EP0916065B1 - Vorrichtung zum entwässern und trocknen von suspensionen - Google Patents

Vorrichtung zum entwässern und trocknen von suspensionen Download PDF

Info

Publication number
EP0916065B1
EP0916065B1 EP97915449A EP97915449A EP0916065B1 EP 0916065 B1 EP0916065 B1 EP 0916065B1 EP 97915449 A EP97915449 A EP 97915449A EP 97915449 A EP97915449 A EP 97915449A EP 0916065 B1 EP0916065 B1 EP 0916065B1
Authority
EP
European Patent Office
Prior art keywords
seal
centrifuge
fact
dryer
per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97915449A
Other languages
English (en)
French (fr)
Other versions
EP0916065A1 (de
Inventor
Lucia Baumann-Schilp
Uwe Zacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAUMANN SCHILP LUCIA
Original Assignee
BAUMANN SCHILP LUCIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAUMANN SCHILP LUCIA filed Critical BAUMANN SCHILP LUCIA
Priority to EP99121798A priority Critical patent/EP0979984A3/de
Publication of EP0916065A1 publication Critical patent/EP0916065A1/de
Application granted granted Critical
Publication of EP0916065B1 publication Critical patent/EP0916065B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/12Other accessories for centrifuges for drying or washing the separated solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers
    • F26B17/107Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers pneumatically inducing within the drying enclosure a curved flow path, e.g. circular, spiral, helical; Cyclone or Vortex dryers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/24Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by shooting or throwing the materials, e.g. after which the materials are subject to impact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/10Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it
    • F26B3/12Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour carrying the materials or objects to be dried with it in the form of a spray, i.e. sprayed or dispersed emulsions or suspensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/08Drying solid materials or objects by processes not involving the application of heat by centrifugal treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00

