EP0931208A1 - Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe - Google Patents

Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe

Info

Publication number
EP0931208A1
EP0931208A1 EP97909371A EP97909371A EP0931208A1 EP 0931208 A1 EP0931208 A1 EP 0931208A1 EP 97909371 A EP97909371 A EP 97909371A EP 97909371 A EP97909371 A EP 97909371A EP 0931208 A1 EP0931208 A1 EP 0931208A1
Authority
EP
European Patent Office
Prior art keywords
retarder
coolant pump
coolant
speed
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97909371A
Other languages
English (en)
French (fr)
Other versions
EP0931208B1 (de
Inventor
Peter Edelmann
Klaus Vogelsang
Peter Rose
Peter Heilinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Turbo GmbH and Co KG
Original Assignee
Voith Turbo GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Turbo GmbH and Co KG filed Critical Voith Turbo GmbH and Co KG
Publication of EP0931208A1 publication Critical patent/EP0931208A1/de
Application granted granted Critical
Publication of EP0931208B1 publication Critical patent/EP0931208B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/06Retarder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/161Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Definitions

  • the invention relates to a method for adjusting the engine temperature by means of a cooling circuit and a device for adjusting the engine temperature.
  • cooling circuits comprising a coolant, preferably water with the appropriate antifreeze additives, are generally used for cooling engines, in particular internal combustion engines.
  • a certain amount of coolant flows through the engine to be cooled per unit of time, absorbs the heat to be dissipated from the internal combustion engine and transports it to a cooler, for example a finned cooler, in which the absorbed and transported amount of heat is released to the environment.
  • the cooling capacity of such a system is essentially determined by the amount of coolant circulated.
  • the coolant is circulated by means of a coolant pump.
  • the flow rate of the coolant pump determines the coolant flow through the cooling circuit.
  • the delivery rate of the coolant pump is generally dependent on its speed.
  • Conventional coolant pumps are in constant drive connection with the engine, so they work depending on the engine speed.
  • a disadvantage of this method for cooling an engine, in particular an internal combustion engine is that a high pump output is made available even in cases in which it is not required. For example, in summer and winter in such an arrangement, the same amount of coolant is always pumped through the cooling circuit. This leads to an unnecessary power consumption on the part of the engine, which in certain operating situations leads to unnecessarily high fuel consumption. This problem becomes particularly serious when a retarder is introduced into the cooling circuit, the working medium of which is also the cooling medium for the engine. Then, for safe heat dissipation, the flow rate of the coolant pump must be designed so that the heat can be dissipated even when the retarder is switched on. This requires pumps with very high performance.
  • this object is achieved by a method according to claim 1 and a device according to claim 17.
  • the coolant temperature in the cooling circuit is adjusted by means of a speed-controlled coolant pump such that an optimal engine temperature value is reached as quickly as possible and a maximum value is never exceeded.
  • the engine temperature is determined continuously, for example in sampling intervals which can be in a range from several seconds to milliseconds.
  • this value can be specified in a further development depending on the current engine power. In this way it is possible to keep the cooling circuit always close to the temperature limit of the engine drive, which is particularly fuel-efficient, since the performance of the coolant pump is then optimally adjusted.
  • cooling circuits which comprise a retarder, which retarder can either be operated with a separate working medium, and the coolant is used only for heat exchange or, in a further developed embodiment, the coolant is the working medium of the retarder itself is.
  • the retarder in the cooling circuit can be switched on and off, for example by means of a changeover valve which bypasses the coolant past the retarder when it is not working.
  • a particularly fuel-efficient embodiment provides that at least one further coolant pump is provided in addition to the speed-controlled coolant pump. This can either be engine speed dependent, vehicle speed dependent or retarder speed dependent.
  • the speed-controlled coolant pump can be designed such that it provides the basic cooling load in the cooling circuit and the further coolant pump is only switched on under special loads, for example at
  • the at least one further coolant pump is switched on when the retarder is operated, so that the heat additionally generated in the retarder can still be dissipated safely, ie. H. with the help of this further coolant pump in combination with the speed-controlled coolant pump, sufficient cooling of the engine is ensured.
  • the further coolant pump which is operated as a function of the engine speed, retarder speed or vehicle speed, is dimensioned in such a way that it provides the basic power required for sufficient cooling of the engine in all
  • the speed-controlled coolant pump is then operated only when the retarder is switched on, in such a way that the maximum engine temperature mentioned above is not exceeded on the engine.
  • Water with the appropriate antifreeze is generally used as the coolant.
  • the retarder can be a primary retarder, ie a retarder whose speed is dependent on the engine speed, or a secondary retarder whose speed is dependent on the driving speed.
  • the coolant also serves as the working medium of the retarder.
  • the invention is also intended to include the case that the coolant of the engine is not also the working medium of the retarder, but is merely passed, for example, through a heat exchanger and from there absorbs the heat which is generated in the retarder during braking operation.
  • the invention provides a device for adjusting the engine temperature.
  • the device comprises means for determining the engine temperature, for example a temperature sensor which is usually attached in the vicinity of the engine or on the engine itself. Furthermore, the device comprises a cooling circuit with a coolant and a coolant pump for setting the engine temperature and a control device for regulating the delivery rate of the coolant pump or coolant pumps depending on the determined engine temperature.
  • At least one of the coolant pumps is a speed-controlled coolant pump, i. H. such a delivery rate depends on the speed.
  • the cooling circuit of the device according to the invention comprises a retarder and a changeover valve.
  • the device also has one
  • Fig. 1 shows a drive unit with the regulating device according to the invention.
  • Fig. 2 shows a drive unit with the control device according to the invention and a further coolant pump.
