EP0931209B1 - Antriebseinheit mit thermisch geregelter wasserpumpe - Google Patents

Antriebseinheit mit thermisch geregelter wasserpumpe Download PDF

Info

Publication number
EP0931209B1
EP0931209B1 EP97910425A EP97910425A EP0931209B1 EP 0931209 B1 EP0931209 B1 EP 0931209B1 EP 97910425 A EP97910425 A EP 97910425A EP 97910425 A EP97910425 A EP 97910425A EP 0931209 B1 EP0931209 B1 EP 0931209B1
Authority
EP
European Patent Office
Prior art keywords
coolant
drive unit
engine
speed
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97910425A
Other languages
English (en)
French (fr)
Other versions
EP0931209A1 (de
Inventor
Peter Edelmann
Klaus Vogelsang
Peter Heilinger
Peter Rose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Turbo GmbH and Co KG
Original Assignee
Voith Turbo GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Turbo GmbH and Co KG filed Critical Voith Turbo GmbH and Co KG
Publication of EP0931209A1 publication Critical patent/EP0931209A1/de
Application granted granted Critical
Publication of EP0931209B1 publication Critical patent/EP0931209B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/06Retarder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/161Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps

Definitions

  • the invention relates to a drive unit, in particular for a motor vehicle with an internal combustion engine and a transmission, as well as a cooling circuit comprising a coolant for cooling the engine.
  • cooling circuits comprising a coolant, preferably water with the appropriate anti-freeze additives. It flows through a certain amount of coolant per unit of time the engine to be cooled, absorbs the heat of the internal combustion engine and transports them to a cooler, for example a finned cooler, in the amount of heat absorbed and transported to the environment is delivered.
  • the cooling capacity of such a system is in the essentially determined by the amount of coolant circulated.
  • the coolant is circulated by means of a coolant pump. there the flow rate of the coolant pump determines the coolant flow through the Cooling circuit.
  • Coolant pump generally depends on its speed.
  • Conventional coolant pumps are in constant drive connection the engine, so they work depending on the engine speed.
  • this method for cooling an engine, especially one Internal combustion engine is that high pumping power even in cases in to whom this is not required. For example summer and winter will always be the same with such an arrangement
  • Quantity of coolant pumped through the cooling circuit without Consideration of the respective operating parameters e.g. overrun and Partial load operation.
  • Working medium is also the cooling medium for the engine. Then must go safe heat dissipation designed the flow rate of the coolant pump be that the heat is dissipated even when the retarder is switched on can be. This requires pumps with very high performance.
  • a separate fluid circuit e.g. according to DE-A-44 47 166, Fig. 13
  • the retarder is in the To integrate the water circuit of the engine cooler (DE-A-44 47 166, Fig. 10-12, column 4).
  • this object is achieved by a drive unit according to the Claim 1 solved.
  • FIG. 1 is a drive unit consisting of a motor 1 and a Cooling circuit 3 shown.
  • the cooling circuit 3 comprises a cooler 5, one Coolant pump 7, which is designed as a speed-controlled coolant pump, and a surge tank 9, the pump suction side always for one sufficient overpressure. Furthermore, one is in the cooling circuit Switchover valve 11 and a retarder 13 are provided.
  • the invention but is in no way limited to only those embodiments in which a retarder is arranged in the coolant circuit. The invention is also applicable when only engine cooling by means of a cooling circuit and a speed-controlled coolant pump is provided.
  • a bypass line 40 leads past the cooler and branches at point 42.
  • a changeover valve 44 is arranged, which is a 3/2-way valve can be designed.
  • the 3/2-way valve has the function of Control coolant flow so that it either through the radiator or can be led past the cooler through the bypass line 40.
  • the 3/2-way valve controls the operating phase with high heat dissipation Some or most of the cooling flow to the cooler 5.
  • Lower in phase The 3/2-way changeover valve 44 controls heat dissipation via the coolant the bypass line to motor 1 or to pump 7.
  • the 3/2-way valve can be designed as an expansion valve or as an electrical or pneumatic continuously regulating valve.
  • the cooler can be supported by means of a fan 15.
