EP0925430A1 - Vorrichtung zum ermitteln von messwerten, insbesondere der konzentration eines aerosols in einem geschlossenen raum einer arbeitsmaschine - Google Patents

Vorrichtung zum ermitteln von messwerten, insbesondere der konzentration eines aerosols in einem geschlossenen raum einer arbeitsmaschine

Info

Publication number
EP0925430A1
EP0925430A1 EP97938726A EP97938726A EP0925430A1 EP 0925430 A1 EP0925430 A1 EP 0925430A1 EP 97938726 A EP97938726 A EP 97938726A EP 97938726 A EP97938726 A EP 97938726A EP 0925430 A1 EP0925430 A1 EP 0925430A1
Authority
EP
European Patent Office
Prior art keywords
bus
rail
coupler
line
mounting rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97938726A
Other languages
English (en)
French (fr)
Other versions
EP0925430B1 (de
Inventor
David Stedham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrical Engineering Co Ltd
Original Assignee
Electrical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrical Engineering Co Ltd filed Critical Electrical Engineering Co Ltd
Publication of EP0925430A1 publication Critical patent/EP0925430A1/de
Application granted granted Critical
Publication of EP0925430B1 publication Critical patent/EP0925430B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices

Definitions

  • Device for determining measured values in particular the concentrate xon of an aerosol in a closed channel of a machine
  • the invention relates to a device according to the preamble of claim 1.
  • blow-throughs can occur in piston engines between the piston and the cylinder wall as a result of defective piston rings which, if they are not recognized in time, lead to piston seizures.
  • An increase in the oil mist density with a simultaneous rise in temperature as a result of the hot combustion gases entering the crankshaft housing indicate a blow-through.
  • a device of the type mentioned at the outset is known, in which a measuring probe is provided for each engine of an internal combustion engine, each measuring probe being arranged directly inside the respective engine room and is connected via an optical or electrical transmission link to a central evaluation unit located outside the internal combustion engine.
  • the purpose of the invention is to improve a device of the type mentioned in the introduction.
  • Another purpose of the invention is to integrate the oil mist sensor system in a quick mounting system.
  • Another purpose of the invention is to make the entire system watertight to such an extent that jet water cannot penetrate into the electrical circuit system when the motors are cleaned.
  • Another purpose of the invention is to protect the electronic converter system against damage caused by vibrations caused by the running engine and against electromagnetic influences from the outside, and on the other hand to prevent electromagnetic radiation from the electronic circuits from occurring to the outside.
  • the measuring probe can be designed to determine various measured values such as temperature or other physical quantities. However, it is preferably designed to determine the concentration of an aerosol, in particular an oil mist.
  • the measuring probe can be connected directly to an evaluation device or connected to a BUS rail via a BUS coupler.
  • the bus bar can be connected to a converter and an evaluation device for the measurement signals.
  • the BUS coupler is preferably designed directly as a converter and the BUS rail is connected to an evaluation device.
  • Figure 1 shows a monitoring device on a machine in vertical section
  • Figure 2 shows a measuring probe of the monitoring device of Figure 1 in vertical section and on a larger scale
  • Figure 3 shows the arrangement of the measuring probe and one
  • Figure 4 shows the arrangement of Figure 3 in an exploded view
  • Figure 5 shows a section of the BUS rail
  • Figure 6 shows a bus line rail of the mounting rail in plan view
  • FIG. 7 the connection between the measuring probe
  • Figure 8 shows the bus coupler of Figure 7 in
  • connection area Details of the connection area, on a larger scale
  • Figure 10 shows a routing area of the
  • FIG. 11 shows the BUS coupler of FIG. 8 in
  • Figure 12 shows the bus bar in a view of the
  • FIG. 13 shows a mounting rail holder with guide means for the conductor in a cutout and in a diagram
  • FIG. 14 shows the BUS rail in the open state and in a diagram
  • FIG. 15 shows a component, which is designed as an intermediate piece for connecting BUS rail sections or as an end piece for closing the BUS rail, in different views and in a diagrammatic representation. Ways of Carrying Out the Invention
  • the device contains a measuring probe (M) protruding through the motor wall (1), which is connected via a conductor (L) to a BUS coupler (K) which is arranged on the outside of the motor on a BUS rail (S) .
  • M measuring probe
  • L conductor
  • K BUS coupler
  • a guide tube (2) of the measuring probe (M) is screwed into the motor wall (1), to which a Venturi channel nozzle (3) is attached.
  • the drive chamber atmosphere (4) which is set in circular motion by the crankshaft rotation, flows through the venturi channel nozzle (3) and generates a negative pressure at the extraction point (5).
  • the measuring chamber (7) is connected to this negative pressure via the outflow channel (6).
  • the drive chamber atmosphere enters and flows through the measuring chamber (7) at the feed point (8) and exits again at the extraction point for negative pressure (5) and returns to the drive chamber atmosphere (4) via the Venturi channel nozzle (3).
  • a labyrinth which prevents oil spray from penetrating into the measuring chamber (7).
  • the measurement signals for the oil mist density are obtained in a measurement section (10) in the measurement chamber (7).
  • the measuring chamber (7) is connected at one end to a glass fiber cable (11) with a glass fiber bundle running therein for the light feed line (12) and the light return line (13).
  • the two glass fiber bundles (12) and (13) end in a glass fiber bundle socket (14) with a ground glass fiber exit surface.
  • a converging lens (15) which over the the glass fiber bundle (12) feeds light through the measuring section (10) onto the triple reflector (16).
  • the triple reflector (16) reflects the light back onto the lens (15) independently of a precise adjustment of the converging lens (15) and the triple reflector (16), which in turn focuses the light into the glass fiber bundle (13), so that it can be removed at the end of the fiber optic cable (11) for electronic implementation.
  • the measuring section (10) becomes in both directions, namely from of the lens (15) to the triple reflector (16) and back to the lens (15), the light passing through is attenuated in its intensity, so that the light returned by the optical fiber bundle (13) has a smaller one during the electronic signal conversion at the end of the optical fiber cable (11) triggers electronic signal amplitude.
  • the damping signals detected by the sensors with the measuring section (10) from the various compartments are dependent on the oil mist density via the line (L) the BUS coupler (K), which is designed as a converter, the BUS rail (S) supplied, as can be seen in particular from Figures 3 to 14.
  • Each BUS coupler (K) contains an electronic converter system (17), which converts the measurement signals and feeds them to a BUS line rail (18) the end (19) of an electronic evaluation device, not shown, is connected.
  • the BUS busbars (18) are inserted into metallic BUS mounting rails (20) that have a defined standard length. Depending on the motor type and requirements, these BUS mounting rails (20) are divided over the entire length of the motor and the resulting gaps are closed by mounting rail intermediate pieces (21) by mechanical coupling to the BUS mounting rails (20).
  • the BUS rail (S) with the BUS mounting rails (20) are in turn fastened to the motor wall by BUS mounting rail holders (22).
  • the BUS mounting rail holders (22) in turn are attached to the guide tube of the measuring chamber (2) by means of a clamping nut (23), as can be seen in particular from FIGS. 1 to 5 and 7.
  • a BUS coupler (31) is formed, from which the contact connections (28) on the flexible film with the contact spring assembly (29) protrude.
  • the rubber skin (30) of the BUS coupler has a slit-shaped opening (32), the circumference of which is enclosed by a hollow snap groove (33) formed in the rubber skin (30), as can be seen in particular from FIGS. 8 and 11.
  • FIGS. 8, 9 and 10 show that a winding channel (34) with the holding lips (35) is also formed in the rubber skin (30), which is used to accommodate the standard length of the glass fiber cable (11) that is not required, depending on the motor type its end is inserted into the electronic converter system (17) via a tubular opening (36) which watertightly surrounds the optical fiber cable (11), in the rubber skin (30) inside the winding channel (34), the glass fibers for light supply (12) are introduced into a light emitting diode (37) and the glass fibers for light return (13) are introduced into a light sensor converter diode (38).
  • the BUS line rail (18) contains the BUS line (40), which is designed as an electronic circuit board in the standard length of the BUS mounting rail (20), and has the BUS mating contacts (39), as in FIG. 6 in a section of the BUS line is shown on the BUS circuit board (40).
  • the etched BUS lines a ', b' to n ' are connected via an etched circuit board system to the corresponding BUS mating contacts a, b to n, on which the contact connections on the flexible film (28) fit exactly. In this way, all corresponding BUS counter contacts (39) a, b to n are connected to one another.
  • the BUS coupler (31) engage in the BUS mounting rails (20) with the free end of the contact spring package (29) under the spring-holding hook profile (42), so that when the BUS coupler (31) is positively pressed down, the BUS line rail (18), the contact connections (28) of the flexible film are connected to the bus mating contacts (39) and receive the required contact pressure.