  • FIG. 3 shows an alternative embodiment of the invention according to FIG. 2.
  • FIG. 1 shows a drive unit consisting of a motor 1 and a cooling circuit 3.
  • the cooling circuit 3 comprises a cooler 5, a coolant pump 7, which is designed as a speed-controlled coolant pump, and an expansion tank 9, which always ensures sufficient overpressure on the pump suction side. Furthermore, one is in the cooling circuit
  • Switch valve 11 and a retarder 13 are provided.
  • the invention is in no way limited to only those embodiments in which a retarder is arranged in the coolant circuit.
  • the invention is also applicable if only engine cooling by means of a cooling circuit and a speed-controlled coolant pump is provided.
  • a bypass line 40 leads past the cooler and branches at point 42.
  • a changeover valve 44 is arranged at point 42 and can be designed as a 3/2-way valve.
  • the 3/2-way valve has the function of controlling the coolant flow in such a way that it can be led past the cooler either through the cooler or through the bypass line 40.
  • the 3/2-way valve controls the cooling flow partially or largely to the radiator 5.
  • the 3/2-way switchover valve 44 controls the coolant via the bypass line to the motor 1 or to the pump 7.
  • the 3/2-way valve can be designed as an expansion control valve or as an electrical or pneumatic continuously regulating valve.
  • the cooler can be supported by a fan 15.
  • the engine 1 has a means for determining the temperature
  • Temperature sensor 20 on. Of course, several can Temperature sensors are positioned at various points in the engine or in the coolant line leading away from the engine.
  • a temperature signal which represents the current engine temperature, is fed to a control device 24 via the signal line 22.
  • the control device 24 it is possible, for example, in the case of a plurality of temperature sensors, to supply the control device 24 with a multiplicity of temperature signals and to determine the actual temperature value, which serves as a reference variable in the present control circuit, by averaging over a multiplicity of temperature signals.
  • a maximum temperature value for the motor is the target value for the
  • Torque sensor or the control unit of the engine can thus be operated at a certain constant speed and the control only intervenes when the engine temperature exceeds the predetermined maximum temperature value.
  • the amount of coolant that is conveyed by the engine is always measured by means of the speed-controlled pump so that the engine is run at the maximum permissible coolant temperature, i. H.
  • the speed of the coolant pump is regulated by means of the control device 24 both in the event of deviations from higher and lower temperatures than the predetermined target temperature. In this way it is ensured that in the cooling circuit only the exact amount circulated to
  • the coolant pump 7 is speed-controlled, which means that its delivery rate depends directly on the speed at which it rotates.
  • Control device which works with the method according to the invention, ensures that the delivery rate in both bypass operation, ie. H. if the coolant liquid is bypassed by the changeover valve 11 in the bypass 26 past the retarder 13, as is also sufficient in the case of the activation of the retarder 13, in order to provide sufficient engine cooling capacity.
  • a considerable saving potential can be used, since when the retarder is switched off, the delivery rate of the water pump 7 turns out to be significantly lower, as a result of which fuel savings can be achieved.
  • FIG. 2 shows a further embodiment of the invention, a further pump 30 being provided in the cooling circuit in addition to the speed-controlled pump 7.
  • the pump 30 is arranged upstream of the switching valve 11 for the bypass 26.
  • the same reference numerals are again chosen in Fig. 2.
  • the advantage of the design according to FIG. 2 can be seen in the fact that the speed-controlled pump 7, which is regulated by the control device 24 as a function of the motor temperature recorded by the sensor 20, can be designed to be very small in terms of its delivery rate, since a further one is present in the cooling circuit Pump 30 is provided, which in the present exemplary embodiment is operated as a function of the travel speed and ensures a basic delivery rate in the cooling circuit.
  • the pump 30 is dimensioned such that when the retarder is not operated, that is to say in the state in which the coolant has passed the bypass line 26 past the retarder is sufficient to provide the pump power required for engine cooling.
  • the control will respond and the control device will put the speed-controlled pump 7 into operation, which will then be operated at precisely such a speed that an additional delivery quantity is made available in order to prevent an inadmissible heating of the motor.
  • the control device in turn works as described in FIG. 1, ie in the event of deviations from a predetermined engine temperature setpoint, the speed of the pump 7 is adjusted accordingly until this predetermined setpoint engine temperature is reached.
  • the control allows the coolant circuit to always run just so that the engine is close to the maximum permissible temperature. As already shown above, this results in considerable fuel savings.
  • the same reference numbers as in FIGS. 1 and 2 are again used for the same units.
  • the further pump 30 is arranged behind the changeover valve 11 immediately before the retarder 13.
  • the basic load for the coolant delivery is now taken over by the speed-controlled pump 7. It is in turn controlled as a function of the engine temperature by means of the control device 24 in such a way that the speed-controlled pump is controlled as a function of the specified setpoint and the deviation of the actual value.
  • the speed-controlled pump can be designed to be very low in terms of its delivery rate, since it only has to remove the heat generated in the coolant circuit without the retarder being switched on. If the retarder is now switched on, the further pump 30 is also switched on and the higher pump required for cooling Delivery volume made available by this.
  • the additional coolant quantity which is used to reduce the heat load which arises from the activation of the retarder, is conveyed by the further coolant pump 30.
  • control device can additionally be connected to the changeover valve 11 via a signal line 32 in order to receive a status signal, which provides information as to whether the coolant is flowing through the
  • the drive of the speed-controlled pumps 7 can be operated by means of an electric motor, which in turn is connected to the electrical circuit of the vehicle.
  • the control of the electric motors that are suitable for this purpose are known to the person skilled in the art from the prior art, see for example "Dubbel, Taschenbuch für den Maschinenbau, 18th edition, 1995, pages V18-V51.
  • a plurality of coolant pumps can be provided, one or more of which are speed-controlled coolant pumps.