  • the engine 1 has in the present case as a means for determining the temperature Temperature sensor 20 on.
  • Temperature sensor 20 can be a means for determining the temperature Temperature sensor 20 on.
  • a control device 24 is connected via the signal line 22 Temperature signal supplied, which is the current motor temperature represents. It goes without saying, for example, with several Temperature sensors possible, the control device 24 a variety of To supply temperature signals and to determine the actual temperature value, which serves as a reference variable in the present control loop, a Averaging over a variety of temperature signals.
  • the Control device 24 itself is a maximum temperature value for the motor as Setpoint stored for the control loop.
  • this maximum Temperature setpoint is a single value for all engine operating conditions.
  • a value that follows the load state of the engine can be based on the Act directly on the pump speed control, i.e. the pump control is not only dependent on the temperature setpoint.
  • the detection of the Load state can be a torque sensor or the control unit for the Motor can be removed.
  • the amount of coolant caused by the engine is always promoted so that the engine at the maximum permissible coolant temperature is driven, d. H. the coolant pump will in their speed both with deviations to higher as well as lower temperatures than the specified target temperature using the Regulating device 24 regulated. This ensures that in the cooling circuit only circulates the exact amount that is required for Reaching the engine setpoint temperature is required. This is it Particularly advantageous if the coolant pump 7 is speed-controlled means its delivery rate directly from the speed at which it rotates depends.
  • FIG. 2 shows a further embodiment of the invention, in in the cooling circuit in addition to the speed-controlled pump 7 in the cooling circuit a further pump 30 is provided.
  • the pump 30 is in this Embodiment arranged upstream of the switching valve 11 for the bypass 26.
  • Fig. 1 For same aggregates as in Fig. 1 are again the same in Fig. 2 Reference number chosen.
  • the advantage of the training shown in FIG. 2 is that the speed-controlled pump 7 depending on the control device 24 the motor temperature recorded via the sensor 20 is regulated in their delivery rate can be designed very low, because in the cooling circuit a further pump 30 is provided, which in the present Embodiment is operated depending on the vehicle speed and for provides a basic delivery rate in the cooling circuit.
  • the pump 30 is like this dimensioned so that when the retarder is not operated, i. H. in that condition, in which the coolant is directed past the retarder through the bypass line 26 is sufficient to provide the pumping power required for engine cooling to provide.
  • the control will respond and the control device Start speed-controlled pump 7, which then exactly with one is operated such a speed that an additional flow rate for Is provided to undue heating of the engine verhindem.
  • the control device in turn operates as in FIG. 1 described, d. H. in the event of deviations from a specified one Motor temperature setpoint is the speed of pump 7 as long set accordingly until this specified setpoint motor temperature is reached.
  • the regulation allows the coolant circuit Always drive straight so that the engine is close to the maximum permissible temperature. As already shown above, this has one considerable fuel savings.
  • a third embodiment shown in Fig. 3 are again for same aggregates the same reference numerals as in Figs. 1 and 2 used.
  • the further pump 30 is now behind the changeover valve 11 arranged immediately before the retarder 13.
  • the base load for The speed-sensitive pump 7 now takes over coolant delivery again depending on the engine temperature using the Control device 24 controlled and in such a way that depending on predetermined target value and the deviation of the actual value from it speed-controlled pump is controlled.
  • the speed-controlled pump can be interpreted in their delivery rate very low, since they only the in Coolant circuit without any heat generated by the retarder must be removed. If the retarder is now switched on, the another pump 30 switched on and the higher required for cooling Delivery volume made available by this.
  • Both according to the embodiment according to FIG. 2 and according to FIG. 3 can the control device additionally via a signal line 32 with the Switching valve 11 may be connected in order to be supplied with a status signal to get information about whether the coolant through the Retarder or bypassed by this.