  • FIGS. 9 and 12 show how, for water protection of the BUS printed circuit board with the etched BUS lines (40), these are vulcanized into a rubber skin (43) together with the BUS metal rail (41).
  • the BUS counter contacts (39) are recessed by a slot-shaped BUS counter contact opening (44) in the BUS rubber skin (43).
  • the slot-shaped BUS counter-contact opening in the BUS rubber skin (43) is enclosed by a sealing bead (45) which, with its sealing bead (45) shown in section, fits into the receiving profile of the hollow snap groove (33) shown in section ( Figures 8, 11 and 12) and snaps in watertight when inserting the BUS coupler (31) into the BUS support rail (20).
  • an elastic rubber connection (48) is made between the rubber skin (43) of the BUS line rail (18) and the two rubber holding profiles (46) during the vulcanization process of the BUS line rail (18).
  • the elastic rubber connection (48) is designed in such a way that the entire mass suspended from it, consisting of the BUS line rail (18) and the electronic converter systems (17) housed thereon, forms a mechanical vibration system with a low-frequency tuned resonance frequency. As a result, the harmful higher-frequency, mechanical vibration vibrations cannot act on the electronic converter system (17) and the contact connections between the contact connections (28) on the flexible film and the bus mating contacts (39).
  • the glass fiber cable (11) emerging from the measuring chamber (7) is received in a slotted hose (49), into which it is inserted through the slit (50).
  • the slotted hose (49) itself is guided and fastened on the BUS mounting rail holder (22) by means of holding tongues (51), which in turn engage in a groove profile (52) on both sides of the slit (50) of the slotted hose (49).
  • the slotted hose in turn ends in a collecting duct (53), which is also provided with a slit (54), so that the glass fiber cable (11) can also be inserted into the slotted hose (49) when it is inserted in the collecting duct (53).
  • the collecting channel (53) made of rubber extends over the entire standard length of the BUS mounting rail (20), whereby it is held in a corresponding holding groove by means of a holding profile (55) is fastened in the BUS mounting rail (20) over the entire standard length of the BUS mounting rail (20).
  • the fiber optic cable leaves the collecting duct (53) via a slot opening (56) in the collecting duct (53) and reaches the BUS coupler at the entry point (57) and then enters the winding duct at the entry point (58) BUS coupler.
  • the remaining length of the standard fiber optic cable which cannot be defined by integer winding lengths, forms a loop (59) which is pressed into the appropriate holding grooves (60) on the top of the BUS coupler (31) (FIG. 10).
  • the sensor unit (61) consisting of the measuring chamber with the sensor parts (14, 15, 16) accommodated therein, the glass fiber cable (11) and the BUS coupler (31) can be easily replaced by removing the sensor from the BUS support rail (20) removed and the fiber optic cable pulled out through the slot opening in the collecting duct (56) from the collecting duct (53) and can still be pulled out of the slotted tube (49) through the slot (50) in the slotted tube, even if the latter with his At the end a piece is inserted into the collecting channel (53), after which the measuring chamber (7) can be removed from the holding tube (2).
  • a replacement sensor unit (61) can be reinserted into the system.
  • the slot tube (49) is fixed with its groove profiles (52) in the collecting channel (53) in such a way that the slot (50) in the slot tube (49) and the slot opening (56) in the collecting channel (53) lie exactly one above the other.
  • a loop (80) (FIG. 10) is formed in the rubber skin (30) on its upper side, as a result of which the loop encompassing the synthetic resin block (26) is pulled when this loop (80) is pulled Rubber skin (30) at the location of the locking groove (62) is stretched or retracted so far that the locking hook (63) disengages.
  • the rubber body forming the collecting channel (53) is made of a conductive rubber material.
  • bus connecting cables (68 ) that electrically connect the etched BUS lines on the BUS circuit boards (40) of the BUS line rails (18).
  • the flexible BUS connecting lines (68) which are present multiple times in a system, end in a BUS line rail coupler (69) on each side.
  • BUS line rail couplers (69) are designed similarly to the BUS couplers (31), but do not contain an electronic converter system (17), no winding channel (34) and no holding grooves (60).
  • the mounting rail intermediate pieces (2) are made of the same metallic parts as the BUS mounting rails (20) and also provided with a metal cover (64) (FIG. 15), which in the closed state is held by the retaining tab (66) of a collecting channel ( 53) is kept closed.
  • the BUS mounting rails BUS connecting lines (68) are laid in these intermediate pieces. The mechanical connection of the BUS mounting rails with the mounting rail intermediate pieces (21) takes place via a metallic connecting tongue (70) which is inserted into the T-shaped receptacles (25) of the BUS mounting rail (20) on both sides.
  • BUS mounting rails (20) and mounting rail intermediate pieces (21) are stabilized with one another in their longitudinal escape direction.
  • the BUS mounting rails (20) and mounting rail intermediate pieces (21) are connected by means of a component designed as a connecting element (71) or intermediate piece made of conductive rubber in order to prevent the connecting tongues () 70) from the BUS mounting rails (20) or the mounting rail intermediate pieces (21).
  • the rubber not only prevents the connecting tongues from slipping out
  • the connecting elements (71) are provided with metal clamping tongues (72), which are inserted flat in the longitudinal direction of the holding grooves in the BUS mounting rail and, when the frames (71) are erected in the sectional plane, in the holding grooves (47) of the BUS mounting rail ( 20) jam because their dimensions are kept slightly larger than the retaining grooves (47) of the BUS mounting rails (20). As a result, the connecting element (71) is firmly connected to the BUS mounting rail (20).
  • the connecting element is formed by a special holding device between the connecting element (71) and the collecting channel (53)
  • the mounting rail intermediate pieces (21) are connected to the connecting element (71) in that a metal frame (73) with metal frame clamping tongues (74) in the mounting rail intermediate piece with the cover (64) opened into the holding grooves (47) which are connected to the Support rail intermediate pieces (21) are also present, similar to that described above for the connecting element (71) made of conductive rubber, inserted flat, then erected and locked in a frame groove (75) of the connecting element (71).
  • the BUS connecting lines (68) are also designed with the maximum standard length required to bridge the greatest possible length of the mounting rail intermediate pieces (21).
  • a plurality of bus coupling points (44) are evenly distributed on the bus line rails (18) over the entire standard length of the bus carrier rails (20).
  • a signal evaluation unit (76) similar to a BUS coupler (31), can be mounted on the coupling point (44) present at the end of the last BUS mounting rail (20). This signal evaluation unit (76) contains an electronic evaluation circuit, similar to the electronic converter system (17) of the BUS coupler (31).
  • a connecting line (77) is led out of this signal evaluation unit (76), which ends in a plug-in connection (78), which forwards the signals to other electrical devices (not shown) and the voltage supply for the electronic circuits housed in the BUS mounting rails (20) for the BUS coupler (31) and the signal evaluation unit (76).
  • the end of the BUS rail is formed by an end piece (19) which is shown in FIGS. 3 and 15.
  • This plug connection (78) is in turn inserted into a metal end plate (79) which is inserted into the frame groove (75) of a connecting element (71) at the outer end of a BUS mounting rail (20) instead of the metal frame (73).
  • the other end of the combination of the BUS mounting rails (20) with an end piece with a metal end is plate (79), but without plug connection (78), completed.
  • the metal end plate (79) and the connecting element made of conductive rubber (71) as the end of the mounting rail prevent the penetration of electromagnetic waves at the end point of a mounting rail (20).
  • the BUS line signals are not evaluated within the mounting rail (20), but are fed to an external evaluation unit. This is also connected via a plug connection (78) in the manner described above, but the plug connection (78) is connected to the BUS line system (40) of the BUS line rail (18) by means of a BUS line rail coupler, similarly (69) ) connected.
  • a further embodiment of the invention consists of using other sensors that do not measure the oil mist density via the BUS system, consisting of the BUS mounting rails (20), the BUS connecting rails (18), the mounting rail cover (64), the connecting element ( 71) and the connecting element (71) with metal end plate (79) as well as the BUS mounting rail holders (22), the slotted hose lines (49) and the collecting duct (53) can also be used for other sensors with fiber optic signal lines or with copper lines.
  • the BUS mounting rail holders (22) as already described for the oil mist monitoring system, can be attached to the sensor holders themselves.
  • slot hose lines (49) can also be used for receiving the signal lines of the various sensors in specially designed guide channels with retaining tongues (51) for the slot hoses (49), which in turn are then to be specially mounted on the motor in question.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Vorrichtung enthält eine Messonde (M), die an einer Motorwand (1) angeordnet ist und in den Raum einer Arbeitsmaschine ragt. Die Messonde (M) ist mit einem Leiter (L) versehen, der aus dem Raum nach aussen führt und mit einem BUS-Koppler (K) verbunden ist, der die Verbindung zu einer BUS-Schiene (S) herstellt.