Abstract

Die Erfindung betrifft ein Verfahren zur Einstellung der Motortemperatur mittels eines Kühlkreislaufes umfassend ein Kühlmittel sowie Kühlmittelpumpe (7). Die Erfindung ist dadurch gekennzeichnet, dass die Temperatur des Kühlmittels mittels mindestens einer drehzahlgeregelten Kühlmittelpumpe (7) in Abhängigkeit von der Motortemperatur derart eingestellt wird, dass ein vorherbestimmter maximaler Motortemperaturwert nicht überschritten wird.

Description

Verfahren und Steuerung zur Regelung des Kühlkreislaufes eines Fahrzeuges mittels einer thermisch geregelten Wasserpumpe
Die Erfindung betrifft ein Verfahren zur Einstellung der Motortemperatur mittels eines Kühlkreislaufes sowie eine Vorrichtung zur Einstellung der Motortemperatur.
Zur Kühlung von Motoren, insbesondere Verbrennungsmotoren, werden heute in der Regel Kühlkreisläufe umfassend ein Kühlmittel, vorzugsweise Wasser mit den entsprechenden Frostschutzzusätzen, eingesetzt. Dabei durchströmt eine bestimmte Kühlmittelmenge pro Zeiteinheit den zu kühlenden Motor, nimmt dabei die abzuführende Wärme des Verbrennungsmotores auf und transportiert diese zu einem Kühler, beispielsweise einen Rippenkühler, in dem die aufgenommene und transportierte Wärmemenge an die Umgebung abgegeben wird. Die Kühlleistung eines solchen Systems wird im wesentlichen durch die umgewälzte Menge Kühlmittel bestimmt. Die Umwälzung des Kühlmittels erfolgt mittels einer Kühlmittelpumpe. Dabei bestimmt die Fördermenge der Kühlmittelpumpe den Kühlmittelfluß durch den Kühlkreislauf.
Wie aus dem Stand der Technik hinlänglich bekannt, ist die Fördermenge der Kühlmittelpumpe im allgemeinen von deren Drehzahl abhängig. Herkömmliche Kühlmittelpumpen stehen in ständiger Triebverbindung mit dem Motor, sie arbeiten somit also motordrehzahlabhängig. Nachteilig an diesem Verfahren zur Kühlung eines Motors, insbesondere eines Verbrennungsmotors ist, daß eine hohe Pumpleistung auch in Fällen, in denen diese nicht benötigt wird, zur Verfügung gestellt wird. Beispielsweise wird Sommers wie Winters bei einer derartigen Anordnung immer dieselbe Menge Kühlmittel durch den Kühlkreislauf gefördert. Hierdurch kommt es zu einer unnötigen Leistungsaufnahme von seiten des Motors, was in bestimmten Betriebssituationen zu einem unnötig hohen Kraftstoffverbrauch führt. Besonders gravierend wird dieses Problem, wenn in den Kühlkreislauf eine Retarder eingebracht wird, dessen Arbeitsmedium gleichzeitig Kühlmedium für den Motor ist. Dann muß zur sicheren Wärmeabfuhr die Fördermenge der Kühlmittelpumpe so ausgelegt sein, daß auch noch bei zugeschaltetem Retarder die Wärme abgeführt werden kann. Dies erfordert Pumpen mit sehr hoher Leistung.
Es ist somit Aufgabe der Erfindung, ein Verfahren zur Kühlung von Motoren, insbesondere Verbrennungsmotoren, anzugeben, mit dem die oben geschilderten Nachteile des Standes der Technik überwunden werden können, sowie eine Regelvorrichtung hierfür.
Erfindungsgemäß wird diese Aufgabe durch ein Verfahren gemäß dem Anspruch 1 und eine Vorrichtung gemäß dem Anspruch 17 gelöst.
Gemäß dem erfindungsgemäßen Verfahren zur Einstellung der Motortemperatur ist vorgesehen, daß die Kühlmitteltemperatur in dem Kühlkreislauf mittels einer drehzahlgeregelten Kühlmittelpumpe derart eingestellt wird, daß möglichst schnell ein optimaler Motortemperaturwert erreicht und ein maximaler Wert keinesfalls überschritten wird.
In einer Weiterbildung der Erfindung kann vorgesehen sein, daß die Motortemperatur ständig ermittelt wird, beispielsweise in Abtastintervallen, die in einem Bereich von mehreren Sekunden bis zu Millisekunden liegen kann.
Anstelle eines fest vorgegebenen Temperaturmaximalwertes für den Motor kann dieser Wert in einer Weiterbildung in Abhängigkeit von der aktuellen Motorleistung vorgegeben werden. Auf diese Art und Weise ist es möglich, mit dem Kühlkreislauf immer nahe an der Temperaturgrenze des Motors zu fahren, was besonders kraftstoffsparend ist, da die Leistung der Kühlmittelpumpe dann optimal angepaßt wird.
Besonders vorteilhaft ist es, daß erfindungsgemäße Verfahren in Kühlkreisläufen anzuwenden, die einen Retarder umfassen, wobei dieser Retarder entweder mit einem seperaten Arbeitsmedium betrieben werden kann, und das Kühlmittel nur zum Wärmetausch eingesetzt wird oder aber auch in einer fortgebildeten Ausführungsform das Kühlmittel das Arbeitsmedium des Retarders selbst ist.
In einer Weiterbildung der Erfindung ist vorgesehen, daß der Retarder im Kühlkreislauf zu- und abgeschaltet werden kann, beispielsweise mittels eines Umschaltventiles, der das Kühlmittel in einem Bypass am Retarder vorbei leitet, wenn dieser nicht arbeitet.