  • the To activate control by means of the control device 24 only when on a signal is present on the signal line 32, which indicates the coolant is passed through the retarder and serves as the working medium there.
  • the speed-controlled pumps 7 can be driven by means of a Electric motor, which in turn is connected to the electrical circuit of the vehicle connected.
  • Electric motors that are suitable are known to the person skilled in the art the prior art, see, for example, "Dubbel, Paperback for mechanical engineering, 18th edition, 1995, pages V18 - V51 ".
  • coolant pumps be one or more of which are speed-controlled coolant pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Antriebseinheit, insbesondere für ein Kraftfahrzeug mit einem Verbrennungsmotor und einem Getriebe, sowie einem Kühlkreislauf umfassend ein Kühlmittel zur Kühlung des Motors.
Zur Kühlung von Motoren, insbesondere Verbrennungsmotoren, werden heute in der Regel Kühlkreisläufe umfassend ein Kühlmittel, vorzugsweise Wasser mit den entsprechenden Frostschutzzusätzen, eingesetzt. Dabei durchströmt eine bestimmte Kühimittelmenge pro Zeiteinheit den zu kühlenden Motor, nimmt dabei die abzuführende Wärme des Verbrennungsmotores auf und transportiert diese zu einem Kühler, beispielsweise einen Rippenkühler, in dem die aufgenommene und transportierte Wärmemenge an die Umgebung abgegeben wird. Die Kühlleistung eines solchen Systems wird im wesentlichen durch die umgewälzte Menge Kühlmittel bestimmt. Die Umwälzung des Kühlmittels erfolgt mittels einer Kühlmittelpumpe. Dabei bestimmt die Fördermenge der Kühlmittelpumpe den Kühlmittelfluß durch den Kühlkreislauf.
Wie aus dem Stand der Technik hinlänglich bekannt, ist die Fördermenge der Kühlmittelpumpe im allgemeinen von deren Drehzahl abhängig. Herkömmliche Kühlmittelpumpen stehen in ständiger Triebverbindung mit dem Motor, sie arbeiten somit also motordrehzahlabhängig. Nachteilig an diesem Verfahren zur Kühlung eines Motors, insbesondere eines Verbrennungsmotors ist, daß eine hohe Pumpleistung auch in Fällen, in denen diese nicht benötigt wird, zur Verfügung gestellt wird. Beispielsweise wird Sommers wie Winters bei einer derartigen Anordnung immer dieselbe Menge Kühlmittel durch den Kühlkreistauf gefördert, und zwar ohne Berücksichtigung der jeweiligen Betriebsparameter (z.B. Schubbetrieb und Teillastbetrieb). Hierdurch kommt es zu einer unnötigen Leistungsaufnahme von seiten des Motors, was in bestimmten Betriebssituationen zu einem unnötig hohen Kraftstoffverbrauch führt. Besonders gravierend wird dieses Problem, wenn in den Kühlkreislauf ein Retarder eingebracht wird, dessen Arbeitsmedium gleichzeitig Kühlmedium für den Motor ist. Dann muß zur sicheren Wärmeabfuhr die Fördermenge der Kühlmittelpumpe so ausgelegt sein, daß auch noch bei zugeschaltetem Retarder die Wärme abgeführt werden kann. Dies erfordert Pumpen mit sehr hoher Leistung.
Der Stand der Technik nach der ATZ-Beilage: Der "intelligente Kühlkreislauf" ein neues Konzept für die Motorkühlung; ATZ 95(1993) September, No.9, Stuttgart (DE) beschreibt einen mikroprozessorgesteuerten Motorkühlkreislauf mit mehreren drehzahlgeregelten Kühlmittelpumpen 8,4,12 (Bild. 3, S. V/VI). Ein Retarder ist auch vorgesehen ist (6, S.VI, Sp. 1), sein Kühler beaufschlagt den Motorkühlkreislauf in dem die drehzahlgeregelten Kühlmittelpumpen 8,4,12 vorgesehen sind. In diesem Motorkühlkreislauf wird aufgrund der Regelung anhand von permanent erfaßten kritischen Bauteiltemperaturen (S.VI; Sp.2) eine vorbestimmte Motortemperatur unabhängig vom zu- und abschaltbaren Retarderbetrieb nicht überschritten.
Gemäß DE-A-44 47 166 ist für einen Retarder einen separaten Fluidkreislauf (z.B. gemäß DE-A-44 47 166, Fig 13.) vorzusehen oder der Retarder ist in den Wasserkreislauf des Motorkühlers zu integrieren (DE-A- 44 47 166, Fig. 10-12, Sp. 4).
Es ist somit Aufgabe der Erfindung, eine Antriebseinheit anzugeben, mit dem die oben geschilderten Nachteile des Standes der Technik überwunden werden können.
Erfindungsgemäß wird diese Aufgabe durch eine Antriebseinheit gemäß dem Anspruch 1 gelöst.
Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.
Die Erfindung soll nunmehr anhand der Zeichnungen beispielhaft beschrieben werden.
Es zeigen:
  • Fig. 1 eine erfindungsgemäße Antriebseinheit.
  • Fig. 2 eine erfindungsgemäße Antriebseinheit mit einer weiteren Kühlmittelpumpe repräsentativ für Ausführungsformen mit mehreren Kühlmittelpumpen.
  • Fig. 3 eine alternative Ausführungsform der Erfindung gemäß Fig. 2.