Description

Vorrxchtαng zum Ermitteln von Hesswerten, xnsbesondere der Konzentratxon eines Aerosols in einem geschlossenen Rann einer Arbeitsmaschine
Technisches Gebiet
Die Erfindung bezieht sich auf eine Vorrichtung gemäss Oberbegriff des Anspruchs 1.
Stand der Technik
Die Überwachung von Aerosolkonzentrationen, insbesondere Schmierölnebel in den Triebräumen von Brennkraftmaschinen oder in Gehäusen von Leistungsgetrieben, zum Beispiel bei Druckmaschinen, ist zur Vermeidung von Schäden von erheblicher Bedeutung, da ein schneller Anstieg der Ölnebelkonzen- tration auf ein Reissen des Schmierfilms schliessen lässt. Infolge der dabei entstehenden Reibungswärme bildet sich Ölda pf , der in dem Triebraum zu Ölnebel rekondensiert und so zu einem schnellen Anstieg der Ölnebelkonzentration führt. Daraus lässt sich eine beginnende Gefährdung erkennen und weitere Schäden durch entsprechende Massnahmen, zum Beispiel Stillsetzen der Maschine, vermeiden.
Neben der bereits beschriebenen Olnebelbildung aufgrund von Schmierfilmrissen in Lagern können bei Kolbenmotoren zwischen Kolben und Zylinderwand infolge schadhafter Kolbenringe sogenannte Durchbläser auftreten, die, werden sie nicht rechtzeitig erkannt, zu Kolbenfressern führen. Erhöhung der Ölnebeldichte bei gleichzeitigem Temperaturanstieg infolge der heissen, in das Kurbelwellengehäuse gelangenden Verbrennungsgase lassen so auf einen Durchbläser schliessen.
Es sind Vorrichtungen zum Anzeigen von Olnebelkonzentrationen in Triebräumen von Brennkraftmaschinen bekannt (EP-B-0 071 391), bei denen der Ölnebel aus dem Triebraum abgesaugt und durch eine Kammer geführt wird, die eine Einrichtung zur Messung des Extinktionsgrades enthält. Nachteilig ist dabei der grosse konstruktive und betriebliche Aufwand (Pumpen, Wartung), die mögliche Entmischung des Aerosols "Ölnebel" auf dem Weg zu der und durch die Kammer und die zeitliche Verzögerung bei der Messung.
Aus der DD-A-239 474 oder der GB-A-2 166 232 ist jeweils eine Vorrichtung der eingangs genannten Art bekannt, bei der für jedes Triebwerk einer Brennkraftmaschine eine Messonde vorgesehen ist, wobei jede Messonde direkt im Inneren des jeweiligen Triebwerksraumes angeordnet ist und über eine optische oder elektrische Übertragungsstrecke mit einer ausserhalb der Brennkraftmaschine befindlichen zentralen Auswerteeinheit verbunden ist.
Darstellung der Erfindung
Zweck der Erfindung ist es, eine Vorrichtung der eingangs genannten Art zu verbessern. Ein weiterer Zweck der Erfindung ist es, die Olnebelsensorik in ein Schnellmontagesystem einzubinden.
Ein weiterer Zweck der Erfindung ist es, das gesamte System so weit wasserdicht auszuführen, dass beim Reinigen der Motoren Strahlwasser nicht in das elektrische Schaltungssystem eindringen kann.
Ein weiterer Zweck der Erfindung ist es, das elektronische Umsetzersystem gegen Beschädigungen durch Vibrationen, welche durch den laufenden Motor erzeugt werden, sowie gegen elektromagnetische Einflüsse von aussen zu schützen und andererseits zu verhindern, dass elektromagnetische Abstrahlung aus den elektronischen Schaltungen nach aussen hin erfolgt.
Die gestellte Aufgabe beziehungsweise die angestrebten Zwecke werden erreicht durch die kennzeichnenden Merkmale des Anspruches 1.
Vorteilhafte Aus ührungsbeispiele sind in den Ansprüchen 1 bis 18 beschrieben.
Die Messonde kann zur Ermittlung verschiedener Messwerte wie beispielsweise der Temperatur oder anderer physikalischer Grossen ausgebildet sein. Vorzugsweise ist sie jedoch zur Ermittlung der Konzentration eines Aerosols, insbesondere eines Ölnebels ausgestaltet.
Die Messonde kann direkt mit einer Auswerteinrichtung verbunden oder über einen BUS-Koppler an einer BUS-Schiene angeschlossen sein. Die BUS-Schiene kann an einem Umsetzer und eine Auswerteinrichtung für die Messignale angeschlossen sein. Vorzugsweise ist der BUS-Koppler direkt als Umsetzer ausgebildet und die BUS-Schiene an eine Auswerteinrichtung angeschlossen. Kurze Beschreibung der Zeichnungen
Merkmale der Erfindung werden nachfolgend anhand der Zeichnungen näher beschrieben, dabei zeigen:
Figur 1 eine Überwachungsvorrichtung an einer Arbeitsmaschine im Vertikalschnitt;
Figur 2 eine Messonde der Überwachungsvorrichtung der Figur 1 im Vertikalschnitt und in grösserem Massstab;
Figur 3 die Anordnung der Messonde und einer
BUS-Schiene an einer Arbeitsmaschine, in schaubildlicher Darstellung;
Figur 4 die Anordnung nach Figur 3 in Explosionsdarstellung;
Figur 5 ein Ausschnitt der BUS-Schiene der
Figur 3 in Explosionsdarstellung;
Figur 6 eine BUS-Leitungsschiene der Tragschiene in Draufsicht;
Figur 7 die Verbindung zwischen Messonde,
US-Koppler und BUS-Schiene in Ansicht quer zur BUS-Schiene;
Figur 8 den BUS-Koppler der Figur 7 im
Vertikalschnitt und in grösserem Massstab; Figur 9 den BUS-Koppler der Figur 7 mit
Details des Anεchlussbereiches, in grösserem Massstab;
Figur 10 einen Leitungsführungsbereich des
BUS-Kopplers der Figur 9 bei angenommener Verkleidung in Ansicht von oben und in schaubildlicher Darstellung;
Figur 11 den BUS-Koppler der Figur 8 in
Ansicht auf den Anschlusskontaktbereich in schaubildlicher Darstellung;
Figur 12 die BUS-Schiene in Ansicht auf den
Anschlusskontaktbereich für den BUS- Koppler, in schaubildlicher Darstellung;
Figur 13 einen Tragschienenhalter mit Führungsmitteln für den Leiter im Ausschnitt und in schaubildlicher Darstellung;
Figur 14 die BUS-Schiene in geöffnetem Zustand und in schaubildlicher Darstellung; und
Figur 15 einen Bauteil, der als Zwischenstück zum Verbinden von BUS-Schienenab- schnitten oder als Endstück zum Ab- schliessen der BUS-Schiene ausgebildet ist, in verschiedenen Ansichten und in schaubildlicher Darstellung. Wege zur Ausführung der Erfindung
Die Figur 1 zeigt eine an einer Arbeitsmaschine, beispielsweise einem Kolbenmotor angeordnete Vorrichtung zur Ermittlung von Messwerten, vorzugsweise eines Aerosols insbesondere des Ölnebels in einem Motorraum vorzugsweise eines Dieselmotors. Die Vorrichtung enthält eine durch die Motorwand (1) ragende Messonde (M) , die über einen Leiter (L) mit einem BUS-Koppler (K) verbunden ist, der auf der Aussenseite des Motors an einer BUS-Schiene (S) angeordnet ist.
Hierzu ist, wie insbesondere aus Figur 2 hervorgeht, in die Motorwand (1) ein Führungsrohr (2) der Messonde (M) eingeschraubt, an welchem eine Venturi-Kanaldüse (3) befestigt ist. Die durch die Kurbelwellendrehung in kreisförmige Bewegung gesetzte Triebraumatmosphäre (4) durchströmt die Venturi-Kanaldüse (3) und erzeugt an der Entnahmestelle (5) einen Unterdruck. An diesen Unterdruck ist die Messkammer (7) über den Ausströmkanal (6) angeschlossen. Dadurch tritt Triebraumatmosphäre an der Zuführungsstelle (8) in die Messkammer (7) ein und durchströmt diese und tritt wieder an der Entnahmestelle für Unterdruck (5) aus und gelangt über die Venturi- Kanaldüse (3 ) zurück in die Triebraumatmosphäre (4 ) .
Der Zuführungsstelle (8) für den Ölnebel in der Triebraumatmosphäre vorgeschaltet ist ein Labyrinth (9) , welches verhindert, dass Ölspray in die Messkammer (7) eindringen kann. Die Messignale für die Ölnebeldichte werden in einer Messstrecke (10) in der Messkammer (7) gewonnen. Hierzu ist die Messkammer (7) an einem Ende mit einem Glasfaserkabel (11) mit darin verlaufenden Glasfaserbündel für die Lichtzuleitung (12) und die Lichtrückleitung (13) verbunden. Die beiden Glasfaserbündel (12) und (13) enden in einer Glasfaserbündel-Fassung (14) mit geschliffener Glasf ser-Austrittsfläche. Vor dieser Fassung befindet sich eine Sammellinse (15), welche das über das Glasfaserbündel (12) zugeführte Licht durch die Messstrecke (10) auf den Tripelreflektor (16) lenkt. Der Tripel- reflektor (16) reflektiert das Licht unabhängig von einer genauen Justage der Sammellinse (15) und des Tripelreflektors (16) genau auf die Linse (15) zurück, die ihrerseits wiederum das Licht in das Glasfaserbündel (13) fokusiert, so dass es am Ende des Lichtleiterkabels (11) für die elektronische Umsetzung entnommen werden kann.