Eine besonders kraftstoffeffiziente Ausführungsform sieht vor, daß neben der drehzahlgeregelten Kühlmittelpumpe mindestens eine weitere Kühlmittelpumpe vorgesehen ist. Diese kann entweder motordrehzahlabhängig, fahrgeschwindigkeitsabhängig oder retarderdrehzahlabhängig betrieben werden.
Bei einem Kühlmittelkreislauf, der mehrere Kühlmittelpumpen umfaßt, kann die drehzahigeregelte Kühlmittelpumpe so ausgelegt werden, daß sie die Grundkühllast im Kühlkreislauf zur Verfügung stellt und nur bei besonderen Belastungen die weitere Kühlmittelpumpe zugeschaltet wird, zum Beispiel bei
Bergfahrt. Insbesondere erweist sich eine derartige Anordnung bei Kühlkreisläufen, die einen Retarder umfassen, als besonders vorteilhaft. Hier kann vorgesehen sein, daß die drehzahlgeregelte Kühlmittelpumpe in ihrem Leistungsvermögen gerade so ausgelegt wird, daß sie für jede Betriebssituation des Motors bei nicht in Betrieb befindlichen oder abgeschaltetem Retarder eine ausreichende Kühlung des Motors gewähleistet.
In einer Weiterbildung dieses Gedankens kann dann vorgesehen sein, daß die mindestens eine weitere Kühlmittelpumpe, wenn der Retarder betrieben wird, zugeschaltet wird, so daß die im Retarder zusätzlich erzeugte Wärme noch sicher abgeführt werden kann, d. h. mit Hilfe dieser weiteren Kühlmittelpumpe in Kombination mit der drehzahlgeregelten Kühlmittelpumpe eine ausreichende Kühlung des Motors gewährleistet wird.
Selbstverständlich ist es in einer alternativen Ausgestaltung der Erfindung auch möglich, daß die weitere Kühlmittelpumpe, die motordrehzahlabhängig, retarderdrehzahlabhängig oder aber fahrgeschwindigkeitsabhängig betrieben wird, in ihrem Leistungsvermögen so bemessen wird, daß sie die für eine ausreichende Kühlung des Motors benötigte Grundleistung in allen
Betriebszuständen zur Verfügung stellt. Die drehzahlgeregelte Kühlmittelpumpe wird dann nur bei zugeschaltetem Retarder betrieben und zwar genau derart, daß am Motor die zuvor bereits erwähnte maximale Motortemperatur nicht überschritten wird. Als Kühlmittel gelangt in der Regel Wasser mit den entsprechenden Frostschutzmitteln zum Einsatz.
Der Retarder kann sowohl ein Primärretard er, also ein Retarder, dessen Drehzahl motordrehzahlabhängig ist, oder aber auch ein Sekundärretarder, dessen Drehzahl fahrgeschwindigkeitsabhängig ist, sein. Selbstverständlich ist es möglich, daß das Kühlmittel gleichzeitig als Arbeitsmittel des Retarders dient. Die Erfindung soll aber auch den Fall umfassen, daß das Kühlmittel des Motors nicht zugleich Arbeitsmittel des Retarders ist, sondern lediglich beispielsweise durch einen Wärmetauscher geleitet wird und von dort die Wärme, die im Bremsbetrieb im Retarder erzeugt wird, aufnimmt. Neben dem Verfahren stellt die Erfindung eine Vorrichtung zur Einstellung der Motortemperatur zur Verfügung.
Die erfindungsgemäße Vorrichtung umfaßt Mittel zur Bestimmung der Motortemperatur, beispielsweise einen Temperatursensor, der in der Regel in der Nähe des Motors oder am Motor selbst angebracht ist. Des weiteren umfaßt die Vorrichtung einen Kühlkreislauf mit einem Kühlmittel und einer Kühlmittelpumpe zur Einstellung der Motortemperatur sowie einer Regelvorrichtung zur Regelung der Fördermenge der Kühlmittelpumpe bzw. Kühlmittelpumpen in Abhängigkeit von der bestimmten Motortemperatur.
In einer besonders bevorzugten Ausführungsform ist mindestens eine der Kühlmittelpumpen eine drehzahlgeregelte Kühlmittelpumpe, d. h. eine solche deren Fördermenge abhängig von der Drehzahl ist.
Der Kühlkreislauf der erfindungsgemäßen Vorrichtung umfaßt in einer Weiterbildung der Erfindung einen Retarder sowie ein Umschaltventil.
Besonders vorteilhaft ist es, wenn bei einer derartigen Vorrichtung mit einem Retarder und einem Umschaltventil die Vorrichtung des weiteren eine
Umschaltventilansteuerung aufweist.
Besonders bevorzugt ist es, wenn weitere Pumpen im Kühlmittelkreislauf vorgesehen sind, diese mit einer seperaten Ansteuerung, beispielsweise zum Inbetriebnehmen und Außerbetriebnehmen, zu versehen.
Die Erfindung soll nunmehr anhand der Zeichnungen beispielhaft beschrieben werden.
Es zeigen: Fig. 1 eine Antriebseinheit mit der erfindungsgemäßeπ Regelvorrichtung. Fig. 2 eine Antriebseiπheit mit der erfindungsgemäßen Regelvorrichtung und einer weiteren Kühlmittelpumpe.
Fig. 3 eine alternative Ausführungsform der Erfindung gemäß Fig. 2.