  • In Figur 1 ist eine Antriebseinheit bestehend aus einem Motor 1 sowie einem Kühlkreislauf 3 dargestellt. Der Kühlkreislauf 3 umfaßt einen Kühler 5, eine Kühlmittelpumpe 7, die als drehzahlgeregelte Kühlmittelpumpe ausgelegt ist, sowie einen Ausgleichsbehälter 9, der pumpensaugseitig immer für einen ausreichenden Überdruck sorgt. Des weiteren ist in dem Kühlkreislauf ein Umschaltventil 11 sowie ein Retarder 13 vorgesehen. Die Erfindung beschränkt sich aber keinesfalls nur auf solche Ausführungsformen, bei denen im Kühlmittelkreislauf ein Retarder angeordnet ist. Die Erfindung ist auch anwendbar, wenn nur eine Motorkühlung mittels eines Kühlkreislaufes und einer drehzahlgeregelten Kühlmittelpumpe vorgesehen ist.
    Am Kühler führt eine Bypassleitung 40 vorbei, die sich im Punkt 42 verzweigt. Im Punkt 42 ist ein Umschaltventil 44 angeordnet, das als 3/2-Wege Ventil ausgelegt sein kann. Das 3/2-Wege-Ventil hat die Funktion den Kühlmittelstrom so zu steuern ,daß er entweder durch den Kühler oder aber durch die Bypassleitung 40 am Kühler vorbei geführt werden kann. In einer Betriebsphase mit hoher Wärmeabfuhr steuert das 3/2-Wege-Ventil den Kühlstrom teilweise oder größtenteils zum Kühler 5. In der Phase geringer Wärmeabführung steuert das 3/2-Wege-Umschaltventil 44 das Kühlmittel über die Bypassleitung zum Motor 1 bzw zur Pumpe 7. Das 3/2-Wege-Ventil kann als Dehnstoffregelventil ausgeführt sein oder als elektrisches oder pneumatische stetig regelndes Ventil.
    Der Kühler kann mittels eines Lüfters 15 unterstützt werden. Der Motor 1 weist in vorliegendem Fall als Mittel zur Bestimmung der Temperatur einen Temperatursensor 20 auf. Selbstverständlich können auch mehrere Temperatursensoren an verschiedenen Stellen des Motors oder auch in der Kühlmittelleitung, beispielsweise in der die vom Motor wegführt, positioniert werden. Über die Signalleitung 22 wird einer Regelvorrichtung 24 ein Temperatursignal zugeführt, das die jeweils aktuelle Motortemperatur repräsentiert. Selbstverständlich ist es beispielsweise mit mehreren Temperatursensoren möglich, der Regelvorrichtung 24 eine Vielzahl von Temperatursignalen zuzuleiten und zur Bestimmung des Temperaturlstwertes, die als Führungsgröße in vorliegendem Regelkreis dient, eine Mittelung über eine Vielzahl von Temperatursignalen vorzunehmen. In der Regelvorrichtung 24 selbst ist ein für den Motor maximaler Temperaturwert als Sollwert für den Regelkreis abgelegt. Es ist möglich, daß dieser maximale Temperatur-Sollwert ein einziger Wert für alle Betriebszustände des Motors ist. Ebenso kann ein Wert, der dem Lastzustand des Motors folgt auf die Pumpendrehzahlregelung direkt einwirken, d.h. die Pumpenregelung ist nicht nur alleine von dem Temeperatursollwert abhängig. Die Erkennung des Lastzustandes kann einem Drehmomentsensor oder der Regeleinheit für den Motor entnommen werden. Es sind nun verschiedene Regelalgorithmen denkbar. So kann die drehzahlgeregelte Kühlmittelpumpe 7 mit einer bestimmten konstanten Drehzahl betrieben werden und die Regelung greift nur dann ein, wenn die Motortemperatur den vorgegebenen maximalen Temperaturwert überschreitet. Es wird dann nachgeregelt, d. h. die Fördermenge erhöht.
    In einer Fortbildung der Erfindung kann vorgesehen sein, mittels der drehzahlgeregelten Pumpe die Kühlmittelmenge, die durch den Motor gefördert wird, immer gerade so zu bemessen, daß der Motor an der maximal zulässigen Kühlmitteltemperatur gefahren wird, d. h. die Kühlmittelpumpe wird in ihrer Drehzahl sowohl bei Abweichungen zu höheren wie auch zu niedrigeren Temperaturen, als der vorgegebenen Solltemperatur mittels der Regelvorrichtung 24 geregelt. Auf diese Art und Weise wird sichergestellt, daß im Kühlkreislauf immer nur genau die Fördermenge umläuft, die zur Erreichung der Motorsollwert-Temperatur erforderlich ist. Hierzu ist es besonders vorteilhaft, wenn die Kühlmittelpumpe 7 drehzahlgeregelt ist, das bedeutet, ihre Fördermenge von der Drehzahl mit der sie umläuft, direkt abhängt.
    Durch die in Fig. 1 dargestellte am Wasserkreislauf angeordnete Regelvorrichtung gemäß der Erfindung, die mit dem erfindungsgemäßen Verfahren arbeitet, ist sichergestellt, daß die Fördermenge sowohl im Bypassbetrieb, d. h. wenn die Kühlmittelflüssigkeit durch Umschaltung des Umschaltventiles 11 im Bypass 26 am Retarder 13 vorbeigeleitet wird wie auch im Fall der Zuschaltung des Retarders 13 stets ausreichend ist, um eine genügende Motorkühlleistung zur Verfügung zu stellen. Als Vorteil gegenüber dem bislang verwendeten Kühlmittelpumpen kann aber ein erhebliches Einsparpotential genutzt werden, da bei abgeschaltetem Retarder die Fördermenge der Wasserpumpe 7 wesentlich niedriger ausfällt, wodurch eine Kraftstoffeinsparung erzielt werden kann.