Definitions

  • the invention relates to a device for dewatering and drying Suspensions according to the preamble of claim 1.
  • Such Drainage and drying device is known from DE-A4332799.
  • the drying room is a concentric annulus. It is made from the outer dryer housing, the internal rotating drum shell of the centrifuge or an inner that Drum surrounding housing and the two housing end walls are formed. The outer walls of the concentric drying room are fixed and must compared to the rotating parts of the internal centrifuge at least on one Point to be sealed.
  • the direction of rotation between the centrifuge rotor and the surrounding one Dryer housing must have a high relative speed, a gas differential pressure between inside and outside, as well as displacement movements from thermal expansion and Bridge and endure vibrations.
  • the escape of gases from the Dryer interior to the outside or the entry of false air from the outside in should be prevented or minimized by the seal.
  • the gap must be chosen so large that despite Thermal expansions and displacements of the dryer housing do not start non-contact seals comes.
  • Another disadvantage is that the gap is also caused by vibrations of the Drainage centrifuge inside the dryer changes as the spinning and the non-rotating part of the seal on different seal supports are attached.
  • Too large a sealing gap is particularly important when the centrifuge dryer is in operation Inert gas atmosphere of great disadvantage, since the false air entry causes the Oxygen content of the inert dryer gas is increased significantly.
  • the object of the invention is in a drainage and Drying device of the type mentioned at the outset, malfunctions, caused by leaks between the dryer housing and the centrifuge avoid constructive measures.
  • the invention provides for the radial end walls by means of a rotary seal of the dryer housing opposite the rotating surface of the centrifuge seal, whereby the sealing gap can be kept very tight without there is a risk that mechanical contact of the rotating with not rotating active surfaces of the rotary seal comes and damage and Destruction.
  • Another advantage of the rotary seal is that uncontrollable large displacement and expansion movements of the dryer housing during the auto heating and cooling phase of the centrifuge dryer or stronger Vibrations during operation the sealing function despite the narrow gap Do not affect the rotary seal. An escape of internal gases or solids or entry of false air into the inert drying gas is prevented by the narrow Sealing gap almost completely prevented.
  • the dewatering and drying device shown in Fig. 1 (“Centrifuge dryer”) has a solid bowl screw centrifuge in the example shown 1 known type.
  • Solid bowl screw centrifuges can also be used for dewatering Suspensions, e.g. Slurries, suitable centrifuges, for example Sieve-jack screw centrifuges or 3-phase centrifuges are used in which a phase is to be dried.
  • the "dewatering centrifuge” or “centrifuge” for short designated solid bowl screw centrifuge 1 has a rotating Drum 2, which is rotatably mounted on roller bearings 3 at its axial ends is.
  • the drum 2 tapers conically at one or both ends and is on Its tapered end is provided with discharge openings 4 which define the discharge zone 5 forms for the pre-dewatered solid 6.
  • the through a tube 7 inside suspension fed to the centrifuge 1, e.g. liquid sludge 8, is in the Centrifuge 1 due to the centrifugal force into a solid 6 and a clarified Liquid 9 separated from the other end of the drum shell 2 from the Centrifuge 1 is hosed into a separate housing 10, the centrate chute.
  • the dryer surrounding the centrifuge 1 is replaced by an external one Dryer housing 11 and an interior surrounding the rotating drum 2 Housing 12 or by the drum 2 itself, as well as by the two End walls 13 and 14 formed.
  • the drying gas 15 is by a Hot gas shaft 16 introduced tangentially into the dryer room 17, flows around the solid 6 dispersed in the form of particles, that of the impact cone 18 is deflected in the axial direction and transports the drying Solid particles in spiral tracks through the concentric annular space 19 to Output channel 20 of the dryer housing 11. From here flows with the dried solid particles loaded drying gas 21 by a not shown pneumatic delivery line to a solids separator and is there again separated into gas and solid aggregate.
  • the perforated plate 22 can consist of a conical surface or from several sections with different cone angles, hole shapes, Slits, free opening cross sections or partial solid sheet sections be composed to achieve the effects mentioned.
  • the baffle cone 18 and or the dryer housing 11 can also full or partial annular gaps 23 can be formed in order to prevent undesirable accumulations of solids to prevent.
  • the flow plate 22 through which flow can flow can be a bowl-shaped, cylindrical or flat deviating from the cone Have shape or be composed of different shapes.
  • Fig. 2 is a combined centrifuge dryer with built-in guide elements 25, 26 shown in the concentric annular space of the dryer.
  • the centrifuge dryer is constructed from similar components and functions as in Fig. 1. Instead of the perforated plate 22, however, 19 are spiral in the dryer room Baffles 25, 26 installed, which concentrically concentrate the gas flow Force dryer room 19 and short-circuit flows between hot gas inlet 16 and prevent gas outlet 20.
  • the baffle 26 may preferably have a smaller slope of its spiral shape than that in the axial direction arranged behind the baffle 26 baffles 25.
  • Fig. 3 shows an enlarged view of the discharge zone 5 of a combined centrifuge dryer with two or more rotating cleaning blades 28, which clean the deflecting surface 29 of the impact cone 18 with each rotor revolution.
  • the Pre-dewatered solid 6 is from the screw conveyor to the centrifuge 1 Sprayed edge 30 transported and there at high speed out of the rotor 2 thrown out.
  • the solid particles bounce on the surface 29 of the Impact cone 18, are broken up into smaller particles and braked there.
  • the decelerated particles fly at a greatly reduced speed and in Deflected in the axial direction as a conical solid spray into the Dryer room 19 and there are intensively flushed with hot gas and dried.
  • the cleaning blades 28 are viewed in the direction of rotation behind the solids outlet openings 31 attached to the rotor and are exiting Solid 6 not sprayed. Should serve when very moist or sticky solid particles 6 on the deflection surface 29 some particles not are reflected and stick to the surface 29, they are from the subsequent rotating cleaning blades 28 torn off and in the Tumbled dryer room 19.
  • the high peripheral speed of approx. 60m / s rotating blades 28 also exert a pressure on the surrounding hot gas 15a sucking and promoting effect, with the further consequence that the surrounding hot gas 15a the solid dust located in the dryer room 19 partially promotes in the drop zone 5.
  • Fig. 4 is the discharge zone 5 of a centrifugal dryer with a steeper angle of the impact cone 18, perforated gas guide plates 22 and rotating Blow blades 33 shown.
  • the cleaning action of the blowing blades 33 is not based on a scraping action Effect, but on the blowing effect of the intense gas flow 34 that flows out of the rotating nozzle 33 and onto the surface 29 to be cleaned of the impact cone 18 occurs at a flat angle.
  • Gas production through the Bladder blade 33 is particularly increased by taking suitable measures, such as For example, large intake cross sections at the blade inlet 35, guide elements in the blade and directed blowing at the blade outlet.
  • the deflection surface can also be coated with a suitable material be such as PTFE, enamel, ceramic, or other anti-adhesive acting materials.
  • a suitable material be such as PTFE, enamel, ceramic, or other anti-adhesive acting materials.
  • the surface 29 can also consist of a perforated surface exist and be ventilated.
  • the discharge openings 4 of the centrifuge 1 have a conveying effect at their edges on the gas inside the interior 37 of the centrifuge 1. As a result of this Conveying effect from the interior 37 of the centrifuge 1 moist gas sucked out and drawn in hot, dry gas. This will moist solid 6 with the centrifuge 1 even before it is ejected long pre-dried.
  • FIG. 6 shows a combination of a turbulence vane 40 for keeping the Dryer room 19 and a cleaning scoop 28 for cleaning the surface 29 of the impact cone 18 is shown.
  • the turbulence vane 40 has one high peripheral speed and generates a strong swirl 41 of Drying gas in the dryer room 19. This does not flow through Dead zones avoided and the incoming drying gas 15 with the dispersed Particles mixed intensely.
  • the cleaning scoop 28 can, as shown, scrape off part or all of the surface 29 of the impact cone or blow off.
  • the blades 28 and or 40 can be rigid or oscillating on the rotor 2 be movably attached.
  • rotating turbulence disks for generation are in the dryer room 19 of tubular vortex rollers 43 installed.
  • the dryer housing 11 is without one fixed inner housing 12 formed, which in some embodiments the drum 2 envelops the centrifuge dryer.
  • the concentric Dryer chamber 19 is therefore outside of a non-rotating cylinder wall and limited on the inside by the rapidly rotating centrifuge drum 2.
  • the rotating one Surface of the drum 2 in connection with the rapidly rotating disks 42 induce in the dryer room 19 a series of turbulent vortex rollers rotating in themselves 43.
  • These turbulence vortex rollers 43 are rotating Surfaces of the drum 2 and the disks 42 driven generate in overall cross-section a high degree of turbulence and even the Flow through the dryer chamber 19 in the circumferential direction.
  • the high degree of turbulence the vortex rollers prevents deposits on the boundary walls of the Dryer housing 11, forcing an intimate mixing of drying gas and the dispersed solid particles and produces a high drying rate for the moist solid particles, combined with an extreme high water evaporation rate based on the dryer volume.
  • the entering Hot gas 15 is rotating through the passage gaps 44 outside Discs 42 and through the toroidal turbulence vortex rollers in his axial movement smoothed over the entire circumference.
  • rotating disks 42 can also be on the centrifuge drum 2
  • Elements for generating turbulence rollers are used in the dryer, for example a radial blade ring, axial or radial feed wheels, Club arms or other suitable internals known per se.
  • Blade rings 46 attached to generate a high degree of turbulence in the Dryer room 19 and for uniform axial conveyance and control of the Residence time of the drying gas laden with solids. In addition to these functions the blade rings 46 also cause agglomerates in the Dryer room 19.
  • the surface 29 of the impact cone 18 consists of several geometrically composed smooth surfaces. At the impact zone 48 of the pre-dewatered dispersed solid 6, the surface consists of a flat Cone, to which a rounded surface contour 49 adjoins further outside. Due to the flat impact angle of the dispersed moist solid particles 6 on the smooth baffle cone 18 is divided into several smaller ones Particles 47 which favors reflection and further transport.
  • the centrifuge dryer shown in Fig. 9 in turn consists of a Centrifuge, in the example shown from a solid bowl centrifuge 1 which is surrounded by an outer housing 11 of an atomizing dryer. Around the centrifuge drum 2, an inner housing 12 is arranged.
  • the outer dryer housing 11 and the inner housing 12 form the concentric Dryer room 19 through which the drying gas 15 is passed.
  • the Drying gas 15 is fed through the tangential hot gas shaft 16, detects in the region of the discharge zone 5 in the form of a dispersed Particle veil thrown off, dewatered solid, transports the Solid particles with increasing drying in spiral paths the dryer room 19 and reaches the outlet channel as a gas 21 laden with solids 20.
  • the water separated in the centrifuge 1 is in the centrate chute 10 derived.
  • the outer dryer housing 11 is on the two end walls 13 and 14 sealed against the rapidly rotating centrifuge drum 2.
  • the gap 190 of the rotary seals 160 is formed by the centrifuge drum 2 and the sealing ring 170, which, like the drum pedestals 210 on the base frame 220 is rigidly attached. By fastening the two, the sealing gap 190 forming active surfaces 2 and 170 on the same support 220 is the sealing gap 190 guided precisely and stably.
  • the centrifuge drum 2 also remains Flow through the dryer room 19 with hot gas 15 through the given Suspension cold and does not expand, whereas hot gas 15 flowed through dryer housing 11 strong in the axial and radial directions expands.
  • the displacement movements of the two housing end walls 13 and 14 are through a gas-tight flexible compensator 180 or an elastic membrane or a sliding link ring 300 opposite the rigidly attached Sealing ring 170 compensated so that the sealing gap 190 is not changed.
  • Fig. 10 shows in detail a non-contact labyrinth seal for one Centrifuge dryer, with the sealing ring 170 rigidly attached to the frame 220 the axially and radially shifting dryer end wall 14 gas-tight connects a compensator 180.
  • the flexible compensator 180 is e.g. by Tension straps 230 or other fasteners with both the sealing ring 170 and connected to the end wall 14 in a gastight manner.
  • the sealing gap 190 between the tips 240 of the labyrinth seal and the rotating surface of the centrifuge drum 2 can be very narrow (0.3 - 0.5mm) be held, since the displacement movement of the end wall 14 is not on the Labyrinth seal is transferred.
  • FIG 11 shows a non-contact rotary seal 160 in the form of a thread seal for a centrifuge dryer, e.g. in the dryer room to the right of the End wall 14 has a negative pressure.
  • the sliding and sliding movements of the front wall 13 and 14 of the dryer during the heating up or cooling down phase of the dryer housing 11 compensated for a sheet metal ring 260, which is sealed by heat-resistant O-rings 270 is and both on the housing end wall 13 and 14 as well as rigid attached sealing ring 170 can slide.
  • the threads 280 can also be used with a fluid barrier medium such as Water or sealing gas can be filled, which through the threads 280th is passed through.
  • the moving dryer housing 11 is by the Setting slide ring 300 balanced in the gap.
  • the sliding block 300 itself is due to heat-resistant O-rings both on the dryer end wall 14 and on rigidly attached sealing ring 170 slidably sealed.
  • Fig. 13 shows a non-contact rotary seal 160 with flat grooves, which in a soft cylinder liner 320 made of plain bearing materials with a very narrow gap 190 rotates.
  • the displacement movement of the end wall 13 or 14 of the dryer housing 11 is by a resilient in the radial and axial directions Sliding ring 340 balanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Drying Of Solid Materials (AREA)
  • Centrifugal Separators (AREA)
  • Treatment Of Sludge (AREA)