In Figur 1 ist eine Antriebseiπheit bestehend aus einem Motor 1 sowie einem Kühlkreislauf 3 dargestellt. Der Kühlkreislauf 3 umfaßt einen Kühler 5, eine Kühlmittelpumpe 7, die als drehzahlgeregelte Kühlmittelpumpe ausgelegt ist, sowie einen Ausgleichsbehälter 9, der pumpensaugseitig immer für einen ausreichenden Überdruck sorgt. Des weiteren ist in dem Kühlkreislauf ein
Umschaltventil 11 sowie ein Retarder 13 vorgesehen. Die Erfindung beschränkt sich aber keinesfalls nur auf solche Ausführungsformen, bei denen im Kühlmittelkreislauf ein Retarder angeordnet ist. Die Erfindung ist auch anwendbar, wenn nur eine Motorkühlung mittels eines Kühikreislaufes und einer drehzahlgeregelten Kühlmittelpumpe vorgesehen ist.
Am Kühler führt eine Bypassleitung 40 vorbei, die sich im Punkt 42 verzweigt. Im Punkt 42 ist ein Umschaltventil 44 angeordnet, das als 3/2-Wege Ventil ausgelegt sein kann. Das 3/2-Wege-Ventil hat die Funktion den Kühlmittelstrom so zu steuern ,daß er entweder durch den Kühler oder aber durch die Bypassleitung 40 am Kühler vorbei geführt werden kann. In einer Betriebsphase mit hoher Wärmeabfuhr steuert das 3/2-Wege-Ventil den Kühlstrom teilweise oder größtenteils zum Kühler 5. In der Phase geringer Wärmeabführung steuert das 3/2-Wege-Umschaltveπtil 44 das Kühlmittel über die Bypassleitung zum Motor 1 bzw zur Pumpe 7. Das 3/2-Wege-Ventil kann als Dehnstoffregelventil ausgeführt sein oder als elektrisches oder pneumatische stetig regelndes Ventil.
Der Kühler kann mittels eines Lüfters 15 unterstützt werden. Der Motor 1 weist in vorliegendem Fall als Mittel zur Bestimmung der Temperatur einen
Temperatursensor 20 auf. Selbstverständlich können auch mehrere Temperatursensoren an verschiedenen Stellen des Motors oder auch in der Kühlmittelleitung, die vom Motor wegführt, positioniert werden. Über die Signalleitung 22 wird einer Regelvorrichtung 24 ein Temperatursignal zugeführt, das die jeweils aktuelle Motortemperatur repräsentiert. Selbstverständlich ist es beispielsweise bei mehreren Temperatursensoren möglich, der Regelvorrichtung 24 eine Vielzahl von Temperatursignalen zuzuleiten und zur Bestimmung des Temperatur-Istwertes, der als Führungsgröße in vorliegendem Regelkreis dient, eine Mittelung über eine Vielzahl von Temperatursignalen vorzunehmen. In der Regelvorrichtung 24 selbst ist ein für den Motor maximaler Temperaturwert als Sollwert für den
Regelkreis abgelegt. Es ist möglich, daß dieser maximale Temperatur-Sollwert ein einziger Wert für alle Betriebszustände des Motors ist. Ebenso kann ein Wert, der dem Lastzustand des Motors folgt auf die Pumpendrehzahlregelung direkt einwirken, d.h. die Pumpenregelung ist nicht nur alleine von dem Temperatursollwert abhängig. Die Erkennung des Lastzustandes kann einen
Drehmomentsensor oder der Regeleinheit des Motors entnommen werden. Es sind nun verschiedene Regelalgorithmen denkbar. So kann die drehzahlgeregelte Kühlmittelpumpe 7 mit einer bestimmten konstanten Drehzahl betrieben werden und die Regelung greift nur dann ein, wenn die Motortemperatur den vorgegebenen maximalen Temperaturwert überschreitet.
Es wird dann nachgeregelt, d. h. die Fördermenge erhöht.
In einer Fortbildung der Erfindung kann vorgesehen sein, mittels der drehzahigeregelten Pumpe die Kühlmittelmenge, die durch den Motor gefördert wird, immer gerade so zu bemessen, daß der Motor an der maximal zulässigen Kühlmitteltemperatur gefahren wird, d. h. die Kühlmittelpumpe wird in ihrer Drehzahl sowohl bei Abweichungen zu höheren wie auch zu niedrigeren Temperaturen, als der vorgegebenen Solltemperatur mittels der Regelvorrichtung 24 geregelt. Auf diese Art und Weise wird sichergestellt, daß im Kühlkreislauf immer nur genau die Fördermenge umläuft, die zur
Erreichung der Motorsollwert-Temperatur erforderlich ist. Hierzu ist es besonders vorteilhaft, wenn die Kühlmittelpumpe 7 drehzahlgeregelt ist, das bedeutet, ihre Fördermenge von der Drehzahl mit der sie umläuft, direkt abhängt.
Durch die in Fig. 1 dargestellte am Wasserkreislauf angeordnete
Regelvorrichtung gemäß der Erfindung, die mit dem erfindungsgemäßen Verfahren arbeitet, ist sichergestellt, daß die Fördermenge sowohl im Bypassbetrieb, d. h. wenn die Kühlmittelflüssigkeit durch Umschaltung des Umschaltventiles 11 im Bypass 26 am Retarder 13 vorbeigeleitet wird wie auch im Fall der Zuschaltung des Retarders 13 stets ausreichend ist, um eine genügende Motorkühlleistung zur Verfügung zu stellen. Als Vorteil gegenüber dem bislang verwendeten Kühlmittelpumpen kann aber ein erhebliches Einsparpotential genutzt werden, da bei abgeschaltetem Retarder die Fördermenge der Wasserpumpe 7 wesentlich niedriger ausfällt, wodurch eine Kraftstoffeinsparung erzielt werden kann.
