 1998-01-23 1999-01-13 Detonator

Country Status (2)

Country Link
EP (1) EP0932015B1 (de)
DE (2) DE19802432A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308443A1 (de) * 2003-02-27 2004-09-09 Dynltec Gmbh Elektrischer Detonator
DE102004004668A1 (de) * 2004-01-30 2005-08-25 Dynitec Gmbh Zünd- und Anzündelemente

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL270122A (de) * 1961-10-05
US3292537A (en) * 1965-06-15 1966-12-20 Jr Frank A Goss Multi-signal explosive detonator
US3695178A (en) * 1970-11-09 1972-10-03 Robert E Betts Delta squib circuit
US3906858A (en) * 1974-07-30 1975-09-23 Us Eneregy Research And Dev Ad Miniature igniter
DE2747163A1 (de) * 1977-10-20 1979-04-26 Dynamit Nobel Ag Elektrisches anzuendelement
DE3537820A1 (de) * 1985-10-24 1987-04-30 Dynamit Nobel Ag Elektronischer zuender
DE3606364A1 (de) 1986-02-27 1987-09-03 Dynamit Nobel Ag Elektrischer zuendbrueckentraeger zur anzuendung von anzuendsaetzen, verzoegerungssaetzen und pyrotechnischen mischungen sowie zur zuendung von primaerzuendstoffen und -saetzen und verfahren zu seiner herstellung
DE3613134A1 (de) 1986-04-18 1987-10-22 Diehl Gmbh & Co Elektrischer brueckenzuender
US4729315A (en) * 1986-12-17 1988-03-08 Quantic Industries, Inc. Thin film bridge initiator and method therefor
JPH0792358B2 (ja) * 1987-09-14 1995-10-09 日本工機株式会社 電気式点火装置用点火器
US4831933A (en) * 1988-04-18 1989-05-23 Honeywell Inc. Integrated silicon bridge detonator
DE4236729A1 (de) 1992-10-30 1994-05-05 Dynamit Nobel Ag Zünd- bzw. Anzündpille
IL109841A0 (en) * 1994-05-31 1995-03-15 Israel State Monolithic semiconductor igniter for explosives and pyrotechnic mixtures and process for its manufacture
FR2732455B1 (fr) * 1995-03-31 1997-06-13 Davey Bickford Initiateur electropyrotechnique, procede de realisation d'un tel initiateur et systeme de securite pour vehicule

Also Published As

Publication number Publication date
EP0932015A1 (de) 1999-07-28
DE19802432A1 (de) 1999-08-26
DE59900192D1 (de) 2001-09-20

Similar Documents

Publication Publication Date Title
DE3855879T2 (de) Zünder
DE19629009C2 (de) Gegenüber Hochfrequenz und elektrostatischer Entladung unempfindlicher Elektrozündsatz mit nichtlinearem Widerstand
DE3717149C3 (de) Sprengzünder-Zündelement
DE69834939T2 (de) Elektrisches Zündelement
CH635673A5 (de) Elektrisches anzuendelement.
DE3716391C2 (de)
DE960787C (de) Elektrische Zuendvorrichtung und Verfahren zum Herstellen derselben
DE69711864T2 (de) Halbleiterbrückenzünder und herstellungsverfahren dafür
DE69715671T2 (de) Halbleiterbrückenzünder mit überspannungsschutz
DE69702719T2 (de) Elektrische sicherung
EP0993589A1 (de) Anzünder
EP0932015B1 (de) Detonator
DE60107499T2 (de) Elektro-pyrotechnischer Anzünder mit gesicherter Hochenergiezündung
EP1078825B1 (de) Pyrotechnisches Zündsystem mit integrierter Zündschaltung
WO2000034084A1 (de) Zündvorrichtung für rückhaltemittel in einem fahrzeug
DE7827865U1 (de) Elektrische zuendvorrichtung
DE3116589A1 (de) Heizvorrichtung fuer einen elektrischen zigarettenanzuender
EP0567959A2 (de) Elektrisches Zündelement mit Soll-Entladungsstrecke
DE60118581T2 (de) Elektrischer brückenzünder mit einer mehrschichtigen brücke und herstellungsverfahren dieser brücke
DE957735C (de) Zündelement zum Auslösen der Verbrennung von schwer entzündbaren Stoffen
DE3308635A1 (de) Elektrisches zuendmittel
DE60104754T2 (de) Widerstandselement für einen pyrotechnischen Zünder
DE10297759B4 (de) Schmelzwiderstand und Verfahren zu dessen Herstellung
DE102004004668A1 (de) Zünd- und Anzündelemente
DE10028374C1 (de) Strombrücke für Zündkapseln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990608

17Q First examination report despatched

Effective date: 19991118

AKX Designation fees paid

Free format text: DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59900192

Country of ref document: DE

Date of ref document: 20010920

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011117

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021128

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030106

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040113

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090318

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803