    In Fig. 2 ist eine weitere Ausführungsform der Erfindung dargestellt, bei in dem Kühlkreislauf neben der drehzahlgeregelten Pumpe 7 im Kühlkreislauf eine weitere Pumpe 30 vorgesehen ist. Die Pumpe 30 ist in dieser Ausführungsform vor dem Schaltventil 11 für den Bypass 26 angeordnet. Für gleiche Aggregate wie in Fig. 1 werden in Fig. 2 wiederum gleiche Bezugszeichen gewählt.
    Der Vorteil der Ausbildung gemäß Fig. 2 ist darin zu sehen, daß die drehzahlgeregelte Pumpe 7, die von der Regelvorrichtung 24 in Abhängigkeit der über den Sensor 20 aufgenommenen Motortemperatur geregelt wird, in ihrer Fördermenge sehr gering ausgelegt werden kann, da im Kühlkreislauf eine weitere Pumpe 30 vorgesehen ist, die in vorliegendem Ausführungsbeispiel fahrgeschwindigkeitsabhängig betrieben wird und für eine Grundfördermenge im Kühlkreislauf sorgt. Die Pumpe 30 ist so dimensioniert, daß sie bei nicht betriebenem Retarder, d. h. in dem Zustand, in dem das Kühlmittel am Retarder durch die Bypassleitung 26 vorbei gelenkt wird, ausreichend ist, um die für die Motorkühlung benötigte Pumpieistung zur Verfügung zu stellen. Wird nunmehr Kühlmittel als Arbeitsmedium durch den Retarder 13 geleitet und dieses durch den im Betrieb befindlichen Retarder weiter mit Wärme belastet, so reicht die Fördermenge der Pumpe 30 nicht mehr aus, um die maximale, zulässige Motortemperatur einzuhalten. In diesem Fall wird die Regelung ansprechen und die Regelvorrichtung die drehzahlgeregelte Pumpe 7 in Betrieb setzen, die dann genau mit einer solchen Drehzahl betrieben wird, daß eine zusätzliche Fördermenge zur Verfügung gestellt wird, um eine unzulässige Erwärmung des Motors zu verhindem. Die Regelvorrichtung arbeitet wiederum wie bei Fig. 1 beschrieben, d. h. bei Abweichungen von einem vorgegebenen Motortemperatur-Sollwert wird die Drehzahl der Pumpe 7 solange entsprechend eingestellt, bis diese vorgegebene Sollwert-Motortemperatur erreicht ist. Wie oben gesagt, erlaubt es die Regelung, den Kühlmittelkreislauf immer gerade so zu fahren, daß sich der Motor nahe an der maximal zulässigen Temperatur befindet. Dies hat, wie bereits oben aufgezeigt, eine erhebliche Kraftstoffeinsparung zur Folge.
    In einer in Fig. 3 dargestellten dritten Ausführungsform werden wiederum für gleiche Aggregate dieselben Bezugsziffern wie schon in Fig. 1 und 2 verwendet. Nunmehr ist die weitere Pumpe 30 hinter dem Umschaltventil 11 unmittelbar vor dem Retarder 13 angeordnet. Die Grundlast zur Kühlmittelförderung übernimmt jetzt die drehzahlgeregeite Pumpe 7. Sie wird wiederum in Abhängigkeit von der Motortemperatur mittels der Regelvorrichtung 24 angesteuert und zwar derart, daß in Abhängigkeit vom vorgegebenen Sollwert und der Abweichung des Istwertes hiervon die drehzahlgeregelte Pumpe angesteuert wird. Die drehzahlgeregelte Pumpe kann in ihrer Fördermenge sehr gering ausgelegt werden, da sie nur die im Kühlmittelskreislauf ohne zugeschalteten Retarder anfallende Wärme abtransportieren muß. Wird nun der Retarder zugeschaltet, so wird auch die weitere Pumpe 30 zugeschaltet und die zur Kühlung erforderliche höhere Fördermenge hierdurch zur Verfügung gestellt. Im Gegensatz zu der Ausführungsform gemäß Fig. 2 wird also in dieser Ausführungsform die zusätzliche Kühimittelmenge, die zur Reduktion der Wärmebelastung, die durch Zuschaltung des Retarders entsteht, von der weiteren Kühlmittelpumpe 30 gefördert.
    Sowohl gemäß der Ausführungsform nach Fig. 2 wie auch nach Fig. 3 kann die Regelvorrichtung zusätzlich über eine Signalleitung 32 mit dem Umschaltventil 11 verbunden sein, um hierüber ein Zustandssignal zugeführt zu bekommen, das Auskunft darüber gibt, ob das Kühlmittel durch den Retarder oder über den Bypass an diesem vorbeigeleitet wird. Bei der Ausführungsform gemäß Fig. 2 ist es dann beispielsweise möglich, die Regelung mittels der Regelvorrichtung 24 nur dann zu aktivieren, wenn auf der Signalleitung 32 ein Zustandssignal anliegt, das angibt, das Kühlmittel durch den Retarder geleitet wird und dort als Arbeitsmedium dient.
    Der Antrieb der drehzahlgeregelten Pumpen 7 kann mittels eines Elektromotores, der wiederum an den elektrischen Stromkreis des Fahrzeuges angeschlossen ist, betrieben werden. Die Ansteuerung der hierfür beispielsweise in Frage kommenden Elektromotoren sind dem Fachmann aus dem Stand der Technik, siehe hierzu beispielsweise "Dubbel, Taschenbuch für den Maschinenbau, 18. Auflage, 1995, Seiten V18 - V51" bekannt.
    Selbstverständlich können neben dem Ausführungsbeispiel mit den dargestellten zwei Kühlmittelpumpen mehrere Kühlmittelpumpen vorgesehen sein, wovon eine oder mehrere drehzahlgeregelte Kühlmittelpumpen sind.