In Fig. 2 ist eine weitere Ausführungsform der Erfindung dargestellt, wobei in dem Kühlkreislauf neben der drehzahlgeregelten Pumpe 7 eine weitere Pumpe 30 vorgesehen ist. Die Pumpe 30 ist in dieser Ausführungsform vor dem Schaltventil 11 für den Bypass 26 angeordnet. Für gleiche Aggregate wie in Fig. 1 werden in Fig. 2 wiederum gleiche Bezugszeichen gewählt.
Der Vorteil der Ausbildung gemäß Fig. 2 ist darin zu sehen, daß die drehzahlgeregelte Pumpe 7, die von der Regelvorrichtung 24 in Abhängigkeit der über den Sensor 20 aufgenommenen Motortemperatur geregelt wird, in ihrer Fördermenge sehr gering ausgelegt werden kann, da im Kühlkreislauf eine weitere Pumpe 30 vorgesehen ist, die in vorliegendem Ausführungsbeispiel fahrgeschwindigkeitsabhäπgig betrieben wird und für eine Grundfördermenge im Kühlkreislauf sorgt. Die Pumpe 30 ist so dimensioniert, daß sie bei nicht betriebenem Retarder, d. h. in dem Zustand, in dem das Kühlmittel am Retarder durch die Bypassleitung 26 vorbei geführt wird, ausreichend ist, um die für die Motorkühlung benötigte Pumpleistung zur Verfügung zu stellen. Wird nunmehr Kühlmittel als Arbeitsmedium durch den Retarder 13 geleitet und dieses durch den im Betrieb befindlichen Retarder weiter mit Wärme belastet, so reicht die Fördermenge der Pumpe 30 nicht mehr aus, um die maximale, zulässige Motortemperatur einzuhalten. In diesem Fall wird die Regelung ansprechen und die Regelvorrichtung die drehzahlgeregelte Pumpe 7 in Betrieb setzen, die dann genau mit einer solchen Drehzahl betrieben wird, daß eine zusätzliche Fördermenge zur Verfügung gestellt wird, um eine unzulässige Erwärmung des Motors zu verhindern. Die Regelvorrichtung arbeitet wiederum wie bei Fig. 1 beschrieben, d. h. bei Abweichungen von einem vorgegebenen Motortemperatur-Sollwert wird die Drehzahl der Pumpe 7 solange entsprechend eingestellt, bis diese vorgegebene Sollwert-Motortemperatur erreicht ist. Wie oben gesagt, erlaubt es die Regelung, den Kühlmittelkreislauf immer gerade so zu fahren, daß sich der Motor nahe an der maximal zulässigen Temperatur befindet. Dies hat, wie bereits oben aufgezeigt, eine erhebliche Kraftstoffeinsparung zur Folge.
In einer in Fig. 3 dargestellten dritten Ausführungsform werden wiederum für gleiche Aggregate dieselben Bezugsziffern wie schon in Fig. 1 und 2 verwendet. Nunmehr ist die weitere Pumpe 30 hinter dem Umschaltventil 11 unmittelbar vor dem Retarder 13 angeordnet. Die Grundlast zur Kühlmittelförderung übernimmt jetzt die drehzahlgeregelte Pumpe 7. Sie wird wiederum in Abhängigkeit von der Motortemperatur mittels der Regelvorrichtung 24 angesteuert und zwar derart, daß in Abhängigkeit vom vorgegebenen Sollwert und der Abweichung des Istwertes hiervon die drehzahlgeregelte Pumpe angesteuert wird. Die drehzahlgeregelte Pumpe kann in ihrer Fördermenge sehr gering ausgelegt werden, da sie nur die im Kühlmittelskreislauf ohne zugeschalteten Retarder anfallende Wärme abtransportieren muß. Wird nun der Retarder zugeschaltet, so wird auch die weitere Pumpe 30 zugeschaltet und die zur Kühlung erforderliche höhere Fördermenge hierdurch zur Verfügung gestellt. Im Gegensatz zu der Ausführungsform gemäß Fig. 2 wird also in dieser Ausführungsform die zusätzliche Kühlmittelmenge, die zur Reduktion der Wärmebelastung, die durch Zuschaltung des Retarders entsteht, von der weiteren Kühlmittelpumpe 30 gefördert.
Sowohl gemäß der Ausführungsform nach Fig. 2 wie auch nach Fig. 3 kann die Regelvorrichtung zusätzlich über eine Signalleitung 32 mit dem Umschaltventil 11 verbunden sein, um hierüber ein Zustandssignal zugeführt zu bekommen, das Auskunft darüber gibt, ob das Kühlmittel durch den
Retarder oder über den Bypass an diesem vorbeigeleitet wird. Bei der Ausführungsform gemäß Fig. 2 ist es dann beispielsweise möglich, die Regelung mittels der Regelvorrichtung 24 nur dann zu aktivieren, wenn auf der Signalleitung 32 ein Zustandssignal anliegt, das angibt, das Kühlmittel durch den Retarder geleitet wird und dort als Arbeitsmedium dient.
Der Antrieb der drehzahlgeregelten Pumpen 7 kann mittels eines Elektromotores, der wiederum an den elektrischen Stromkreis des Fahrzeuges angeschlossen ist, betrieben werden. Die Ansteuerung der hierfür beispielsweise in Frage kommenden Elektromotoren sind dem Fachmann aus dem Stand der Technik, siehe hierzu beispielsweise "Dubbel, Taschenbuch für den Maschinenbau, 18. Auflage, 1995, Seiten V18 - V51 bekannt.
Selbstverständlich können neben dem Ausführungsbeispiel mit den dargestellten zwei Kühlmittelpumpen mehrere Kühlmittelpumpen vorgesehen sein, wovon eine oder mehrere drehzahlgeregelte Kühlmittelpumpen sind.