Wenn die über das Labyrinth (9) und die Zuführungsstelle (8) in die Messkammer (7) über den in der Venturi-Düse (3) erzeugten Unterdruck angesaugte Triebraumatmosphäre Ölnebel enthält, wird das die Messstrecke (10) in beiden Richtungen, nämlich von der Linse (15) zum Tripelreflektor (16) und wieder zurück zur Linse (15), durchlaufende Licht in seiner Intensität gedämpft, so dass das durch das Lichtfaserbündel (13) zurückgeführte Licht bei der elektronischen Signalumsetzung am Ende des Lichtleiterkabels (11) eine kleinere elektronische Signalamplitude auslöst.
Die Lösung der Aufgabe, die Olnebelsensorik in ein Schnellmontagesystem einzubinden wird darin gesehen, mit nur wenig unterschiedlichen Standard-Montagekomponenten zu operieren und die zur Anpassung an die verschiedenen Motortypen erforderliche Systemflexibilität auf nur wenige modifizierbare Systemkomponenten zu beschränken.
Hierzu werden die von den Sensoren mit der Messstrecke (10) aus den verschiedenen Compartments erfassten Dämpfungssignale in Abhängigkeit von der Ölnebeldichte über die Leitung (L) den BUS-Koppler (K), der als Umsetzer ausgebildet ist, der BUS-Schiene (S) zugeführt, wie insbesondere aus den Figuren 3 bis 14 entnommen werden kann. Jeder BUS-Koppler (K) enthält ein elektronisches UmsetzerSystem (17), welches die Messignale umsetzt und einer BUS-Leitungsschiene (18) zuführt, an deren Ende (19) ein nicht näher dargestelltes elektronisches Auswertgerät angeschlossen wird. Die BUS-Leitungsschienen (18) sind in metallische BUS-Tragschienen (20) eingesetzt, die eine festgelegte Standardlänge haben. Diese BUS-Tragschienen (20) werden, je nach Motortype und Bedarf, über die ganze Länge des Motors aufgeteilt und die dabei entstehenden Zwischenräume durch Tragschienen-Zwischenstücke (21), durch mechanisches Ankoppeln an die BUS-Tragschienen (20), geschlossen.
Die BUS-Schiene (S) mit den BUS-Tragschienen (20) sind wiederum durch BUS-Tragschienenhalter (22) an der Motorwand befestigt. Die BUS-Tragschienenhalter (22) ihrerseits werden mittels einer Spannmutter (23) auf dem Führungsrohr der Messkammer (2) befestigt, wie insbesondere aus den Figuren 1 bis 5 und 7 hervorgeht.
Die Lösung der Aufgabe, das gesamte System so weit wasserdicht auszuführen, dass beim Reinigen der Motoren Strahlwasser nicht in das elektrische Schaltungssystem eindringen kann wird darin gesehen, dass die elektronische Umsetzerschaltung (17), die in einen Kunεtharzblock (26) eingebettet ist, in flexibler Leiterfolientechnik ausgeführt und ein Teil der flexiblen Leiterfolie (27) mit Kontaktanschlüssen (28) auf den Flexfolien versehen ist, wobei die flexible Leiterfolie (27) mit den Kontaktanschlüssen (28) auf der Flexfolie auf ein Kontaktfederpaket (29) aufgeklebt ist, welches im Kunstharzblock (26) fixiert ist und aus diesem mit den Kontaktanschlüssen (28), welche auf die Gegenkontakte (39) der BUS- Leitung (40) passen, herausragt, wie insbesondere aus der Figur 8 hervorgeht.
Durch Umhüllen des in den Kunstharzblock (26) eingebetteten elektronischen Umsetzersystemes (17), inklusive der dazugehörigen flexiblen Leiterfolie (27), mit einer, den Kunstharz- block (26) einspannenden Gummihaut (30) wird ein BUS-Koppler (31) gebildet, aus welchem die Kontaktanschlüsse (28) auf der Flexfolie mit dem Kontaktfederpaket (29) herausragen. Hierzu hat die Gummihaut (30) des BUS-Kopplers eine schlitzförmige Öffnung (32), die in ihrem Umfang mit einer in der Gummihaut (30) ausgeformten Hohlschnappnut (33) umschlossen wird, wie insbesondere den Figuren 8 und 11 entnommen werden kann.
Die Figuren 8, 9 und 10 zeigen, dass in der Gummihaut (30) weiterhin ein Wickelkanal (34) mit den Haltelippen (35) ausgeformt ist, der zur Aufnahme der, je nach Motortyp, nicht benötigten Standardlänge des Glasfaserkabels (11), welches mit seinem Ende über eine das Lichtleiterkabel (11) wasserdicht umschliessende rohrförmige Öffnung (36), in der Gummihaut (30) im Inneren des Wickelkanals (34), in das elektronische Umsetzersystem (17) eingeführt wird, wobei die Glasfasern für Lichtzuleitung (12) in eine Lichtsendediode (37) eingeführt sind und die Glasfasern für Lichtrückleitung (13) in eine lichtsensorische Umsetzerdiode (38) eingeführt sind.
Die BUS-Leitungsschiene (18) enthält die als elektronische Leiterplatte in der Standardlänge der BUS-Tragεchiene (20) ausgeführte BUS-Leitung (40) und besitzt die BUS-Gegenkontakte (39), wie in Figur 6 in einem Abschnitt der BUS-Leitung auf der BUS-Leiterplatte (40) gezeigt wird. Die geätzten BUS- Leitungen a', b' bis n' sind über ein geätztes Leiterplattensystem mit den korrespondierenden BUS-Gegenkontakten a, b bis n, auf welche die Kontaktanschlüsse auf der Flexfolie (28) genau passen, verbunden. Auf diese Weise sind alle korrespondierenden BUS-Gegenkontakte (39) a, b bis n miteinander verbunden.
Die BUS-Leiterplatte (40) ist, wie insbesondere aus den Figuren 9 und 12 hervorgeht, auf eine BUS-Metallschiene (41) mit Federhalte-Hakenprofil (42) aufgeklebt. Die BUS-Koppler (31) greifen beim Einsetzen in die BUS-Tragschienen (20) mit dem freien Ende des Kontaktfederpaktes (29) unter das Federhalte-Hakenprofil (42), so dass beim formschlüssigen Herunterdrücken der BUS-Koppler (31) auf die BUS-Leitungs- schiene (18) die Kontaktanschlüsse (28) der Flexfolie mit den BUS-Gegenkontakten (39) verbunden werden und den erforderlichen Kontaktdruck erhalten.
Die Figuren 9 und 12 zeigen, wie zum Wasserschutz der BUS- Leiterplatte mit den geätzten BUS-Leitungen (40) diese zusammen mit der BUS-Metallschiene (41) in eine Gummihaut (43) einvulkanisiert sind. Die BUS-Gegenkontakte (39) sind hierbei durch eine schlitzförmige BUS-GegenkontaktÖffnung (44) in der BUS-Gummihaut (43) ausgespart. Die schlitzförmige BUS-Gegen- kontaktöffnung in der BUS-Gummihaut (43) wird von einem Dichtwulst (45) umschlossen, der mit seinem im Schnitt gezeigten Dichtwulst (45) in das im Schnitt gezeigten Aufnahme- profil der Hohlschnappnut (33) passt (Figuren 8, 11 und 12) und beim Einsetzen des BUS-Kopplers (31) in die BUS-Trags- chiene (20) wasserdicht einschnappt. Durch die Einhüllung der BUS-Leitungsschiene (18) in die BUS-Gummihaut (43) und die Einhüllung des elektronischen Umsetzersystems (17) inklusive der dazugehörigen flexiblen Leiterfolie (27) in die Gummihaut (30), wodurch der BUS-Koppler (31) in der, aus der Gummihaut (30) ausgeformten Hohlschnappnut (33) gebildet wird, ist das gesamte elektronische System wasserdicht geschlossen.