    Claims (6)

    1. Antriebseinheit mit einem Verbrennungsmotor (1) und einem Getriebe sowie einem Kühlkreislauf (3) umfassend ein Kühlmittel zur Kühlung des Verbrennungsmotors (1), wobei zur Förderung des Kühlmittels im Kühlmittelkreislauf mindestens eine drehzahlgeregelte Kühlmittelpumpe (7) angeordnet ist und
      der Kühlmittelkreislauf (3) neben der mindestens einen drehzahlgeregelten Kühlmittelpumpe (7) mindestens eine weitere Kühlmittelpumpe (30) umfaßt, wobei
      die mindestens eine weitere Kühlmittelpumpe (30) fahrgeschwindigkeitsabhängig angetrieben wird;
      die Antriebseinheit Mittel zur Bestimmung der Motortemperatur sowie eine Regelvorrichtung (24) zur Regelung der Fördermenge der drehzahlgeregelten Kühlmittelpumpe (7) in Abhängigkeit von der ermittelten Motortemperatur umfaßt, sowie
      einen Sekundärretarder (13), der vom Kühlmedium durchströmt wird und dadurch, daß
      die Regelvorrichtung (24) einen Regelalgorithmus umfaßt,
      dadurch gekennzeichnet, daß
      der die drehzahlgeregelte Kühimittelpumpe (7) derart ansteuert, daß die Fördermenge immer so bemessen ist, daß ein vorgegebener Temperaturmaximalwert des Motors (1) unabhängig vom Retarderbetriebszustand nicht überschritten wird.
    2. Antriebseinheit gemäß Anspruch 1, dadurch gekennzeichnet, daß die Antriebseinheit des weiteren ein Umschaltventil (11) umfaßt.
    3. Antriebseinheit gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß
      die mindestens eine drehzahlgeregelte Kühlmittelpumpe (7) in ihrem Leistungsvermögen derart ausgelegt ist, daß sie eine ausreichende Kühlung des Motor (1) bei abgeschaltetem Retarder (13) gewährleistet.
    4. Antriebseinheit gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß
      die mindestens eine weitere Kühlmittelpumpe (30) in ihrem Leistungsvermögen so bemessen ist, daß sie eine ausreichende Kühlung des Motors (1) bei abgeschaltetem Retarder (13) gewährleistet.
    5. Antriebseinheit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß
      das Kühlmedium des Kühlmittelkreislaufes (3) Wasser bzw. ein Wassergemisch ist.
    6. Antriebseinheit nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kühlkreislauf (3) eine Bypassleitung (40), die am Kühler (5) vorbeiführt, umfaßt.
    EP97910425A 1996-10-09 1997-10-08 Antriebseinheit mit thermisch geregelter wasserpumpe Expired - Lifetime EP0931209B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19641559 1996-10-09
    DE19641559A DE19641559A1 (de) 1996-10-09 1996-10-09 Antriebseinheit mit thermisch geregelter Wasserpumpe
    PCT/EP1997/005544 WO1998015725A1 (de) 1996-10-09 1997-10-08 Antriebseinheit mit thermisch geregelter wasserpumpe