Claims

Patentansprüche
1. Verfahren zur Einstellung der Motortemperatur mittels eines Kühlkreisiaufes umfassend ein Kühlmittel sowie eine Kühlmittelpumpe, dadurch gekennzeichnet, daß 1.1 die Temperatur des Kühlmittels mittels mindestens einer drehzahlgeregelten Kühlmittelpumpe (7) in Abhängigkeit von der Motortemperatur derart eingestellt wird, daß ein vorherbestimmter maximaler Motortemperaturwert nicht überschritten wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Motortemperatur ständig ermittelt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der vorbestimmte Temperaturmaximalwert ständig der aktuellen Motorleistung angepaßt wird.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Kühlmittelkreislauf des weiteren einen
Retarder umfaßt, dessen Arbeitsmedium das Kühlmedium ist.
5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß der Retarder zu- und abschaltbar ist.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kühlmittelkreislauf neben der mindestens einen drehzahlgeregelten Kühlmittelpumpe (7) mindestens eine weitere Kühlmittelpumpe (30) umfaßt.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die mindestens eine weitere Kühlmittelpumpe (30) motordrehzahlabhängig betrieben wird.
8. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die mindestens eine weitere Kühlmittelpumpe (30) fahrgeschwindigkeitsabhängig betrieben wird.
9. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die mindestens eine weitere Kühlmittelpumpe (30) retarderdrehzahlabhängig betrieben wird.
10. Verfahren gemäß einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß die drehzahlgeregelte Kühlmittelpumpe (7) in ihrem Leistungsvermögen derart ausgelegt ist, daß sie eine ausreichende Kühlung des Motors bei abgeschaltetem Retarder gewährleistet.
11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die mindestens eine weitere Kühlmittelpumpe (30) bei zugeschaltetem Retarder zugeschaltet wird, so daß eine ausreichende Kühlung des Motors in diesem Zustand gewährleistet wird.
12. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die drehzahlgeregelte Kühlmittelpumpe (7) nur bei zugeschaltetem Retarder betrieben wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die mindestens eine weitere Kühlmittelpumpe (30) ständig betrieben wird und in ihrem Leistungsvermögen so bemessen ist, daß sie eine ausreichende Kühlung des Motors gewährleistet.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Kühlmedium Wasser bw. ein Wassergemisch ist.
15. Verfahren nach einem der Ansprüche 4 bis 14, dadurch gekennzeichnet, daß der Retarder (13) ein Primärretarder ist.
16. Verfahren nach einem der Ansprüche 4 bis 14, dadurch gekennzeichnet, daß der Retarder (13) ein Sekundärretarder ist.
17. Vorrichtung zum Einstellen der Motortemperatur mit 17.1 Mittein zur Bestimmung der Motortemperatur;
17.2 einem Kühlkreislauf mit mindestens einer Kühlmittelpumpe zur Einstellung der Motortemperatur;
17.3 einer Regelvorrichtung zur Regelung der Fördermenge der mindestens einen Kühlmittelpumpe in Abhängigkeit von der mittels der Mittel zur Bestimmung der Motortemperatur.
18. Vorrichtung gemäß Anspruch 17, dadurch gekennzeichnet, daß die mindestens eine Kühlmittelpumpe mindestens eine drehzahlgeregelte Kühlmittelpumpe umfaßt, deren Fördermenge von deren Drehzahl abhängt.
19. Vorrichtung gemäß einem der Ansprüche 17 bis 18, dadurch gekennzeichnet, daß der Kühlkreislauf des weiteren einen Retarder (13) und ein Umschaltventil (11) umfaßt.
20. Vorrichtung gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß die Vorrichtung des weiteren eine Umschaltventilansteuervorrichtung umfaßt.
21. Vorrichtung gemäß einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, daß die Vorrichtung des weiteren eine Ansteuervorrichtung für mindestens eine weitere Pumpe umfaßt.
22. Vorrichtung gemäß einem der Ansprüche 17 bis 21 , dadurch gekennzeichnet, daß der Kühlkreislauf eine Bypassleitung, die am Kühler vorbeiführt, umfaßt.
EP97909371A 1996-10-09 1997-10-08 Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe Expired - Lifetime EP0931208B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19641558 1996-10-09
DE1996141558 DE19641558A1 (de) 1996-10-09 1996-10-09 Verfahren und Steuerung zur Regelung des Kühlkreislaufes eines Fahrzeuges mittels einer thermisch geregelten Wasserpumpe
PCT/EP1997/005545 WO1998015726A1 (de) 1996-10-09 1997-10-08 Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe

Publications (2)

Publication Number Publication Date
EP0931208A1 true EP0931208A1 (de) 1999-07-28
EP0931208B1 EP0931208B1 (de) 2003-03-12

Family

ID=7808239

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97909371A Expired - Lifetime EP0931208B1 (de) 1996-10-09 1997-10-08 Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe

Country Status (3)

Country Link
EP (1) EP0931208B1 (de)
DE (2) DE19641558A1 (de)
WO (1) WO1998015726A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818030C2 (de) * 1998-04-22 2003-12-18 Schatz Thermo System Gmbh Verfahren und Vorrichtung zum Betreiben eines Kühlmittelkreises einer Brennkraftmaschine
DE19848544C1 (de) * 1998-10-22 2000-06-21 Voith Turbo Kg Verfahren und Vorrichtung zur Erhöhung der Bremsmomentenausnutzung eines hydrodynamischen Retarders in einem Kraftfahrzeug
DE19951735A1 (de) 1999-10-27 2001-05-17 Zahnradfabrik Friedrichshafen Retardersystem
DE10023519A1 (de) 2000-05-13 2002-01-03 Zahnradfabrik Friedrichshafen Kühlsystem für Fahrzeuge
DE102004018227A1 (de) * 2004-04-15 2005-11-17 Zf Friedrichshafen Ag Kühlsystem
DE102005013075A1 (de) * 2005-03-18 2006-09-21 Voith Turbo Gmbh & Co. Kg Kühlkreislauf mit einer hydrodynamischen Bremse
WO2008091193A1 (en) * 2007-01-23 2008-07-31 Volvo Lastvagnar Ab A method for controlling cooling of an auxiliary brake
DE102011116933A1 (de) 2011-10-26 2013-05-02 Man Truck & Bus Ag Kühlkreislauf für eine flüssigkeitsgekühlteBrennkraftmaschine
SE538626C2 (sv) * 2013-10-24 2016-10-04 Scania Cv Ab Kylsystem i ett fordon
CN105799493A (zh) * 2014-12-29 2016-07-27 上海大郡动力控制技术有限公司 纯电动汽车水泵的控制方法
CN110805487B (zh) * 2019-01-24 2020-10-27 长城汽车股份有限公司 一种发动机电子水泵的控制方法和系统
SE543280C2 (en) * 2019-03-08 2020-11-10 Scania Cv Ab A method for controlling a vehicle in association with a descent, a powertrain, a vehicle, a computer program and a computer-readable medium