Die Lösung der Aufgabe, das elektronische Umsetzersystem (17) mit dem BUS-Koppler (31) und den Kontaktanschlüssen (28) auf der Flexfolie und den BUS-Gegenkontakten (39) gegen Beschädigung durch Vibrationen, welche durch den laufenden Motor erzeugt werden, zu schützen wird, wie insbesondere aus den Figuren 9 und 12 hervorgeht, darin gesehen, dass die Gummihaut (43) der BUS-Leitungsschiene (18) über ihre gesamte Länge, die der Länge der BUS-Tragschiene (20) entspricht, auf beiden Seiten und über die gesamte Länge mit einem Gummihalteprofil (46) versehen ist, welches in die Haltenuten (47) der BUS-Tragschiene eingefädelt ist, wodurch die gesamte BUS- Leitungsschiene (18) zwischen den beiden Haltenuten (47) der BUS-Tragschiene (20) eingespannt ist. Hierzu ist zwischen der Gummihaut (43) der BUS-Leitungsschiene (18) und den beiden Gummihalteprofilen (46) eine elastische Gummiverbindung (48) während des Einvulkanisationsprozesses der BUS- Leitungsschiene (18) hergestellt. Die elastische Gummiverbindung (48) ist so ausgelegt, dass die gesamte, daran aufgehängte Masse, bestehend aus der BUS-Leitungsschiene (18) und den darauf untergebrachten elektronischen Umsetzersystemen (17) ein mechanisches Schwingungssystem mit niederfrequent abgestimmter Resonanzfrequenz bildet. Dadurch können die schädlichen höherfrequenten, mechanischen Vibrationsschwingungen auf das elektronische Umsetzersystem (17) und die Kontaktverbindungen zwischen den Kontaktanschlüssen (28) auf der Flexfolie und den BUS-Gegenkontakten (39) nicht einwirken.
Insbesondere aus den Figuren 7 bis 10 und 13 geht hervor, dass das aus der Messkammer (7) austretende Glasfaserkabel (11) in einem Schlitzschlauch (49) aufgenommen ist, in welchen es durch den Schlitz (50) eingeführt ist. Der Schlitzschlauch (49) selbst ist auf dem BUS-Tragschienenhalter (22) mittels Haltezungen (51) geführt und befestigt, welche ihrerseits in ein Nutprofil (52) auf beiden Seiten des Schlitzes (50) des Schlitzschlauches (49) eingreifen. Der Schlitzschlauch wiederum endet in einem Sammelkanal (53), der ebenfalls mit einem Schlitz (54) versehen ist, so dass das Glasfaserkabel (11) auch in den Schlitzschlauch (49) eingeführt werden kann, wenn dieser im Sammelkanal (53) eingeführt ist. Der aus Gummi hergestellte Sammelkanal (53) geht über die gesamte Standardlänge der BUS-Tragschiene (20), wobei er mittels eines Halteprofiles in einer entsprechenden Haltenut (55) in der BUS-Tragschiene (20) über die gesamte Standardlänge der BUS-Tragschiene (20) befestigt ist.
Gemäss den Figuren 7 bis 10 verlässt das Glasfaserkabel den Sammelkanal (53) über einen Schlitzdurchbruch (56) im Sammelkanal (53) und erreicht den BUS-Koppler an der Eintrittsstelle (57) und tritt daraufhin an der Eintrittsstelle (58) in den Wickelkanal des BUS-Kopplers ein. Die nicht durch ganzzahlige Wicklungεlängen definierbare Restlänge des Standard-Glasfaserkabels bildet eine Schleife (59), die in die passenden Haltenuten (60) auf der Oberseite des BUS-Kopplers (31) eingedrückt wird (Figur 10). Auf diese Weise ist die Sensor-einheit (61) bestehend aus der Messkammer mit den darin untergebrachten sensoriεchen Teilen (14, 15, 16), dem Glasfaserkabel (11) und dem BUS-Koppler (31) leicht auswechselbar, indem der Sensor aus der BUS-Tragschiene (20) herausgenommen und das Glasfaserkabel durch den Schlitzdurchbruch im Sammelkanal (56) aus dem Sammelkanal (53) herausgezogen und weiterhin aus dem Schlitzschlauch (49) durch den Schlitz (50) im Schlitzschlauch herausgezogen werden kann, auch wenn letzterer mit seinem Ende ein Stück in den Sammelkanal (53) eingeführt ist, wonach dann die Messkammer (7) aus dem Halterohr (2) herausnehmbar ist. In umgekehrter Reihenfolge kann eine Ersatzsensoreinheit (61) wieder in das System eingesetzt werden. Der Schlitzschlauch (49) ist mit seinen Nutprofilen (52) im Sammelkanal (53) so fixiert, dass der Schlitz (50) im Schlitzschlauch (49) und der Schlitzdurchbruch (56) im Sammelkanal (53) genau übereinander zu liegen kommen.
Zum Festhalten des formschlüssig auf die BUS-Leitungsschiene (18) heruntergedrückten BUS-Kopplers (31) auf der Gegenseite des in das Federhaltehaken-Profil (42) eingerasteten Federpaketes (29) ist gemäss den Figuren 11 und 12 in der Gummihaut (30) des BUS-Kopplers eine Rastnut (62) ausgebildet, in welche ein in der Gummihaut der BUS-Leitungsschiene (18) ausgebildeter Rasthaken (63) einrastet.
Zum Lösen des als BUS-Koppler dienenden Umsetzers aus dieser Verankerung ist auf seiner Oberseite eine Schlaufe (80) (Figur 10) in der Gummihaut (30) ausgebildet, wodurch beim Ziehen an dieser Schlaufe (80) die, den Kunstharzblock (26) umspannende Gummihaut (30) an der Stelle der Rastnut (62) so weit gedehnt bzw. zurückgezogen wird, dass der Rasthaken (63) ausklinkt.
Die Lösung der Aufgabe, das elektronische Umsetzersystem gegen elektromagnetische Einflüsse von aussen zu schützen und andererseits zu verhindern, dass elektromagnetische Abstrah- lung aus den elektronischen Schaltungen nach aussen hin erfolgt wird darin gesehen, dass insbesondere gemäss den Figuren 7 bis 15 durch die Verwendung der Glasfaserkabel (11) für die Übertragung der sensorischen Signale ausserhalb der BUS-Tragschiene (20) keine weiteren Abschirmmassnahmen erforderlich sind. Durch die Einbettung der BUS-Leitungsschiene (18) und der BUS-Koppler (31) in die metallische BUS-Tragschiene (20) und durch die Verwendung eines metallischen Tragschienen-Verschlussdeckels (64) , der mit seinem Deckelscharnier (65) in die BUS-Tragschiene (20) elektrisch leitend eingreift und auf der anderen Seite von einer Haltenase (66), welche in dem Gummikörper des Sammelkanals (53) mit ausgebildet ist, niedergehalten wird (Figuren 7 und 9), ist die Abschirmung des elektronischen Systems im Inneren des aus BUS-Tragschienen (20) und Tragschienen-Verschlussdeckel (64) gebildeten Hohlraumes, bei Einhaltung entsprechender, allgemein bekannter Erdungsmassnahmen, nahezu gewährleistet.
Um eventuell am Einführungsschlitz (67) für das Glasfaserkabel zwischen BUS-Tragschiene (20) und Tragschienen-Verschlussdeckel (64) eindringende elektromagnetische Wellen zurückzuhalten, ist der, den Sammelkanal (53) bildende Gummikörper aus einem leitfähigen Gummimaterial hergestellt.
Wie insbesondere aus den Figuren 3 bis 6 hervorgeht, erfolgt die elektrische Verbindung zwischen den einzelnen BUS-Leitungsschienen (18), welche in die mehrfach auf dem Motor angebrachten BUS-Tragschienen (20) eingebracht sind, über in Kabelform ausgeführten BUS-Verbindungsleitungen (68), die die geätzten BUS-Leitungen auf den BUS-Leiterplatten (40) der BUS-Leitungsschienen (18) miteinander elektrisch verbinden. Hierzu enden die in einem System mehrfach vorhandenen flexiblen BUS-Verbindungsleitungen (68) auf jeder Seite in einem BUS-Leitungsschienenkoppler (69). Diese BUS-Leitungsschienen- koppler (69) sind ähnlich wie die BUS-Koppler (31) ausgeführt, enthalten jedoch kein elektronisches Umsetzersystem (17), keinen Wickelkanal (34) und keine Haltenuten (60). Dadurch können sie in ihren Dimensionen kleiner als die BUS- Koppler (31) ausgeführt werden und können somit durch die Verbindungselement aus leitfähigem Gummi (71) hindurch geschoben werden. Die Tragschienen-Zwischenstücke (2) sind aus den gleichen metallischen Teilen hergestellt wie die BUS- Tragschienen (20) und ebenfalls mit einem metallischen Deckel (64) versehen (Figur 15), der in geschlossenem Zustand durch die Haltenase (66) eines Sammelkanals (53) geschlossen gehalten wird. In diesen Zwischenstücken sind die BUS-Tragschienen BUS-Verbindungsleitungen (68) verlegt. Die mechanische Verbindung der BUS-Tragschienen mit den Tragschienen- Zwischenstücken (21) erfolgt über eine metallische Verbindungszunge (70), welche auf beiden Seiten in die T-förmigen Aufnahmen (25) der BUS-Tragschiene (20) eingeschoben werden. Hierdurch werden BUS-Tragschienen (20) und Tragschienen- Zwischenstücke (21) in ihrer Längsfluchtrichtung miteinander stabilisiert. Wie aus den Figuren 3 bis 4 sowie 14 und 15 hervorgeht, werden die BUS-Tragschienen (20) und Tragschienen-Zwischenstücke (21) mittels eines als Verbindungselement (71) beziehungsweise Zwischenstück aus leitfähigem Gummi ausgebildeten Bauteils verbunden, um das Herausrutschen der Verbindungszungen (70) aus den BUS-Tragschienen (20) beziehungsweise den Tragschienen-Zwischenstücken (21) zu verhindern. Der Gummi verhindert nicht nur das Herausrutschen der Verbindungszungen