Description

Die Erfindung bezieht sich auf eine Vorrichtung zum Entwässern und Trocknen von Suspensionen gemäß dem Oberbegriff des Anspruchs 1. Eine derartige Entwässerungs- und Trocknungsvorrichtung ist aus der DE-A4332799 bekannt.
Bei der bekannten Entwässerungs- und Trocknungsvorrichtung werden die mit hoher Geschwindigkeit am Auswurf der Zentrifuge, vorzugsweise einer Vollmantelschneckenzentrifuge, radial abgespritzten feuchten Feststoffpartikeln in der Größe 0,3 - 3mm durch geeignete Mittel, beispielsweise Umlenkflächen oder durch geeignete Gasströmung in Achsrichtung der Zentrifuge umgelenkt und von der Gasströmung auf einer spiralförmigen Flugbahn im Trocknungsraum geführt. Hier werden die abgespritzten Feststoffpartikeln vom Trocknungsgas mit hoher Relativgeschwindigkeit umspült und getrocknet. Der Trocknungsraum ist ein konzentrischer Ringraum. Er wird aus dem äußeren Trocknergehäuse, dem innenliegenden rotierenden Trommelmantel der Zentrifuge oder einem inneren, die Trommel umgebenden Gehäuse und den beiden Gehäusestirnwänden gebildet. Die äußeren Wände des konzentrischen Trocknungsraumes sind feststehend und müssen gegenüber den rotierenden Teilen der innenliegenden Zentrifuge zumindest an einer Stelle abgedichtet werden.
Die Drehrichtung zwischen dem Zentrifugenrotor und dem umgebenden Trocknergehäuse muß eine hohe Relativgeschwindigkeit, eine Gasdifferenzdruck zwischen innen und außen, sowie Verschiebebewegungen aus Wärmedehnungen und Vibrationen überbrücken und aushalten. Der Austritt von Gasen aus dem Trocknerinnenraum nach außen oder der Eintritt von Falschluft von außen nach innen soll durch die Dichtung verhindert oder minimiert werden.
Es hat sich nun gezeigt, daß insbesondere durch Wärmedehnung bei Aufheizvorgängen während der Startphase, bei Vibrationen, oder bei Temperaturänderungen des Trocknergehäuses sich der Dichtungsspalt zwischen feststehenden Gehäuseteilen und rotierenden Zentrifugenteilen in unzulässiger Weise verändert. Hierdurch kann es zu zeitweiser Berührung der Dichtflächen und zu Beschädigung oder Zerstörung der Dichtung kommen.
Um dies zu vermeiden, muß die Spaltweise so groß gewählt werden, daß es trotz Wärmedehnungen und Verschiebungen des Trocknergehäuses nicht zum Anlaufen der berührungsfreien Dichtungen kommt.
Ein weiterer Nachteil besteht darin, daß der Spalt auch durch Vibrationen der Entwässerungszentrifuge im Innern des Trockners sich verändert, da der drehende und der nichtdrehende Teil der Dichtung auf jeweils verschiedenen Dichtungsträgern befestigt sind.
Ein zu großer Dichtspalt ist insbesondere bei Betrieb des Zentrifugentrockners mit Inertgas-Atmosphäre von großem Nachteil, da durch den Falschlufteintritt der Sauerstoffgehalt des inerten Trocknergases merklich erhöht wird.
Die Aufgabe der Erfindung besteht demgegenüber darin, bei einer Entwässerungs-und Trocknungsvorrichtung der eingangs erwähnten Art Betriebsstörungen, verursacht durch Undichtigkeiten zwischen Trocknergehäuse und Zentrifuge durch konstruktive Maßnahmen zu vermeiden.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung sieht vor, mittels einer Drehdichtung die radialen Stirnwände des Trocknergehäuses gegenüber der rotierenden Mantelfläche der Zentrifuge abzudichten, wodurch der Dichtungsspalt sehr eng gehalten werden kann, ohne daß die Gefahr besteht, daß es zu mechanischen Berührungen der rotierenden mit nicht rotierenden Wirkflächen der Drehdichtung kommt und zu deren Beschädigung und Zerstörung. Ein weiterer Vorteil der Drehdichtung liegt darin, daß auch unkontrollierbare größere Verschiebe- und Dehnbewegungen des Trocknergehäuses während der Autheiz- und Abkühlphase des Zentrifugentrockners oder stärkere Vibrationen während des Betriebs die Dichtfunktion trotz engem Spalt der Drehdichtung nicht beeinflussen. Ein Austritt von inneren Gasen oder Feststoffen oder ein Eintritt von Falschluft in das inerte Trocknungsgas wird durch den engen Dichtspalt nahezu vollständig verhindert.
Weitere Einzelheiten, und Vorteile der Erfindung werden mit den Ausführungsbeispielen anhand von Zeichnungen näher erläutert.
Es zeigen:
Fig 1
eine Entwässerungs- und Trocknungsvorrichtung (im folgenden als "Zentrifugentrockner" bezeichnet) mit perforierten Gasführungsblechen im Längsschnitt;
Fig 2
einen Zentrifugentrockner mit Leitblechen im Trocknerraum im Längsschnitt;
Fig 3
die Dispergierzone eines Zentrifugentrockners mit rotierenden Reinigungsschaufeln für die Umlenkflächen der dispergierten Partikeln;
Fig 4
die Dispergierzone eines Zentrifugentrockners mit rotierenden Turbulenzschaufeln zum Freihalten der Trocknerwände;
Fig 5
eine Kombination von Reinigungs- und Turbulenzschaufeln zur Verhinderung von Verkrustungen im Trocknerinnenraum und Leitungen;
Fig 6
eine Kombination von Turbulenz- und Transportschaufeln zum Freihalten des Trocknerinnenraums;
Fig. 7
rotierende Turbulenzscheiben im Trocknerraum zur Erzeugung von Turbulenzwirbelwalzen für die Redispergierung;
Fig. 8
Umlenkflächen zur besseren Dispergierung und breiteren Verteilung der vorentwässerten feuchten Feststoffpartikeln;
Fig. 9
einen Zentrifugentrockner mit Gehäusedichtung im Längsschnitt;
Fig. 10
eine berührungsfreie Labyrinthdichtung für einen Zentrifugentrockner;
Fig. 11
eine berührungsfreie Gewinde-Förderdichtung für einen Zentrifugentrockner;
Fig. 12
eine berührungsfreie Gewinde-Förderdichtung mit Spitzengewinde, und
Fig. 13
eine berührungsfreie Dichtung mit Flachnuten.
Die in Fig. 1 dargestellte Entwässerungs- und Trocknungsvorrichtung ("Zentrifugentrockner") weist im dargestellten Beispielfall eine Vollmantel-Schneckenzentrifuge 1 bekannter Bauart auf. Anstelle der dargestellten Vollmantel-Schneckenzentrifuge können auch andere, für die Entwässerung von Suspensionen, z.B. Schlämmen, geeignete Zentrifugen, beispielsweise Siebmantel-Schneckenzentrifugen oder 3-Phasen-Trennzentrifugen verwendet werden, bei der eine Phase getrocknet werden soll.
Die nachstehend als "Entwässerungszentrifuge" oder kurz "Zentrifuge" bezeichnete Vollmantel-Schneckenzentrifuge 1 weist eine rotierende Trommel 2 auf, welche an ihren axialen Enden auf Wälzlagern 3 drehbar gelagert ist. Die Trommel 2 verjüngt sich konisch an einem oder beiden Enden und ist an Ihrem verjüngten Ende mit Abwurföffnungen 4 versehen, welche die Abwurfzone 5 für den vorentwässerten Feststoff 6 bildet. Die durch ein Rohr 7 in das Innere der Zentrifuge 1 zugeführte Suspension, z.B. flüssiger Schlamm 8, wird in der Zentrifuge 1 infolge der Fliehkraft in einen Feststoff 6 und eine geklärte Flüssigkeit 9 getrennt, die am anderen Ende des Trommelmantels 2 aus der Zentrifuge 1 in ein separates Gehäuse 10, der Zentratschurre, abgespritzt wird.
Der die Zentrifuge 1 direkt umgebende Trockner wird durch ein äußeres Trocknergehäuse 11 und ein die rotierende Trommel 2 umgebendes inneres Gehäuse 12 oder auch durch die Trommel 2 selbst, sowie durch die beiden Stirnwände 13 und 14 gebildet. Das Trocknungsgas 15 wird durch einen Heißgasschacht 16 in den Trocknerraum 17 beispielsweise tangential eingeleitet, umspült den in Form von Partikeln dispergierten Feststoff 6, der vom Prallkegel 18 in axialer Richtung umgelenkt wird und transportiert die trocknenden Feststoffpartikeln in Spiralbahnen durch den konzentrischen Ringraum 19 zum Ausgangskanal 20 des Trocknergehäuses 11. Von hier aus strömt das mit den getrockneten Feststoffpartikeln beladene Trocknungsgas 21 durch eine nicht dargestellte pneumatische Förderleitung zu einem Feststoffabscheider und wird dort wieder in Gas und Feststoffhaufwerk getrennt.
Um das eintretende heiße Trocknungsgas 15 im konzentrischen Ringraum 19 gleichmäßig zu verteilen und mit den, vom Prallkegel 18 umgelenkten und abgebremsten Feststoffpartikeln innig zu vermischen, ist ein beispielsweise kegelförmig ausgebildetes Lochblech 22 eingebaut, das vom Heißgas 15 durchströmt wird. Das Lochblech 22 kann aus einer Kegelfläche bestehen oder aus mehreren Abschnitten mit unterschiedlichen Kegelwinkeln, Lochformen, Schlitzen, freien Öffnungsquerschnitten oder teilweisen Vollblechabschnitten zusammengesetzt sein, um die genannten Wirkungen zu erzielen. Zwischen dem Lochblech 22, dem Prallkegel 18 und oder dem Trocknergehäuse 11 können auch volle oder teilweise Ringspalte 23 ausgebildet sein, um unerwünschte Feststoffansammlungen zu verhindern. Auch das durchströmbare Verteilungsblech 22 kann eine vom Kegel abweichende schüsselförmige, zylinderförmige oder ebene Form besitzen oder aus verschiedenen Formen zusammengesetzt sein.
In Fig. 2 ist ein kombinierter Zentrifugentrockner mit eingebauten Leitelementen 25, 26 im konzentrischen Ringraum des Trockners dargestellt. Der Zentrifugentrockner ist aus ähnlichen Bauteilen und Funktionen wie in Fig. 1 aufgebaut. Anstelle des Lochbleches 22 sind jedoch im Trocknerraum 19 spiralförmige Leitbleche 25, 26 eingebaut, welche die Gasströmung im konzentrischen Trocknerraum 19 zwangsführen und Kurzschlußströmungen zwischen Heißgaseintritt 16 und Gasausgang 20 verhindern. Das Leitblech 26 kann vorzugsweise eine geringere Steigung seiner Spiralform aufweisen als die in Axialrichtung hinter dem Leitblech 26 angeordneten Leitbleche 25. Bei geeigneter Ausbildung des Leitbleches 26 ( welches im Eintrittsbereich des Heißgases 15 angeordnet ist) ist es möglich, die Anzahl der Leitbleche 25, welche sich in der Darstellung nach Fig. 2 über nahezu die gesamte Länge des Trocknergehäuses 11 erstrecken, zu verringern oder auf die Leitbleche 25 vollständig zu verzichten. Das beispielsweise tangential eintretende Heißgas 15 (auch als "Trocknungsgas" bezeichnet) wird im Bereich der Abwurfzone 5 des dispergierten, feuchten Feststoffes 6 durch ein Leitblech 26 zunächst nahezu vollständig in Umfangrichtung herumgeführt, wo es mit Feststoffpartikeln durchsetzt wird. Das feststoffbeladene Trocknungsgas 15 wird durch die spiralförmigen Leitbleche 25 in Spiralbahnen zum Trocknerausgang 20 geführt wird. Durch die Leitbleche 25 und 26 werden nichtdurchströmte Totzonen im Trocknerraum 19 vermieden und überall eine vorgegebene Mindest-Transportgeschwindigkeit des Trocknungsgases 15 sowie eine gleiche Verweilzeit der dispergierten Feststoffpartikeln erzwungen.
Fig. 3 zeigt in Vergrößerung die Abwurfzone 5 eines kombinierten Zentrifugentrockners mit zwei oder mehreren rotierenden Reinigungsschaufeln 28, welche die Umlenkfläche 29 des Prallkegels 18 bei jeder Rotorumdrehung reinigen. Der vorentwässerte Feststoff 6 wird von der Förderschnecke der Zentrifuge 1 zur Abspritzkante 30 transportiert und dort mit hoher Geschwindigkeit aus dem Rotor 2 herausgeschleudert. Die Feststoffpartikeln prallen auf der Oberfläche 29 des Prallkegels 18 auf, werden dort in kleinere Partikeln zerteilt und abgebremst. Die abgebremsten Partikeln fliegen mit stark verminderter Geschwindigkeit und in Achsrichtung hin abgelenkt als kegelförmiger Feststoffsprühnebel in den Trocknerraum 19 und werden dort intensiv mit Heißgas umspült und getrocknet. Die Reinigungsschaufeln 28 sind in Drehrichtung betrachtet hinter den Feststoffauslaßöffnungen 31 am Rotor befestigt und werden vom austretenden Feststoff 6 nicht bespritzt. Sollten beim Aufschlag von sehr feuchten oder klebrigen Feststoffpartikeln 6 auf der Umlenkfläche 29 einige Partikeln nicht reflektiert werden und auf der Oberfläche 29 haften bleiben, werden sie von den nachfolgenden rotierenden Reinigungsschaufeln 28 losgerissen und in den Trocknerraum 19 geschleudert. Die mit hoher Umfangsgeschwindigkeit von ca. 60m/s rotierenden Schaufeln 28 üben auch auf das umgebende Heißgas 15a eine ansaugende und fördernde Wirkung aus, mit der weiteren Folge, daß das umgebende Heißgas 15a den im Trocknerraum 19 befindlichen Feststoffstaub teilweise in die Abwurfzone 5 fördert. Das von den Schafeln 28 angesaugte, staubhaltige Heißgas 15a wird zusammen mit den abgeschabten Feststoffpartikeln je nach Gestaltung der Führungsflächen von den Reinigungsschaufeln radial oder kegelförmig in den Trocknerraum 19 herausgeschleudert. Zur Intensivierung der Gasförderung können an den Schaufeln Ansaug- und Leitbleche 32 angebracht werden.
In Fig. 4 ist die Abwurfzone 5 eines Zentrifugentrockners mit steilerem Winkel des Prallkegels 18, perforierten Gasführungsblechen 22 und rotierenden Blasschaufeln 33 dargestellt. Im Gegensatz zu den Reinigungsschaufeln 28 in Fig. 3 beruht die reinigende Wirkung der Blasschaufeln 33 nicht auf einer abkratzenden Wirkung, sondern auf der Blasewirkung der intensiven Gasströmung 34, die aus der rotierenden Düse 33 ausströmt und auf die zu reinigende Oberfläche 29 des Prallkegels 18 unter flachen Winkel auftritt. Die Gasförderung durch die Blaseschaufel 33 ist besonders gesteigert durch geeignete Maßnahmen, wie beispielsweise große Ansaugquerschnitte am Schaufeleintritt 35, Leitelemente in der Schaufel und gerichtetes Ausblasen am Schaufelaustritt. Durch die Sogwirkung des staubhaltigen Heißgases 15a an der Schaufel-Eintrittsseite 35 und durch das ausströmende Heißgas 36 aus den perforierten Gasführungsflächen 22 wird die Gasströmung im Trocknerraum 19 mit den dispergierten Feststoffpartikeln 6 von den Wänden des Trocknergehäuses 11 ferngehalten und mehr nach innen verlagert. Der von der Abspritzkante 30 der Zentrifugentrommel 2 herausfliegende Feststoff 6 gelangt noch vor dem Aufschlagen auf die Oberfläche 29 des Prallkegels 18 in den Einflußbereich des Heißgases 15a, welches staubhaltig ist und durch die Blaseschaufel 33 gefördert wird. Hierdurch werden die Feststoffpartikeln an ihrer Oberfläche abgetrocknet sowie mit trockenem Feststoffstaub beschichtet (coating), so daß sie noch vor der Berührung mit der Oberfläche 29 ihre Klebeneigung verlieren. Um die Klebeneigung weiter herabzusetzen, kann die Umlenkfläche auch mit einem geeigneten Material beschichtet sein, wie beispielsweise PTFE, Emaille, Keramik, oder andere antiadhäsiv wirkende Materialien. Die Oberfläche 29 kann auch aus einer perforierten Fläche bestehen und hinterlüftet sein.
In Fig. 5 ist eine Kombination einer rotierenden Reinigungsschaufel 28 und einer Blaseschaufel 33, zusammenwirkend mit einem perforierten Gasführungsblech 22, dargestellt. Die Reinigung der Oberfläche 29 des Prallkegels 18 erfolgt durch einen rotierenden Kratzschaber 38 in Verbindung mit der blasenden Wirkung des angesaugten Heißgases. Der austretende Blasestrahl 34 ist nicht nur auf die Oberfläche des Prallkegels gerichtet, sondern bläst auch tangential auf das perforierte Gasführungsblech 22. Die ansaugende Seitenwand 39 für das Heißgas kann gegenüber der Umfangrichtung leicht schräg angestellt oder mit Öffnungen versehen sein, um von der Blaseschaufel 33 mehr Gas ansaugen zu können. Die Abwurföffnungen 4 der Zentrifuge 1 üben an ihren Rändern eine Förderwirkung auf das Gas innerhalb des Innenraums 37 der Zentrifuge 1 aus. Infolge dieser Förderwirkung wird aus dem Innenraum 37 der Zentrifuge 1 feuchtes Gas herausgesaugt und heißes, trockenes Gas hineingezogen. Hierdurch wird der feuchte Feststoff 6 bereits vor dem Abwurf im Wendelgang der Zentrifuge 1 mit großer Verweilzeit vorgetrocknet.
In Fig. 6 ist eine Kombination einer Turbulenzschaufel 40 zum Freihalten des Trocknerraumes 19 und einer Reinigungsschaufel 28 zur Reinigung der Oberfläche 29 des Prallkegels 18 dargestellt. Die Turbulenzschaufel 40 besitzt eine hohe Umfangsgeschwindigkeit und erzeugt eine starke Verwirbelung 41 des Trocknungsgases im Trocknerraum 19. Hierdurch werden nichtdurchströmte Totzonen vermieden und das eintretende Trocknungsgas 15 mit den dispergierten Partikeln intensiv vermischt. Die Reinigungsschaufel 28 kann, wie dargestellt, einen Teil oder die gesamte Oberfläche 29 des Prallkegels abkratzen oder abblasen. Die Schaufeln 28 und oder 40 können am Rotor 2 starr oder pendelnd beweglich befestigt sein.
In Fig. 7 sind im Trocknerraum 19 rotierende Turbulenzscheiben zur Erzeugung von Tubulenzwirbelwalzen 43 eingebaut. Das Trocknergehäuse 11 ist ohne ein feststehendes Innengehäuse 12 ausgebildet, welches bei einigen Ausführungsformen des Zentrifugentrockners die Trommel 2 umhüllt. Der konzentrische Trocknerraum 19 wird daher außen von einer nichtrotierenden Zylinderwand und innen von der schnell rotierenden Zentrifugentrommel 2 begrenzt. Die rotierende Oberfläche der Trommel 2 in Verbindung mit den rasch rotierenden Scheiben 42 induzieren im Trocknerraum 19 eine Reihe von in sich kreisenden Turbulenzwirbelwalzen 43. Diese Turbulenzwirbelwalzen 43 werden von den rotierenden Oberflächen der Trommel 2 und der Scheiben 42 angetrieben, erzeugen im gesamten Querschnitt einen hohen Turbulenzgrad und vergleichmäßigen die Durchströmung des Trocknerraumes 19 in Umfangrichtung. Der hohe Turbulenzgrad der Wirbelwalzen verhindert Ablagerungen an den Begrenzungswänden des Trocknergehäuses 11, erzwingt eine innige Durchmischung von Trocknungsgas und den dispergierten Feststoffpartikeln und erzeugt eine hohe Trocknungsgeschwindigkeit für die feuchten Feststoffpartikeln, verbunden mit einer extrem hohen Wasserverdampfungsrate bezogen auf das Trocknervolumen. Das eintretende Heißgas 15 wird durch die Durchtrittsspalte 44 außerhalb der rotierenden Scheiben 42 und durch die torusförmigen Turbulenzwirbelwalzen in seiner axialen Bewegung am gesamten Umfang vergleichmäßigt. Anstelle von rotierenden Scheiben 42 können an der Zentrifugentrommel 2 auch andere Elemente zur Erzeugung von Turbulenzwalzen im Trockner eingesetzt werden, beispielsweise ein radialer Schaufelkranz, axiale oder radiale Förderräder, Schlägerarme oder andere an sich bekannte geeignete Einbauten.
In Fig. 8 sind an der rotierenden Zentrifugentrommel 2 außen ein oder mehrere Schaufelkränze 46 angebracht zur Erzeugung eines hohen Turbulenzgrades im Trocknerraum 19 und zur gleichmäßigen axialen Förderung und Steuerung der Verweilzeit des feststoffbeladenen Trocknungsgases. Neben diesen Funktionen bewirken die Schaufelkränze 46 auch eine Zerteilung von Agglomeraten im Trocknerraum 19. Die Oberfläche 29 des Prallkegels 18 besteht aus mehreren geometrisch zusammengesetzten glatten Flächen. An der Aufprallzone 48 des vorentwässerten dispergierten Feststoffes 6 besteht die Fläche aus einem flachen Kegel, an den sich weiter außen eine gerundete Oberflächenkontur 49 anschließt. Durch den flachen Aufprallwinkel der dispergierten feuchten Feststoffpartikeln 6 auf den glatten Prallkegel 18 wird trotz der Zerteilung in mehrere kleinere Partikeln 47 deren Reflexion und Weitertransport begünstigt. Die meist erwünschte stärkere Umlenkung in axiale Flugrichtung erfolgt weiter außen durch das Gleiten auf der gerundeten Oberflächenkontur 49 des Prallkegels 18. Durch das zusätzliche Gleiten der zerteilten Partikeln wird deren Einschuß-geschwindigkeit in den Trocknerraum 19 zusätzlich reduziert und damit die Gefahr von Anbackungen an den Wänden des Trocknergehäuses 11 verringert.
Der in Fig. 9 dargestellte Zentrifugentrockner besteht wiederum aus einer Zentrifuge, im dargestellten Beispiel aus einer Vollmantelschneckenzentrifuge 1 die von einem äußeren Gehäuse 11 eines Zerstäubungstrockners umhüllt ist. Um die Zentrifugentrommel 2 ist ein inneres Gehäuse 12 angeordnet.
Das äußere Trocknergehäuse 11 und das innere Gehäuse 12 bilden den konzentrischen Trocknerraum 19, durch den das Trocknungsgas 15 geleitet wird. Das Trocknungsgas 15 wird durch den tangentialen Heißgasschacht 16 zugeführt, erfaßt im Bereich der Abwurfzone 5 den in Form eines dispergierten Partikelschleiers abgeworfenen, entwässerten Feststoff, transportiert die Feststoffpartikeln unter zunehmender Trocknung in spiralförmigen Bahnen durch den Trocknerraum 19 und gelangt als feststoffbeladenes Gas 21 zum Ausgangskanal 20. Das in der Zentrifuge 1 abgetrennte Wasser wird in der Zentratschurre 10 abgeleitet.
Das äußere Trocknergehäuse 11 ist an den beiden Stirnwänden 13 und 14 gegenüber der schnell rotierenden Zentrifugentrommel 2 abgedichtet. Der Spalt 190 der Drehdichtungen 160 wird gebildet von der Zentrifugentrommel 2 und dem Dichtring 170, der ebenso wie die Trommel-Lagerböcke 210 am Grundrahmen 220 starr befestigt ist. Durch die Befestigung der beiden, den Dichtspalt 190 bildenden Wirkflächen 2 und 170 am gleichen Träger 220 ist der Dichtspalt 190 exakt und stabil geführt. Die Zentrifugentrommel 2 bleibt auch beim Durchströmen des Trocknerraumes 19 mit Heißgas 15 durch die aufgegebene Suspension kalt und dehnt sich nicht aus, wohingegen das mit Heißgas 15 durchströmte Trocknergehäuse 11 sich in axialer und radialer Richtung stark ausdehnt.
Die Verschiebebewegungen der beiden Gehäusestirnwände 13 und 14 werden durch einen gasdichten flexiblen Kompensator 180 oder eine elastische Membran oder einen verschiebbaren Kulissenring 300 gegenüber dem starr befestigten Dichtring 170 ausgeglichen, so daß der Dichtspalt 190 nicht verändert wird.
Fig. 10 zeigt im Detail eine berührungsfreie Labyrinthdichtung für einen Zentrifugentrockner, die den starr am Rahmen 220 befestigten Dichtring 170 mit der sich axial und radial verschiebenden Trocknerstirnwand 14 gasdicht durch einen Kompensator 180 verbindet. Der flexible Kompensator 180 ist z.B. durch Spannbänder 230 oder andere Befestigungsmittel sowohl mit dem Dichtring 170 als auch mit der Stirnwand 14 gasdicht verbunden.
Der Dichtspalt 190 zwischen den Spitzen 240 der Labyrinthdichtung und der rotierenden Oberfläche der Zentrifugentrommel 2 kann sehr eng (0,3 - 0,5mm) gehalten werden, da die Verschiebebewegung der Stirnwand 14 nicht auf die Labyrinthdichtung übertragen wird.
Alle nichtrotierenden Teile sind rechtsschraffiert, alle rotierenden Teile sind linksschraffiert.
Fig. 11 zeigt eine berührungsfreie Drehdichtung 160 in Form einer Gewindedichtung für einen Zentrifugentrockner, der z.B. im Trocknerraum rechts von der Stirnwand 14 einen Unterdruck aufweist.
Die Gleit- und Verschiebebewegungen der Stirnwand 13 bzw. 14 des Trockners während der Aufheiz- oder Abkühlphase des Trocknergehäuses 11 werden durch einen Blechring 260 ausgeglichen, der durch hitzefeste O-Ringe 270 abgedichtet ist und sowohl an der Gehäusestirnwand 13 bzw. 14 wie auch am starr befestigten Dichtring 170 gleiten kann. Der enge Dichtspalt 190 der als Gewinde-förderdichtung ausgebildeten Drehdichtung 160 bewirkt durch die Gewindegänge 280 in der Oberfläche der Zentrifugentrommel 2 eine dem Unterdruck im Trockner entgegenwirkende Förderwirkung und einen Gas-Gegendruck, der das Eindringen von Falschluft in den Trocknerraum 19 verhindert. Die Gewindegänge 280 können auch mit einem fluiden Sperrmedium wie beispielsweise Wasser oder Sperrgas gefüllt werden, welches durch die Gewindegänge 280 hindurchgeleitet wird.
Fig. 12 zeigt eine berührungsfreie Drehdichtung 160 mit Spitzengewinde 310, das mit engem Spalt 190 innerhalb einer weichen Zylinderfläche 320 rotiert. Die Förderwirkung der Gewindedichtung gleicht den herrschenden Unterdruck im Trockner aus. Das sich verschiebende Trocknergehäuse 11 wird durch den Kulissen-Gleitring 300 im Spalt ausgeglichen. Der Kulissen-Gleitring 300 selbst ist durch hitzefeste O-Ringe sowohl an der Trocknerstirnwand 14 wie auch am starr befestigten Dichtring 170 verschiebbar abgedichtet.
Fig. 13 zeigt eine berührungsfreie Drehdichtung 160 mit Flachnuten, die in einer weichen Zylinderbüchse 320 aus Gleitlagerwerkstoffen mit sehr engem Spalt 190 rotiert. Die Verschiebebewegung der Stirnwand 13 bzw. 14 des Trocknergehäuses 11 wird durch einen in radialer und axialer Richtung federnden Gleitring 340 ausgeglichen.

Claims (11)

  1. Vorrichtung zum Entwässern und Trocknen von Suspensionen, beispielsweise von Industrie- oder Klärschlämmen, Fermenterbrühen mit einer Zentrifuge, beispielsweise einer Vollmantel-Schneckenzentrifuge, an deren Eintragszone die Suspension als dünnflüssige Masse aufgegeben und an deren Abwurfzone die vorentwässerte Suspension als Feststoff mit einem Trockensubstanzgehalt im Bereich zwischen etwa 15 Gew.-% und etwa 35 Gew.-% in Form von dispergierten Partikeln abgeschleudert wird, und mit einer Trocknungseinrichtung zum Konvektionstrocknen der abgeschleuderten Feststoffpartikeln, welche ein feststehendes, die rotierende Trommel (2) der Zentrifuge (1) zumindest teilweise umgebendes Trocknergehäuse (11) sowie einen Heißgaserzeuger umfaßt, dessen Heißgas (15) durch das feststehende Trocknergehäuse (11) hindurchgeleitet wird, um die dispergierten Feststoff-Partikeln auf ihrer Flugbahn bis zum Austritt aus dem Trocknergehäuse (11) einer Kurzzeit-Trocknung von einigen Sekunden Dauer zu unterwerfen, wobei das feststehende Trocknergehäuse (11) auf seiner radialen Innenseite durch die rotierende Mantelfläche der Zentrifuge (1), auf seiner radialen Außenseite durch eine Zylinderwand und auf seinen Stirnseiten durch radiale Stirnwände (13, 14) begrenzt wird, dadurch gekennzeichnet, daß die rotierende Mantelfläche der Zentrifuge (1) über ein zwei- oder mehrstufiges Dichtungssystem aus Drehdichtungen (160) und elastischen oder verschiebbaren Dichtelementen (180, 260, 300, 340) gegenüber den feststehenden Stirnwänden (13, 14) des Trocknergehäuses (11) abgedichtet ist, daß an beiden axialen Enden des Trocknergehäuses (11) jeweils ein Dichtring (170) unter Ausbildung eines axialen Spaltes zu der jeweils benachbarten Stirnwand (13, 14) des Trocknergehäuses (11) vorgesehen ist, daß der Dichtring (170) an demselben Träger (220) befestigt ist wie die Trommel-Lagerböcke der Zentrifugentrommel (2) und unter Ausbildung eines Dichtspaltes (190) die rotierende Mantelfläche der Zentrifuge (1) umgreift, wobei jeder Dichtspalt (190) durch eine der Drehrichtungen (160) abgedichtet ist, und daß der axiale Spalt zwischen jedem Dichtring (170) und der jeweils benachbarten Stirnwand (13 bzw. 14) des Trocknergehäuses (11) durch die elastischen oder verschiebbaren Dichtelemente abgedichtet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Dichtspalt (190) berührungsfrei mittels Labyrinthdichtung oder Gewindeförderdichtung abgedichtet ist.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Drehrichtung (160) so ausgebildet ist, daß sie einen dynamischen Gas-Gegendruck zu einem vorhandenen Druckgefälle zwischen Innen- und Außenseite des Trocknergehäuses (11) aufbaut.
  4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß in einem Teil des Dichtspaltes (190) der Drehrichtung (160) ein fluides Sperrmedium eingebaut wird.
  5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Stege (240) der Labyrinthdichtung aus einem weichen Material bestehen oder als Dichtbürste ausgebildet sind, wobei der Dichtspalt (190) sehr eng ausgebildet ist.
  6. Vorrichtung nach Anspruch 2 oder 5, dadurch gekennzeichnet, daß der Dichtspalt (190) über den Anpreßdruck auf die Labyrinthdichtung veränderbar ist.
  7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß in den Dichtspalt (190) ein sauerstoffarmes Sperrgas eingeführt wird.
  8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Drehdichtung (160) eine berührende Gleitringdichtung vorgesehen ist.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Trocknergehäuse (11) über eine elastische Membran (180) mit dem Dichtring (170) verschiebbar und gasdicht verbunden ist.
  10. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Trocknergehäuse (11) über einen Kulissen-Gleitring (300) mit dem Dichtring (170) verschiebbar und dicht verbunden ist.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der Kulissen-Gleitring (300) über hitzefeste O-Ringe (270) gegenüber dem Trocknergehäuse (11) und dem Dichtring (170) verschiebbar abgedichtet ist.
EP97915449A 1996-08-05 1997-03-27 Vorrichtung zum entwässern und trocknen von suspensionen Expired - Lifetime EP0916065B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99121798A EP0979984A3 (de) 1996-08-05 1997-03-27 Vorrichtung zum Entwässern und Trocknen von Suspensionen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19631605 1996-08-05
DE19631605A DE19631605C1 (de) 1996-08-05 1996-08-05 Turbulenzschaufeln für Entwässerungseinrichtung
PCT/EP1997/001570 WO1998005912A1 (de) 1996-08-05 1997-03-27 Vorrichtung zum entwässern und trocknen von suspensionen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP99121798A Division EP0979984A3 (de) 1996-08-05 1997-03-27 Vorrichtung zum Entwässern und Trocknen von Suspensionen

Publications (2)

Publication Number Publication Date
EP0916065A1 EP0916065A1 (de) 1999-05-19
EP0916065B1 true EP0916065B1 (de) 2001-08-22

Family

ID=7801851

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99121798A Withdrawn EP0979984A3 (de) 1996-08-05 1997-03-27 Vorrichtung zum Entwässern und Trocknen von Suspensionen
EP97915449A Expired - Lifetime EP0916065B1 (de) 1996-08-05 1997-03-27 Vorrichtung zum entwässern und trocknen von suspensionen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP99121798A Withdrawn EP0979984A3 (de) 1996-08-05 1997-03-27 Vorrichtung zum Entwässern und Trocknen von Suspensionen

Country Status (8)

Country Link
US (1) US6618956B1 (de)
EP (2) EP0979984A3 (de)
JP (1) JP3215439B2 (de)
AT (1) ATE204638T1 (de)
CA (1) CA2262705A1 (de)
DE (2) DE19631605C1 (de)
ES (1) ES2163751T3 (de)
WO (1) WO1998005912A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046983A1 (de) 2000-09-22 2002-04-18 Baker Hughes De Gmbh Zentrifuge zum mechanischen Entwässern und thermischen Trocknen von Schlämmen
DE10256674A1 (de) 2002-12-04 2004-06-17 Baumann-Schilp, Lucia Kombinierte Entfeuchtung, Trocknung und Korngrößensteuerung von Feststoffen
DE102005023258A1 (de) * 2004-11-16 2006-11-23 Fan Separator Gmbh Drehtrommel zur aeroben Erwärmung rieselfähiger Feststoffe
US7669348B2 (en) * 2006-10-10 2010-03-02 Rdp Company Apparatus, method and system for treating sewage sludge
DE102011055190A1 (de) * 2011-11-09 2013-05-16 Fabian Rypacek Eindicker
RU2625629C1 (ru) * 2016-05-30 2017-07-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" ФГБОУ ВО "ТГТУ" Сушилка для пастообразных материалов на полидисперсном инертном носителе
CN106721913A (zh) * 2017-02-27 2017-05-31 山东农业大学 卧式块状软体食品脱水机
RU2682794C1 (ru) * 2017-10-25 2019-03-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Установка для сушки дисперсных растительных материалов в полидисперсном слое инертных тел
RU2707022C1 (ru) * 2018-12-20 2019-11-21 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) Устройство для сушки суспензий
CN109796117A (zh) * 2019-03-25 2019-05-24 江苏旭云物联信息科技有限公司 智能化控制三相分离机
EP3769847A1 (de) * 2019-07-26 2021-01-27 Siebtechnik GmbH Kontinuierliche trockner-zentrifuge
CN112386925B (zh) * 2020-10-27 2021-12-14 湖南精诚制药机械有限公司 基于旋转式药品离心干燥设备
CN114216306B (zh) * 2021-11-09 2022-12-20 黑龙江中医药大学 一种中草药烘干罐
CN116294521B (zh) * 2023-05-17 2023-11-10 华北理工大学 一种矿粉球团烘干设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE948497C (de) 1954-09-08 1956-08-30 Krauss Maffei Ag Kontinuierlich arbeitende Zentrifuge mit einer nachgeschalteten heissgas- oder heissdampfbetriebenen Trockeneinrichtung
US3194492A (en) 1962-06-28 1965-07-13 Richard A Koffinke Pressurized centrifuge
US3724091A (en) * 1971-05-11 1973-04-03 J Rousselet Continuous production centrifuge
DE3329669A1 (de) * 1983-08-17 1985-03-07 Klöckner-Humboldt-Deutz AG, 5000 Köln Zentrifuge, insbesondere vollmantel-schneckenzentrifuge zur feststoff-fluessigkeitsstrennung von schlaemmen
CH663273A5 (en) * 1984-12-18 1987-11-30 Fershan Holding S A Method of continuous drying of a powdered substance and apparatus for implementing it
US4692248A (en) * 1986-02-26 1987-09-08 The Dehydro Corporation Drum filter with resin bound particulate filter media
US5085443A (en) 1990-05-29 1992-02-04 Amoco Corporation Labyrinth seal
DE4106248A1 (de) * 1991-02-28 1992-09-03 Werner & Pfleiderer Zentrifugaltrockner zur trennung von oberflaechenwasser von kunststoffgranulat
DE59201791D1 (de) * 1991-06-25 1995-05-04 Baumann Schilp Lucia Verfahren und vorrichtung zum entwässern von schlämmen.
US5321898A (en) * 1992-06-19 1994-06-21 Decanter Machine, Inc. Centrifugal screen bowl dryer
DE4332799C2 (de) 1993-09-27 2003-04-10 Baumann Schilp Lucia Verfahren und Vorrichtung zum Entwässern von Schlämmen
SE509400C2 (sv) * 1996-01-02 1999-01-25 Noxon Ab Dekanteringscentrifug

Also Published As

Publication number Publication date
EP0979984A3 (de) 2001-09-19
CA2262705A1 (en) 1998-02-12
WO1998005912A1 (de) 1998-02-12
JP2000507693A (ja) 2000-06-20
DE19631605C1 (de) 1997-10-02
ES2163751T3 (es) 2002-02-01
EP0916065A1 (de) 1999-05-19
DE59704388D1 (de) 2001-09-27
US6618956B1 (en) 2003-09-16
ATE204638T1 (de) 2001-09-15
EP0979984A2 (de) 2000-02-16
JP3215439B2 (ja) 2001-10-09

Similar Documents

Publication Publication Date Title
EP0591299B1 (de) Verfahren und vorrichtung zum entwässern von schlämmen
EP0916065B1 (de) Vorrichtung zum entwässern und trocknen von suspensionen
EP0454045B1 (de) Zentrifugen-Trockner
EP0046569B1 (de) Verfahren und Vorrichtung zum Mischen von Feststoffen mit Flüssigkeiten
EP0298914B1 (de) Sprühtrockner zur Herstellung von Pulvern, Agglomeraten oder dergleichen
WO2015189349A1 (de) Vollmantel-schneckenzentrifuge und verfahren zu deren betrieb
EP0003120B1 (de) Verfahren und Anlage zur Trocknung von chlorierten Polymeren
US5234400A (en) Method and apparatus for the separation, particularly classification of a solids/liquid mixture
DE4315074B4 (de) Verfahren und Vorrichtung zum Entwässern von Schlämmen
DE4332799C2 (de) Verfahren und Vorrichtung zum Entwässern von Schlämmen
DE2834491C2 (de) Siebzentrifuge mit gekrümmten Siebtaschen
WO2004051166A2 (de) Kombinierte entfeuchtung, trocknung und korngrössensteuerung von feststoffen
DE897977C (de) Vorrichtung zur Trocknung von Gut mittels heisser Gase
DE60107448T2 (de) Zentrifuge zur mechanischen entwässerung und thermischen trocknung von schlämmen
AT503390B1 (de) Vorrichtung zur trocknung nassen schüttfähigen gutes, vorzugsweise von kunststoffteilchen
DE3630920C1 (en) Device for drying solid material discharged from a centrifuge
DE2950749C2 (de)
EP0638521B1 (de) Entwässerungsvorrichtung zum Entwässern von Schlämmen
DE2306302C3 (de) Zentrifugenrotor mit um seine Achse angeordneten schaufelartig gekrümmten Siebflächen
EP0267975B1 (de) Verfahren zur kontinuierlichen Herstellung von Granulaten aus einem Feststoff in einem fluidisierten Gutbett
DE967459C (de) Drehtrommeltrockner
AT404679B (de) Vorrichtung zum erzeugen von granulat
DE653007C (de) Vorrichtung zum Abscheiden von Staub aus Luft und Gasen, z. B. Huettengasen
DE10104184A1 (de) Verfahren zum Behandeln eines partikelförmigen Guts mit einem Überzugsmedium sowie Vorrichtung zur Durchführung eines derartigen Verfahrens
DE3043730A1 (de) Zentrifugalstromtrockner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 19990707

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010822

REF Corresponds to:

Ref document number: 204638

Country of ref document: AT

Date of ref document: 20010915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010822

REF Corresponds to:

Ref document number: 59704388

Country of ref document: DE

Date of ref document: 20010927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011122

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163751

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: *BAUMANN-SCHILP LUCIA

Effective date: 20020331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060308

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070327

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060322

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070327