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6913276A (de) * 1968-09-17 1970-03-19
FR2384106A1 (fr) * 1977-03-16 1978-10-13 Sev Marchal Dispositif de refroidissement pour moteur a combustion interne
DE3024209A1 (de) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Fluessigkeitskuehlung fuer verbrennungsmotoren
US4434749A (en) * 1981-03-25 1984-03-06 Toyo Kogyo Co., Ltd. Cooling system for liquid-cooled internal combustion engines
JPH0623539B2 (ja) * 1985-05-20 1994-03-30 本田技研工業株式会社 車両用エンジン冷却装置
DE3738412A1 (de) * 1987-11-12 1989-05-24 Bosch Gmbh Robert Vorrichtung und verfahren zur motorkuehlung
DE3810174C2 (de) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine, insbesondere in Kraftfahrzeugen
JPH0417715A (ja) * 1990-05-07 1992-01-22 Nippondenso Co Ltd 内燃機関の冷却装置
DE4102929A1 (de) * 1991-01-31 1992-08-06 Man Nutzfahrzeuge Ag Kraftfahrzeug mit einer einrichtung zur bremsenergierueckgewinnung
SE501444C2 (sv) * 1993-07-01 1995-02-20 Saab Scania Ab Kylsystem för ett med retarder utrustat fordon
DE9419818U1 (de) * 1994-02-09 1995-03-16 Luebeck Tino Regelbare elektrische Wasserpumpe zur Kühlung von Verbrennungskraftmaschinen
DE4445024A1 (de) * 1994-12-16 1995-06-08 Voith Turbo Kg Antriebseinheit
DE4446288A1 (de) * 1994-12-23 1995-06-29 Voith Turbo Kg Antriebseinheit mit einer Brennkraftmaschine und einem hydrodynamischen Retarder
DE4447166A1 (de) * 1994-12-30 1995-06-08 Voith Turbo Kg Bremsanlage mit einem hydrodynamischen Retarder, insbesondere für ein Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9815726A1 *

Also Published As

Publication number Publication date
DE19641558A1 (de) 1998-04-16
EP0931208B1 (de) 2003-03-12
WO1998015726A1 (de) 1998-04-16
DE59709520D1 (de) 2003-04-17

Similar Documents

Publication Publication Date Title
DE102004034443B4 (de) Kühlsystem für einen Verbrennungsmotor und Verfahren zum Steuern eines solchen Kühlsystems
EP1123231B1 (de) Verfahren und vorrichtung zur erhöhung der bremsmomentenausnutzung eines retarders in einem kraftfahrzeug
DE10215262B4 (de) Kühlsystem, insbesondere für einen Kraftfahrzeugmotor mit indirekter Ladeluftkühlung
DE69925671T2 (de) Regelsystem für totale Kühlung einer Brennkraftmaschine
EP0640753B1 (de) Kühlanlage für eine Brennkraftmaschine
EP0638712B1 (de) Kühlmittelkreislauf
DE69834891T2 (de) Kühlungsanlage für die Brennkraftmaschine einer Lokomotive
DE3601532C2 (de)
DE102005049052B4 (de) Verfahren zum Betrieb eines Fahrzeugkühlmittelsystems während eines Heizereignisses
EP2724001B1 (de) Kühlsystem
WO2006066713A1 (de) System und verfahren zum temperieren eines motoröls einer brennkraftmaschine eines kraftfahrzeugs
DD149920A5 (de) Heizeinrichtung
EP1108572B1 (de) Wärmetauschsystem für die Heizung eines Fahrzeugs mit Hybridantrieb
EP0177025A2 (de) Kühlsystem
EP0931208B1 (de) Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe
DE102004021551A1 (de) Kühlsystem, insbesondere für ein Kraftfahrzeug
EP0032676A2 (de) Einrichtung zum Beheizen einer Bedienungskabine
EP1038097A1 (de) Vorrichtung zum kühlen eines motors für ein kraftfahrzeug
EP0931209B1 (de) Antriebseinheit mit thermisch geregelter wasserpumpe
EP1270895A1 (de) Ladelufttemperaturkontrolle für Motoren mit Ladeluftkühler
WO2006066711A1 (de) Kühlkreislauf für ein kraftfahrzeug und steuerungsverfahren dafür
DE2631121A1 (de) Fluessigkeitsgekuehlte brennkraftmaschine
DE3700037C2 (de) Kühlanlage für die gemeinsame Kühlflüssigkeit der Antriebsmaschine sowie eines Retarders eines Fahrzeuges
EP1133623A1 (de) Kühlkreislauf
EP1375213B1 (de) Verfahren zum Betrieb eines Kühl- und Heizkreislaufs eines Kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20010525

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 59709520

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030520

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060926

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061023

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 10

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071008

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061013

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151022

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59709520

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503