(70) durch elastisches Einspannen, sondern es sind auch die BUS-Tragschienen (20) und die Tragschienen-Zwischenstücke (21) in Längsrichtung zusammenspannt. Hierzu sind die Verbindungselemente (71) mit Metallklemmzungen (72) versehen, die flach in Längsrichtung der Haltenuten in der BUS-Tragschiene eingeführt werden und beim Aufrichten der Rahmen (71) in die Profilschnittebene sich in den Haltenuten (47) der BUS-Tragschiene (20) verklemmen, weil sie in ihren Abmessungen etwas grösser gehalten sind als die Haltenuten (47) der BUS-Tragschienen (20). Hierdurch ist das Verbindungselement (71) fest mit der BUS-Tragschiene (20) verbunden.
Durch eine besondere Haltevorrichtung zwischen Verbindungselement (71) und Sammelkanal (53) wird das Verbindungselement
(71) am Zurückkippen in die flache Einführungsrichtung gehindert.
Die Tragschienen-Zwischenstücke (21) sind mit dem Verbindungselement (71) dadurch verbunden, dass ein Metallrahmen (73) mit Metallrahmen-Klemmzungen (74) im Tragschienen-Zwischenstück bei aufgeklapptem Deckel (64) in die Haltenuten (47), die an den Tragschienen-Zwischenstücken (21) ebenfalls vorhanden sind, ähnlich wie vorstehend für das Verbindungselement (71) aus leitfähigem Gummi beschrieben, flach eingeführt, dann aufgerichtet und in einer Rahmennut (75) des Verbindungselements (71) eingerastet sind. Die BUS-Verbindungsleitungen (68) sind zur Vereinfachung der Montage des Systems und zur Vereinfachung der Ersatzteilbeschaffung ebenfalls mit einer, zur Überbrückung der grösst- möglichen Länge der Tragschienen-Zwischenstücke (21) maximal erforderlichen Standardlänge ausgeführt. Da die Abstände zwischen den BUS-Tragschienen (20) und damit auch die Tragschienen-Zwischenstücke (21), zur Ausfüllung der Lücken zwischen den BUS-Tragschienen (20), je nach Motorgrösse unterschiedlich lang sind, wird die überschüssige Länge der BUS-Verbindungsleitungen (68) wellenförmig in die Tragschienen-Zwischenstücke (21) eingelegt. Über die gesamte Standardlänge der BUS-Tragschienen (20) sind mehrere BUS- Koppelstellen (44) auf den BUS-Leitungsschienen (18) gleich- massig verteilt. Auf der am Ende der letzten BUS-Tragschiene (20) vorhandenen Koppelstelle (44) kann eine Signalauswerteeinheit (76), ähnlich wie ein BUS-Koppler (31), montiert sein. Diese Signalauswerte-Einheit (76) enthält eine elektronische AuswertSchaltung, ähnlich wie das elektronische Umsetzersystem (17) der BUS-Koppler (31). Aus dieser Signalauswerteinheit (76) ist eine Verbindungsleitung (77) herausgeführt, welche in einer Steckverbindung (78) endet, welche die Weiterleitung der Signale an andere nicht dargestellte elektrische Einrichtungen sowie die Spannungsversorgung für die in den BUS-Tragschienen (20) untergebrachten elektronischen Schaltungen für die BUS-Koppler (31) und die Signalauswerteinheit (76) ermöglicht.
Den Abschluss der BUS-Schiene bildet ein Endstück (19), das in den Figuren 3 und 15 dargestellt ist. Diese Steckverbindung (78) ist wiederum in eine Metallabschlussplatte (79) eingesetzt, die in die Rahmennut (75) eines Verbindungselementes (71) am äusseren Ende einer BUS-Tragschiene (20) anstatt des Metallrahmens (73) eingesetzt ist. Auf die gleiche Weise wird das andere Ende der Kombination aus den BUS-Tragschienen (20) mit einem Endstück mit einer Metallabschluss- platte (79), jedoch ohne Steckverbindung (78), abgeschlossen.
Durch die Metallabschlussplatte (79) und das Verbindungselement aus leitfähigem Gummi (71) als Tragschienen-Endab- schluss wird das Eindringen von elektromagnetischen Wellen an der Endstelle einer Tragschiene (20) verhindert.
Bei einer weiteren Ausgestaltung des Systems werden die BUS- Leitungssignale nicht innerhalb der Tragschiene (20) ausgewertet, sondern einer externen Auswerte-Einheit zugeleitet. Diese wird ebenfalls über eine Steckverbindung (78) in der vorstehend beschriebenen Weise angeschlossen, wobei jedoch die Steckverbindung (78) mittels eines BUS-Leitungsschienen- kopplers, ähnlich (69), an das BUS-Leitungssystem (40) der BUS-Leitungsschiene (18) angeschlossen ist.
Eine weitere Ausgestaltung der Erfindung besteht darin, andere, nicht die Ölnebeldichte messende Sensoren über das BUS-System, bestehend aus den BUS-Tragschienen (20), den BUS- Leitungsschienen (18), dem Tragschienen-Verschlussdeckel (64), dem Verbindungselement (71) und dem Verbindungselement (71) mit Metallabschlussplatte (79) sowie den BUS-Tragschie- nenhaltern (22), den Schlitzschlauchleitungen (49) sowie dem Sammelkanal (53) auch für andere Sensoren mit Glasfaser- Signalleitung oder auch mit Kupferleitung zu benutzen. Hierbei können die BUS-Tragschienenhalter (22), wie bereits bei dem Ölnebelüberwachungssystem beschrieben, an den Sensorhalterungen selbst befestigt werden. In weiterer Ausgestaltung der Erfindung können aber auch zur Aufnahme der Signalleitungen der verschiedenen Sensoren Schlitzschlauchleitungen (49) in speziell gestalteten Führungskanälen mit Haltezungen (51) für die Schlitzschläuche (49) verwendet werden, die dann ihrerseits auf dem betreffenden Motor besonders zu montieren sind. BEZUGSZEICHKMLISTE
K BUS-Koppler
L Leitung
M Messonde
S BUS-Schiene
1 Motorwand
2 Führungsrohr für Messkammer
3 Venturi-Kanaldüse
4 Triebraumatmosphäre
5 Entnahmestelle für Unterdruck
6 Ausströmkanal
7 Messkamraer
8 Zuführungsstelle für Triebraumatmosphäre
9 Labyrinth
10 Messstrecke
11 Glasfaserkabel
12 Glasfasern für Lichtzuleitung
13 Glasfasern für Lichtrückleitung
14 Glasfaserbündel-Fassung
15 Sammellinse
16 Trippelreflektor
17 Elektronisches Umsetzersystem
18 BUS-Leitungsschiene
19 ENDE BUS-Leitungsschiene
20 BUS-Tragschienen
21 Tragschienen-Zwischenstücke
22 BUS-Tragschienenhalter
23 Spannmutter
24 T-förmige Einschiebezunge
25 T-förmige Aufnahme mit der BUS-Tragschiene
26 Kunstharzblock
27 Flexible Leiterfolie
28 Kontaktanschlüsse Flexfolie
29 Kontaktfederpaket
30 Gummihaut BUS-Koppler
31 BUS-Koppler
32 schlitzförmige Öffnung BUS-Koppler
33 Hohlschnapphut
34 Wickelkanal
35 Haltelippen
36 rohrförmige Öffnung
37 Lichtsendediode
38 Lichtsensorische Diode
39 BUS-Gegenkontakte BUS-Leiterplatte mit geätzten BUS-Leitungen BUS-Metallschiene Federhalte-Hakenprofil BUS-Gummihaut schlitzförmige BUS-Gegenkontaktöf f nung (BUS-Koppelstelle ) Dichtwulst Gummihalteprofil BUS Haltenut BUS-Tragschiene elastische GummiVerbindung Schlitzschlauch Schlitz mit Schlitzschlauch Haltezunge Nutprofil am Schlitzschlauch Sammelkanal Halteprofil Sammelkanal Haltenut in der BUS-Tragschiene Schlitzdurchbruch im Sammelkanal Eintrittsstelle Glasfaserkabel am BUS-Koppler Eintrittsstelle Glasfaserkabel in den Wickelkanal Schleife Restlänge Glasfaserkabel des BUS-Kopplers Haltenut am BUS-Koppler Sensor-Einheit Rastnut am BUS-Koppler Rasthaken Tragschienen-Verschlussdeckel Deckelscharnier Haltenase Einführungsschlitz für Glasfaserkabel BUS-Verbindungsleitung BUS-Leitungsschienenkoppler Verbindungszunge Verbindungselement aus leitfähigem Gummi Metallklemmzungen Metal1rahmen Metallrahmenklemmzungen Rahmennut Signalauswerteeinheit Verbindungsleitung Steckverbindung Metallabschlussplatte Schlaufe