    Publications (2)

    Publication Number Publication Date
    EP0931209A1 EP0931209A1 (de) 1999-07-28
    EP0931209B1 true EP0931209B1 (de) 2003-05-07

    Family

    ID=7808240

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97910425A Expired - Lifetime EP0931209B1 (de) 1996-10-09 1997-10-08 Antriebseinheit mit thermisch geregelter wasserpumpe

    Country Status (3)

    Country Link
    EP (1) EP0931209B1 (de)
    DE (2) DE19641559A1 (de)
    WO (1) WO1998015725A1 (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19832626C1 (de) * 1998-07-21 2000-03-16 Daimler Chrysler Ag Regelung eines Kühlkreislaufes eines motorgetriebenen Fahrzeuges
    SE521618C2 (sv) * 1998-07-31 2003-11-18 Volvo Lastvagnar Ab Förfarande och anordning för avluftning av ett kylvätskesystem till en förbränningsmotor
    DE19914440A1 (de) 1999-03-30 2000-10-05 Volkswagen Ag Vorrichtung zur temperaturabhängigen Verbindung von Bauteilen
    DE19930356A1 (de) * 1999-07-01 2001-01-04 Zahnradfabrik Friedrichshafen Automatgetriebe
    DE10062222A1 (de) * 2000-12-13 2002-06-20 Zahnradfabrik Friedrichshafen Verfahren zur Anforderung bremsleistungsunterstützender Systeme
    DE10242736A1 (de) * 2002-09-13 2004-03-18 Voith Turbo Gmbh & Co. Kg Antriebseinheit mit einem Retarder
    FR2929330B1 (fr) * 2008-04-01 2010-04-09 Peugeot Citroen Automobiles Sa Circuit de refroidissement moteur.
    DE102010009757A1 (de) 2010-03-01 2011-08-25 Voith Patent GmbH, 89522 Fahrzeugkühlkreislauf mit einem hydrodynamischen Retarder
    CN103481871B (zh) * 2013-10-15 2015-07-22 江苏理工学院 车用冷却液介质式液力缓速装置

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2384106A1 (fr) * 1977-03-16 1978-10-13 Sev Marchal Dispositif de refroidissement pour moteur a combustion interne
    DE3024209A1 (de) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Fluessigkeitskuehlung fuer verbrennungsmotoren
    US4434749A (en) * 1981-03-25 1984-03-06 Toyo Kogyo Co., Ltd. Cooling system for liquid-cooled internal combustion engines
    JPH0623539B2 (ja) * 1985-05-20 1994-03-30 本田技研工業株式会社 車両用エンジン冷却装置
    DE3738412A1 (de) * 1987-11-12 1989-05-24 Bosch Gmbh Robert Vorrichtung und verfahren zur motorkuehlung
    DE3810174C2 (de) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine, insbesondere in Kraftfahrzeugen
    JPH0417715A (ja) * 1990-05-07 1992-01-22 Nippondenso Co Ltd 内燃機関の冷却装置
    DE4102929A1 (de) * 1991-01-31 1992-08-06 Man Nutzfahrzeuge Ag Kraftfahrzeug mit einer einrichtung zur bremsenergierueckgewinnung
    SE501444C2 (sv) * 1993-07-01 1995-02-20 Saab Scania Ab Kylsystem för ett med retarder utrustat fordon
    DE9419818U1 (de) * 1994-02-09 1995-03-16 Lübeck, Tino, 44866 Bochum Regelbare elektrische Wasserpumpe zur Kühlung von Verbrennungskraftmaschinen
    DE4445024A1 (de) * 1994-12-16 1995-06-08 Voith Turbo Kg Antriebseinheit
    DE4446288A1 (de) * 1994-12-23 1995-06-29 Voith Turbo Kg Antriebseinheit mit einer Brennkraftmaschine und einem hydrodynamischen Retarder
    DE4447166A1 (de) * 1994-12-30 1995-06-08 Voith Turbo Kg Bremsanlage mit einem hydrodynamischen Retarder, insbesondere für ein Kraftfahrzeug

    Also Published As

    Publication number Publication date
    DE19641559A1 (de) 1998-04-16
    EP0931209A1 (de) 1999-07-28
    WO1998015725A1 (de) 1998-04-16
    DE59710060D1 (de) 2003-06-12

    Similar Documents

    Publication Publication Date Title
    DE102004034443B4 (de) Kühlsystem für einen Verbrennungsmotor und Verfahren zum Steuern eines solchen Kühlsystems
    DE69834891T2 (de) Kühlungsanlage für die Brennkraftmaschine einer Lokomotive
    DE69804550T2 (de) Kühlanlage für eine Brennkraftmaschine eines Kraftfahrzeugs
    DE102010060319B4 (de) Kühlsystem
    EP1913243B1 (de) Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems
    DE10215262B4 (de) Kühlsystem, insbesondere für einen Kraftfahrzeugmotor mit indirekter Ladeluftkühlung
    EP1123231B1 (de) Verfahren und vorrichtung zur erhöhung der bremsmomentenausnutzung eines retarders in einem kraftfahrzeug
    EP0931208B1 (de) Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe
    DE10334501A1 (de) Fahrzeugverbrennungsmotorkühlsystem mit Wasserpumpe mit variabler Drehzahl
    DE102011078088A1 (de) Kühlsystem
    EP1484532A2 (de) Antriebsanordnung für ein Förderaggregat
    EP0931209B1 (de) Antriebseinheit mit thermisch geregelter wasserpumpe
    DE10319762A1 (de) Kreislauf zur Kühlung von Ladeluft und Verfahren zum Betreiben eines derartigen Kreislaufs
    DE102004021551A1 (de) Kühlsystem, insbesondere für ein Kraftfahrzeug
    WO2008043425A1 (de) Kühlkreislauf
    DE112015003653T5 (de) Kühlungssystem mit impulsartiger Ventilatorsteuerung
    EP2565334B1 (de) Baumaschine mit ölgekühltem Generator
    DE102010007247B4 (de) Hydraulischer Lüfterantrieb
    EP2770170B1 (de) Abwärmenutzungssystem, insbesondere für ein Kraftfahrzeug, mit einer Speisepumpe
    EP1270895A1 (de) Ladelufttemperaturkontrolle für Motoren mit Ladeluftkühler
    DE3617262A1 (de) Hydrostatischer antrieb
    DE2631121A1 (de) Fluessigkeitsgekuehlte brennkraftmaschine
    DE3622378A1 (de) Kuehlfluessigkeitssystem fuer eine brennkraftmaschine
    AT397375B (de) System zur erwärmung einer flugzeug-enteisungsflüssigkeit und zur fortbewegung einer enteisungsvorrichtung
    DE10143109A1 (de) Verfahren und Vorrichtung zur Einstellung definierter Kühlmittelströme in Kühlsystemen von Brennkraftmaschinen in Kraftfahrzeugen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990409

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT SE

    17Q First examination report despatched

    Effective date: 20010528

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RBV Designated contracting states (corrected)

    Designated state(s): DE

    AK Designated contracting states

    Designated state(s): DE

    REF Corresponds to:

    Ref document number: 59710060

    Country of ref document: DE

    Date of ref document: 20030612

    Kind code of ref document: P

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040210

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20151022

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59710060

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170503