Claims

PATENTANSPRÜCHE
1) Vorrichtung zum Ermitteln von Messwerten, insbesondere der Aerosol-Konzentration, in einer Kammer einer Arbeitsmaschine, mit einer am Gehäuse (1) der Arbeitsmaschine befestigten, in die Kammer ragenden Messonde (M) , die über eine Leitung (L) mit einem ausserhalb des Gehäuses (1) angeordneten Auswerteinrichtung verbunden ist, dadurch gekennzeichnet, dass die Leitung (L) an einem BUS-Koppler (K) angeschlossen ist, der in einer BUS-Schiene (S) mit einer in einer Tragschiene (20) angeordneten BUS- Leitungsschiene (18) zur Weiterleitung der Messdaten angeordnet ist.
2) Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass am Gehäuse ein Führungsrohr (2) zum auswechselbaren Einsetzen der Messonde (M) angeordnet ist.
3) Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Messonde (M) als eine optische Sonde (10, 15,16) ausgebildet ist, die über einen Lichtleiter (L) mit dem BUS-Koppler (K) verbunden ist, der einen elektronischen Umsetzer (17) zur Umwandlung der optischen Signale in elektrische Signale aufweist.
4) Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der BUS-Koppler (K) einen Lichtsender (37) und einen Lichtempfänger (38) aufweist, die über eine Licht Zuleitung (12) und eine Lichtrückleitung (13) mit der Sonde (10,15, 16) verbunden sind. 5) Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der BUS-Koppler (K) einen Kunstharzblock (26) aufweist, in dem die Bauteile und der Anschluss der Leitung (L) eingegossen sind und der mit einer Gummihülle (30) umgeben ist, aus der Kontaktanschlüsse (28) zum Anschluss an Gegenkontakte (39) einer BUS-Leitungsschiene (18) der BUS-Schiene (S) herausragen.
6) Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der BUS-Koppler (K) einen seitlich umlaufenden Wickelkanal (34) sowie an der Oberseite Haltenuten (60) zur Aufnahme von Über längen des Leiters (L) aufweist.
7) Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der BUS-Koppler (K) ein die Kontaktanschlüsse (28) umgebendes Verzahnungsprofil (33) zur mediumsdichten Verbindung mit der BUS-Leitungsschiene (18) sowie Rastmittel (62) zum Verrasten mit der BUS-Leitungsschiene (18) aufweist.
8) Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die BUS-Schiene (S) eine BUS- Leitungsschiene (18) aufweist, welche eine Leiterplatte (40) mit Anschlusskontakten (39) für den BUS-Koppler (K) aufweist und die auf einer Metallschiene (41) befestigt ist, welche ein gegen den BUS-Koppler (K) weisendes federndes Hakenprofil (42) zum formschlüssigen Einrasten des BUS-Kopplers (K) aufweist.
9) Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Leiterplatte (40) und die Metallschiene (41) von einer Gummihülle (43) umgeben sind, welche eine die Anschlusskontakte (39) freilassende Öffnung (44), weiter vorzugsweise ein Verzahnungsprofil (45) zum mediumsdichten Anschluss des BUS-Kopplers (K) sowie Rastmittel (63) zum Verrasten mit dem BUS-Koppler (K) aufweist. 10) Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die BUS-Leitungsschiene (18) in der Tragschiene (20) derart federelastisch angeordnet ist, dass sie gegen den eingesetzten BUS-Koppler (K) vorgespannt ist und mit diesem ein Schwingsystem bildet.
11) Vorrichtung nach Anspruch 9 und 10, dadurch gekennzeichnet, dass die Gummihülle (43) an beiden Längsseiten der BUS-Leitungsschiene (18) über elastische Gummiverbindungen (48) angeschlossene Gummihalteprofile (46) aufweist, die in entsprechende Halteprofile (47) in der Tragschiene (20) eingesetzt sind.
12) Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Tragschiene (20) mit einem vorzugsweise aufklappbaren, den BUS-Koppler (K) überdeckenden Deckel (64) verschlossen ist.
13) Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Tragschiene (20) an der Austrittsseite des Leiters (L) einen diesen aufnehmenden Sammelkanal (53) aus Gummi aufweist, in den der Leiter (L) über einen Schlitz (50) eingeführt und an den BUS-Koppler (K) weitergeführt ist.
14) Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Tragschiene (20) eine T-förmige Aufnahmenut (25) aufweist, in der eine Haltezunge (24) eines Tragschienenhalters (22) eingesetzt ist, der mit einem mit dem Gehäuse zu verbindenden Führungsrohr (2) verbunden ist.
15) Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Leiter (L) von der BUS-Schiene (S) bis zur Messonde (M) in einem mit einem Längsschlitz (50) versehenen Schlauch (49) geführt ist. 16) Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die BUS-Schiene (S) mittels eines Zwischenstückes (21) mit einer weiteren BUS-Schiene (S) verbindbar ist, wobei zur mechanischen Verbindung eine in die zu verbindenden Tragschienen (20,21) einschiebbare metallische Verbindungszunge (70) angeordnet ist, der ein gummielastisches Verbindungselement (71) zugeordnet ist, wobei letzteres dem Innenprofil der Tragschiene (20) und dem Zwischenstück (21) vorzugsweise mit Übermass entspricht und beidseits je einen Metallrahmen (73) mit Klemmzungen (74) enthält, die in Haltenuten (47) in den Tragschienen (20,21) klemmend eingreifen.
17) Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die BUS-Schiene (S) an den Enden jeweils durch ein in die Tragschiene (20) eingesetztes Endstück abgeschlossen ist, das einen Gummikörper sowie eine Metallplatte (79) enthält, die Klemmzungen (74) enthält, welche in Haltenuten (47) in der Tragschiene (20) klemmend eingreifen, wobei das Endstück gegebenenfalls eine Steckverbindung (78) enthält, die über eine Leitung (77) mit einem BUS-Anschlusskoppler (76) verbunden ist, der analog dem BUS-Koppler (31) in die BUS-Schiene (S) eingesetzt und mit der BUS-Leitungsschiene (18) verbunden ist.
18) Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die BUS-Schiene (S) zum Verbinden mit anderen Aggregaten einen BUS-Anschlusskoppler (69,76) aufweist, der analog dem BUS-Koppler (K) in der Tragschiene (20) eingesetzt und mit der BUS-Leitungsschiene (18) in Verbindung steht und eine Verbindungsleitung (68,77) aufweist.
EP97938726A 1996-09-13 1997-09-12 Vorrichtung zum ermitteln von messwerten, insbesondere der konzentration eines aerosols in einem geschlossenen raum einer arbeitsmaschine Expired - Lifetime EP0925430B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH224496 1996-09-13
CH224496 1996-09-13
PCT/CH1997/000338 WO1998011331A1 (de) 1996-09-13 1997-09-12 Vorrichtung zum ermitteln von messwerten, insbesondere der konzentration eines aerosols in einem geschlossenen raum einer arbeitsmaschine

Publications (2)

Publication Number Publication Date
EP0925430A1 true EP0925430A1 (de) 1999-06-30
EP0925430B1 EP0925430B1 (de) 2002-06-12

Family

ID=4229233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97938726A Expired - Lifetime EP0925430B1 (de) 1996-09-13 1997-09-12 Vorrichtung zum ermitteln von messwerten, insbesondere der konzentration eines aerosols in einem geschlossenen raum einer arbeitsmaschine

Country Status (9)

Country Link
US (1) US6137582A (de)
EP (1) EP0925430B1 (de)
JP (1) JP2001500206A (de)
KR (1) KR20000036122A (de)
CN (1) CN1085775C (de)
DE (1) DE59707517D1 (de)
NO (1) NO991241L (de)
PL (1) PL332190A1 (de)
WO (1) WO1998011331A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123495B3 (de) * 2017-10-10 2019-04-11 Man Diesel & Turbo Se Brennkraftmaschine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE237128T1 (de) * 2000-03-07 2003-04-15 Sulzer Markets & Technology Ag Verfahren und anordnung zur beurteilung des reibverhaltens zwischen zwei gegenlaufpartnern
GB2435934B (en) * 2006-03-06 2009-10-28 Kidde Ip Holdings Ltd Sampling member
WO2007140640A2 (de) * 2006-06-02 2007-12-13 Schaller Automation Anlage und verfahren zum ermitteln von messwerten eines aerosols für eine arbeitsmaschine
US7440121B2 (en) * 2006-09-20 2008-10-21 Lawrence Livermore National Security, Llc Optically measuring interior cavities
JP4633186B1 (ja) * 2009-10-02 2011-02-23 ダイハツディーゼル株式会社 オイルミスト濃度検出装置
KR101500013B1 (ko) * 2009-12-01 2015-03-09 현대자동차주식회사 오일 레벨 스위치와 크랭크 축 위치 센서용 일체형 커넥터
EP2386733A1 (de) * 2010-05-14 2011-11-16 Schaller Automation Industrielle Automationstechnik GmbH & Co. KG Anlage und Verfahren zum Ermitteln von Messwerten von Gasen und/oder eines Aerosols für eine Arbeitsmaschine
CN102042945B (zh) * 2010-11-03 2012-02-01 北京航空航天大学 一种测量密闭式齿轮箱油雾浓度的方法
US20120291535A1 (en) * 2011-05-20 2012-11-22 Caterpillar Inc. Oil mist detector test rig
EP2615269B1 (de) 2012-01-13 2014-08-13 Schaller Automation Industrielle Automationstechnik GmbH & Co. KG Vorrichtung und Verfahren zum Ermitteln von Messwerten von Gasen und/oder eines Aerosols für eine Arbeitsmaschine
GB201213385D0 (en) * 2012-07-27 2012-09-12 Flame Marine Ltd Method and apparatus for collecting samples of oil from marine engines

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB804541A (en) * 1954-11-05 1958-11-19 Graviner Manufacturing Co Improvements in detectors of oil mists and the like
DE2905506A1 (de) * 1979-02-14 1980-09-04 Bosch Gmbh Robert Zuendbeginnsensor, insbesondere bei brennkraftmaschinen
JPS5826251A (ja) * 1981-07-21 1983-02-16 クオリティ・モニタリング・インストルメンツ・リミテッド 油霧検出器
GB2166232A (en) * 1984-10-10 1986-04-30 Lee Dickens Limited Monitoring oil mist level
DD239474A1 (de) * 1985-07-12 1986-09-24 Schwermasch Liebknecht Veb K 400g 01n 21/61 410f 01m 11/10
JPH07122423B2 (ja) * 1986-07-31 1995-12-25 日本電装株式会社 電磁式燃料噴射弁
US4917491A (en) * 1988-07-15 1990-04-17 Ring Lawrence S Spectrometry detector head and fiber optic connector
JP3078860B2 (ja) * 1991-02-18 2000-08-21 株式会社デンソー 金属部材の樹脂インサート成形方法
DE4225358A1 (de) * 1992-07-31 1994-02-03 Bosch Gmbh Robert Anbausteuergerät
US5510895A (en) * 1993-03-05 1996-04-23 Sahagen; Armen N. Probe for monitoring a fluid medium
DE4325980C2 (de) * 1993-08-03 2003-06-26 Bosch Gmbh Robert Vorrichtung zur gemeinsamen elektrischen Kontaktierung mehrerer elektrisch erregbarer Aggregate von Brennkraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9811331A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123495B3 (de) * 2017-10-10 2019-04-11 Man Diesel & Turbo Se Brennkraftmaschine

Also Published As

Publication number Publication date
JP2001500206A (ja) 2001-01-09
CN1085775C (zh) 2002-05-29
PL332190A1 (en) 1999-08-30
NO991241D0 (no) 1999-03-12
KR20000036122A (ko) 2000-06-26
US6137582A (en) 2000-10-24
CN1230241A (zh) 1999-09-29
WO1998011331A1 (de) 1998-03-19
EP0925430B1 (de) 2002-06-12
NO991241L (no) 1999-05-12
DE59707517D1 (de) 2002-07-18

Similar Documents

Publication Publication Date Title
EP0925430A1 (de) Vorrichtung zum ermitteln von messwerten, insbesondere der konzentration eines aerosols in einem geschlossenen raum einer arbeitsmaschine
DE4434202B4 (de) Kabeldurchführungsleiste
DE3208512A1 (de) Faseroptische sensorvorrichtung zum messen eines physikalischen parameters
DE3709239A1 (de) In einem bruestungskanal befestigbare einbaudose
DE3854175T2 (de) Fiberoptischer Adapter.
DE4028623A1 (de) Lichtschranke zur verwendung in einem codierten winkelgeber vom lichttransmissionstyp
DE3708902C3 (de) Steuereinheit für elektrohydraulische Ausbausteuerungen
EP0909121B1 (de) Elektronisches Ein-/Ausgabemodul
DE4202147A1 (de) Verfahren und vorrichtung zum kabeleinblasen in ein kabelschutzrohr
EP1409972B1 (de) Verfahren und vorrichtung zur auswertung elektromagnetischer strahlung
DE69125946T2 (de) Universalstecker für optische faserkabel
EP0771050B1 (de) Elektrische Anschlussvorrichtung für Geräte
DE102017102885B4 (de) Optischer Steckverbinder, Steckverbindermodul und Verfahren zur Detektion von Signalverlusten bei einem optischen Steckverbindermodul
DE3034632C2 (de)
DE2308294B2 (de) Steckverbindung für Lichtleitkanal
DE3510453A1 (de) Kontaktanordnung
DE10106137B4 (de) Gerät zum Messen und/oder Prüfen von Komponenten optischer Netze und Verbindungselement für ein derartiges Gerät
EP0771049B1 (de) Elektrische Anschlussvorrichtung für die Gebäudesystemtechnik
DE9001008U1 (de) Vorrichtung zur Erkennung von Funken in einem durchströmten Raum
DE202019002833U1 (de) Kabeldurchführung für einen Steuerungsschrank
DE4108588A1 (de) Temperaturmesseinrichtung
DE10022579A1 (de) Endoskop für die Verwendung in unter Spannung stehende Hochspannungsanlagen
EP0297251B1 (de) Gekapselte Positionsmesseinrichtung
EP0716227A2 (de) Vorrichtung zum Erfassen von Zündsignalen
DE29609124U1 (de) Automatischer Brandmelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FI FR GB GR IT LI NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010803

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK ES FI FR GB GR IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59707517

Country of ref document: DE

Date of ref document: 20020718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020916

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021220

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160816

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL