EP0908665A2 - Messgasbehälter - Google Patents

Messgasbehälter Download PDF

Info

Publication number
EP0908665A2
EP0908665A2 EP98117220A EP98117220A EP0908665A2 EP 0908665 A2 EP0908665 A2 EP 0908665A2 EP 98117220 A EP98117220 A EP 98117220A EP 98117220 A EP98117220 A EP 98117220A EP 0908665 A2 EP0908665 A2 EP 0908665A2
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
pressurized gas
gas container
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98117220A
Other languages
English (en)
French (fr)
Other versions
EP0908665A3 (de
EP0908665B1 (de
Inventor
Johann Pongraz
Ulrich Klebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Deutschland GmbH
Messer Group GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of EP0908665A2 publication Critical patent/EP0908665A2/de
Publication of EP0908665A3 publication Critical patent/EP0908665A3/de
Application granted granted Critical
Publication of EP0908665B1 publication Critical patent/EP0908665B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/045Methods for emptying or filling by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0447Composition; Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0495Indicating or measuring characterised by the location the indicated parameter is a converted measured parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/024Improving metering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/025Mixing fluids different fluids

Definitions

  • the invention relates to a compressed gas container with one or more openings for connecting sensors.
  • the manometric method is based on measuring the change in pressure after adding the individual gas components.
  • the Gas components in succession up to a defined pressure in the Pressurized gas bottle filled the pressure increase during a filling step is at least several bars.
  • Gas mixtures with one component in the Trace areas are produced using mother mixtures which are used in the Pressurized gas cylinder submitted in excess pressure and with the main component up be filled up for final pressure.
  • the pressure measurement was previously carried out before Pressurized gas bottle in the gas pipeline. Due to pressure drops at Constrictions in the gas pipeline path, especially on the gas cylinder valve, can the measured pressure deviate significantly from the pressure in the gas bottle (when applying overpressure or underpressure). A precise one Pressure measurement during gas filling is therefore not with the desired reliability possible.
  • the invention has for its object requirements for an accurate Pressure measurement when filling gases in compressed gas containers and at Creating gas mixtures in pressurized gas containers.
  • the pressurized gas container is preferably a pressurized gas bottle, e.g. Legs Commercially available compressed gas bottle with 50, 40, 20, 10, 5, 2, 1 or 0.5 liters Bottle volume with one or more openings next to the opening for the cylinder valve is provided. The openings are used to hold z.
  • Pressurized gas containers according to the invention in particular pressurized gas bottles and Pressure cans are referred to below as measuring containers.
  • Pressurized gas cylinders are usually not added for safety reasons Provide openings (e.g. holes).
  • the modification of pressurized gas containers according to the invention taking safety precautions or Safety requirements are justifiable for measurement purposes.
  • High pressure area e.g. B. 10 to 350 bar, is the use of modified Compressed gas cylinders possible under appropriate safety precautions.
  • the measuring container is advantageous in the application (e.g. for pressure measurement) connected in parallel to other compressed gas tanks. It is particularly advantageous if the measuring container is made from a pressurized gas container that parallel connected compressed gas tanks. If the containers are identical the same conditions then prevail in the measuring container as in the Pressurized gas containers for gas filling. The measuring container is easily in one Filling level can be integrated.
  • the measuring container is suitable, for example, for measuring pressure and / or Temperature.
  • Temperature sensors e.g. thermocouples
  • the measuring container is suitable, for example, for measuring pressure and / or Temperature.
  • Openings can also be used for guest removal for analysis purposes, e.g. B. in connection with high pressure metering valves or shut-off valves. Based several openings, e.g. B. along the longitudinal axis of the pressurized gas container, the local gas composition can be determined, especially for testing the Homogeneity of gas mixtures or to determine gas stratification in the Gas mixture production.
  • the gas composition can be determined using gas samples taken or determined online. Analysis methods are e.g. B. Mass spectrometry or infrared spectroscopy, especially FT-IR spectroscopy.
  • the openings can also be used to hold probes for examining the Serve the inner surface of pressurized gas containers (e.g. endoscope; spectroscopic Surface investigations; Gas analysis using mass spectrometry). For example, adsorption and desorption processes for quality control are recorded (e.g. change in gas composition using mass spectrometry).
  • pressurized gas containers e.g. endoscope; spectroscopic Surface investigations; Gas analysis using mass spectrometry.
  • adsorption and desorption processes for quality control are recorded (e.g. change in gas composition using mass spectrometry).
  • the openings in the pressurized gas container wall are preferably threaded provided, e.g. B. Conical threads such as NPT 1/16 inch to NPT 1 ⁇ 4 inch. 1/16 and 1 ⁇ 4 Inch threads can e.g. B. at least 5 mm wall thickness. Threaded openings are particularly suitable for use in high pressure areas. Soldered or welded connections are generally used Low pressure range (e.g. for thin-walled containers such as pressure cells).
  • the measuring container can be used particularly advantageously for precise pressure measurement in manometric processes for the production of gas mixtures.
  • gas dosing with partial pressure measurement e.g. B. for pressures below 1000 mbar
  • the measuring container with pressure measuring device ensures exact and transferable measured values for the compressed gas containers during gas filling.
  • the partial pressure of the secondary component in the compressed gas containers can be precisely determined.
  • the vacuum measuring tubes are usually located relatively close to the filling stations in the suction area of the vacuum pumps. (Pressure gauges are usually located in the filling pipe system). The pressure in the compressed gas bottle is not measured with sufficient accuracy. This problem is solved with the measuring container connected in parallel to the filling compressed gas cylinders ( Dummy bottle ”) solved, which is preferably equipped with one or more gas-independent absolute pressure measuring tubes and thus reflects the real pressure in each compressed gas bottle.
  • the measuring container can either be shut off from the filling gas line or it can a shut-off valve between the measuring container and the measuring device which is closed as soon as the permissible measuring pressure range is exceeded It can be advantageous to use several measuring containers, eg a measuring container for measuring in the low pressure range and a measuring container in the medium and high pressure range.
  • the commonly used vacuum measuring tubes e.g. B. Thermovac, Pirani or Due to the measuring principle, Penning measuring tubes are strongly dependent on the type of gas Pressure measurement.
  • the pressure display in these measuring devices is not is linear.
  • measuring systems are preferred which allow an absolute pressure measurement independent of the gas type.
  • An absolute pressure measurement that is independent of the gas type can be used, for example Pressure measuring devices such as capacity gauges (e.g. device with the designation 600 Barocel® from Edwards, USA; Measuring ranges: 0-10, 0-100, 0-1000 mbar) respectively.
  • capacity gauges e.g. device with the designation 600 Barocel® from Edwards, USA; Measuring ranges: 0-10, 0-100, 0-1000 mbar
  • the inlet pressure directs a thin, membrane welded radially in the housing opposite a fixed electrode both electrodes form a capacitor. This leads to a Change in capacity after electronic signal processing via the control and Display electronics is directly proportional to the pressure.
  • As an output signal a linear DC voltage is supplied.
  • the reference electrode is in one Reference ultra-high vacuum space that is long-term stable thanks to chemical getters.
  • Gas-independent measuring tubes for capacitive measurement are for pressures of for example 0.0001 mbar to 1000 mbar available.
  • the measuring container advantageously contains an external connection Evacuation option for faster calibration of vacuum measuring tubes:
  • the Connection is for example attached to the side of a compressed gas bottle.
  • the use of the measuring container is advantageous for all manometric Process for the preparation of gas mixtures, in particular in the Pressure measurement in processes for the production of gas mixtures in Pressurized gas containers where, in at least one step, a pressure of a Gases is roughly specified (coarse pressure) and then a smaller more precise Pressure (fine pressure) in the compressed gas container with the help of a vacuum is set.
  • the fine pressure is, for example, in the range from 0.0001 to 1000 mbar 15 ° C.
  • the use of the measuring container is particularly advantageous during production a gas mixture with a main component and one Secondary component, which in a small concentration, for. B. in the trace area, is present.
  • the filling and metering takes place advantageous first with the gas component to be produced in the
  • the gas mixture is in the lowest concentration (secondary component) because the first dosing step in the process with the greatest accuracy can be executed.
  • the flushed, conditioned and evacuated compressed gas container is with the filled the first gas component.
  • the first gas component is filled initially up to a coarse print that is larger than the actual one Dosing pressure, through which the amount of the gas component is determined.
  • Coarse pressure is generally in the range of 0.1 to 10 bar, preferably in the range from 0.1 to 5 bar and particularly preferably in Range from 0.8 to 1.5 bar, depending on the fine pressure to be set.
  • Fine print and coarse print should be so far apart that one Dosing by means of vacuum can be carried out well. This is for example, if the fine pressure is about 10 percent below the Coarse pressure value. Especially if the fine impression is below 100 millibars, especially less than 10 millibars, the change is made Pressure when applying the vacuum slowly, so that the desired value of the fine impression can be set very precisely. At fine pressures above The setting of the fine pressure by throttling can be 10 millibars (Valve) in the vacuum line.
  • the dosage of more Gas components are carried out additively as in conventional manometric processes by filling up to a specified dosing pressure. Filling with the proportionately largest gas component (main component) is advantageous as last step carried out, this gas component is up to the last dosing pressure, that is the filling pressure of the pressure container with the finished one Gas mixture, filled up.
  • main component the proportionately largest gas component
  • this gas component is up to the last dosing pressure, that is the filling pressure of the pressure container with the finished one Gas mixture, filled up.
  • the measuring container allows small partial pressures due to the precise Pressure measurement also a direct gas metering (additive gas metering) in the Vacuum (i.e. at a pressure below one bar).
  • Conditioning and filling the compressed gas tank with the Gas components can be operated simultaneously with several pressurized gas containers (e.g. 1 to 100 pressurized gas containers) at the filling station.
  • pressurized gas containers e.g. 1 to 100 pressurized gas containers
  • On the stockpiling of mother mixtures as well as complex gravimetric dosing can be dispensed with, so that gas mixtures with gas components are lower Concentration can be made directly.
  • a compressed gas cylinder which has been thermally conditioned and filled with a preservation gas (e.g. nitrogen gas) at a pressure of up to 3 bar, is brought to an internal pressure of approximately atmospheric pressure by releasing gas.
  • the compressed gas bottle is then evacuated to a pressure of approximately 10 millibars using a vacuum pump (e.g. oil-free membrane pump). This corresponds to a pressure reduction of approx. 2 powers of ten.
  • the evacuated compressed gas bottle is flooded with the gas of the secondary component to be fed in to a pressure in the range from 800 to about 1000 millibars.
  • the evacuation and flooding with the gas of the secondary component is carried out twice, three times or more, depending on the purity requirement and the composition of the gas mixture.
  • the rinsing and the subsequent steps are preferably carried out at room temperature (20 to 25 ° C).
  • the compressed gas bottle is now filled with the gas of the secondary component at approximately atmospheric pressure and the inner surface is brought into equilibrium with the gas of the secondary component.
  • the compressed gas bottle is now conditioned.
  • the actual metering of the secondary component is carried out by evacuation (removal of gas) to the desired fine pressure, which corresponds to the partial pressure of the secondary component in the finished, compressed gas mixture.
  • the necessary pressure can be determined theoretically (e.g. using a gas equation such as the ideal gas law or using a calculation model) or empirically (e.g. using gas analyzes). If the fine pressure of the secondary component has been set, the metering of the secondary component is complete. In this way, secondary components such. B.
  • the main component of the gas mixture is now pressed onto the final pressure (filling pressure) in the compressed gas bottle, for example 200 bar. This can be done by means of a compressor or by connecting a storage tank of a gas supply (gas of the main component) with higher pressure (e.g. 350 bar).
  • the filling with the main component can also be checked gravimetrically.
  • the figure shows schematically a measuring container 1 with examples of Measuring devices 2 (2a, 2b, 2c and 2d: temperature sensor) and 3 (3a, 3b: gas line with shut-off valve and pressure gauge, e.g. B. manometer), gas sampling device 4 and connecting piece 7.
  • the measuring container is parallel to a second Pressurized gas container 5 (or further pressurized gas containers) arranged.
  • the Temperature sensors 2a to 2d are arranged for example in a row Measurement of the temperature profile along the measuring points.
  • the temperature measuring points can e.g. B. in the longitudinal direction (here vertically) of a gas cylinder or circular (horizontal here).
  • the pressure measuring devices 3a and 3b are advantageously provided with a shut-off valve.
  • the gas sampling point 4 is used for taking gas samples for analysis or for online connection of Analysis devices (e.g. mass spectrometer or IR spectrometer).
  • Analysis devices e.g. mass spectrometer or IR spectrometer.
  • Connection piece 7 is preferably used for separate evacuation of the measuring container for the calibration of vacuum measuring devices.
  • Measuring container 1 and compressed gas container 5 are connected via a line to a vacuum pump 6 (arrows show the direction of the Gas flow when applying vacuum) and / or a gas source 6 (z. B. compressor with storage gas containers).
  • Another object of the invention is a method for filling Pressurized gas containers with gas or the production of gas mixtures in Pressurized gas containers, whereby a physical or chemical examination by means of a measuring container.
  • Physical examinations are e.g. B. pressure or temperature measurement. Chemical tests are e.g. B. Analyzes to determine the Gas composition, which can include physical methods. As Chemical investigations are also analyzes using infrared spectroscopy or mass spectrometry viewed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Ein Druckgasbehälter mit mindestens einer Öffnung neben der üblichen Öffnung für das Gasentnahmeventil (Flaschenventil) wird parallel zu anderen Druckgasbehältern, die mit Gas befüllt werden, angeschlossen. Der modifizierte Druckgasbehälter dient zu Meßzwecken, insbesondere einer verläßlichen und präzisen Druckmessung, bei der Befüllung von Druckgasbehältern mit Gasen. <IMAGE>

Description

Die Erfindung betrifft einen Druckgasbehälter mit einer oder mehreren Öffnungen zum Anschluß von Meßfühlern.
Gasgemische werden am häufigsten mittels des manometrischen Verfahrens hergestellt. Diese Verfahren wird in dem Sonderdruck 23/94 aus Berichte aus Technik und Wissenschaft 69/1993 "Prüfgase - Präzisionsgemische zum Kalibrieren von Meßgeräten" von Dr. K. Wilde und K. Studtrucker, Firma Linde - Technische Gase, beschrieben.
Das manometrische Verfahren beruht auf der Messung der Druckänderung nach Zugabe der einzelnen Gaskomponenten. Um die gewünschte Zusammensetzung der Gasmischung zu erreichen, werden die Gaskomponenten nacheinander bis zu einem definierten Druck in die Druckgasflasche gefüllt, wobei die Druckerhöhung bei einem Füllschritt wenigstens mehrere bar beträgt. Gasgemische mit einer Komponente im Spurenbereich werden mittels Muttergemischen hergestellt, welche in der Druckgasflasche im Überdruck vorgelegt und mit der Hauptkomponente bis zum Endruck aufgefüllt werden. Die Druckmessung erfolgte bisher vor der Druckgasflasche im Gasleitungsweg. Aufgrund von Druckabfällen bei Verengungen im Gasleitungsweg, insbesondere am Gasflaschenventil, kann der gemessene Druck von dem Druck in der Gasflasche erheblich abweichen (bei Anlegen von einem Überdruck oder einem Unterdruck). Eine präzise Druckmessung während der Gasabfüllung ist daher nicht mit der gewünschten Zuverlässigkeit möglich.
Der Erfindung liegt die Aufgabe zugrunde, Voraussetzungen für eine genaue Druckmessung beim Abfüllen von Gasen in Druckgasbehälter und bei der Herstellung von Gasgemischen in Druckgasbehältern zu schaffen.
Gelöst wurde die Aufgabe durch einen Druckgasbehälter mit den Merkmalen von Anspruch 1.
Der Druckgasbehälter ist vorzugsweise eine Druckgasflasche, z. B. eine handelsübliche Druckgasflasche mit 50, 40, 20, 10, 5, 2, 1 oder 0,5 Liter Flaschenvolumen, die mit einer oder mehreren Öffnungen neben der Öffnung für das Flaschenventil versehen ist. Die Öffnungen dienen zur Aufnahme von z. B. Ventilen, Temperaturfühlern Adaptern, Druckaufnehmern oder Manometern.
Erfindungsgemäße Druckgasbehälter, insbesondere Druckgasflaschen und Druckdosen, werden im folgenden als Meßbehälter bezeichnet.
Druckgasflaschen werden gewöhnlich aus Sicherheitsgründen nicht mit zusätzlichen Öffnungen (z. B. Bohrungen) versehen. Die Modifizierung von Druckgasbehältern gemäß der Erfindung unter Beachtung von Sicherheitsvorkehrungen bzw. Sicherheitsanforderungen ist zu Meßzwecken vertretbar. Beispielsweise ist der Einsatz von modifizierten Druckgasflaschen im Niederdruckbereich, d. h. bis zu 1 bar, oder im Druckbereich von 1 bis 6 bar ohne größere Gefahr möglich. Auch im Hochdruckbereich, z. B. 10 bis 350 bar, ist der Einsatz von modifizierten Druckgasflaschen unter entsprechenden Sicherheitsvorkehrungen möglich.
Der Meßbehälter wird in der Anwendung (z. B. zur Druckmessung) vorteilhaft parallel zu anderen Druckgasbehältern angeschlossen. Besonders vorteilhaft ist, wenn der Meßbehälter aus einem Druckgasbehälter hergestellt wird, der den paralell angeschlossenen Druckgasbehältern entspricht. Bei Gleichartigkeit der Behälter herrschen dann in dem Meßbehälter die gleichen Bedingungen wie in den Druckgasbehältern der Gasabfüllung. Der Meßbehälter ist problemlos in einen Abfüllstand integrierbar.
Der Meßbehälter eignet sich beispielsweise zur Messung von Druck und/oder Temperatur. Durch mehrere Öffnungen mit Anschlüssen für Temperaturfühler, die in die Druckgasflasche hineinreichen und z. B. entlang der Längsachse angeordnet sind, kann z. B. ein Temperaturgradient, der bei der Gasabfüllung entstehen kann, ermittelt werden. Temperaturmeßfühler (z. B. Thermoelemente) dienen z. B. zur Erfassung von Temperaturprofilen an oder in der Flasche. Insbesondere kann die Gastemperatur direkt gemessen werden.
Öffnungen können auch zur Gastentnahme für Analysezwecke eingesetzt werden, z. B. in Verbindung mit Hochdruckdosierventilen oder Absperrventilen. Anhand mehrerer Öffnungen, z. B. entlang der Längsachse des Druckgasbehälters, kann die örtliche Gaszusammensetzung bestimmt werden, insbesondere zur Prüfung der Homogenität von Gasgemischen oder zur Ermittlung von Gasschichtungen bei der Gasgemischherstellung. Die Gaszusammenensetzung kann anhand von entnommenen Gasproben oder online ermittelt werden. Analyseverfahren sind z. B. Massenspektrometrie oder Infrarotspektroskopie, insbesondere FT-IR-Spektroskopie.
Die Öffnungen können auch zur Aufnahme von Sonden zur Untersuchung der Innenoberfläche von Druckgasbehältern dienen (z. B. Endoskop; spektroskopische Oberflächenuntersuchungen; Gasanalysen mittels Massenspektrometrie). Beispielsweise können Adsorptions- und Desorptionsvorgänge zur Qualitätskontrolle erfaßt werden (z. B. Änderung der Gaszusammensetsung anhand Massenspektrometrie).
Bevorzugt sind die Öffnungen in der Druckgasbehälterwand mit einem Gewinde versehen, z. B. konische Gewinde wie NPT 1/16 Zoll bis NPT ¼ Zoll. 1/16 und ¼ Zoll-Gewinde können z. B. bei mindestens 5 mm Wanddicke angebracht werden. Gewindeöffnungen sind für den Einsatz im Hochdruckbereich besonders geeignet. Gelötete oder geschweißte Anschlüsse werden im allgemeinen im Niederdruckbereich (z. B. bei dünnwandigen Behältern wie Druckdosen) eingesetzt.
Der Meßbehälter ist besonders vorteilhaft einsetzbar für eine präzise Druckmessung bei manometrischen Verfahren zur Herstellung von Gasgemischen. Insbesondere bei Gasdosierverfahren mit Partialdruckmessung, z. B. für Drücke unterhalb von 1000 mbar, sorgt der Meßbehälter mit Druckmeßeinrichtung für exakte und übertragbare Meßwerte für die Druckgasbehälter bei der Gasabfüllung. Beispielsweise muß bei der direkten Herstellung von Prüfgasgemischen mit einer Nebenkomponente im Spurenbereich muß der Partialdruck der Nebenkomponente in den Druckgasbehältern präzise bestimmt werden.
Üblicherweise sind die Vakuummeßröhren an den Abfüllständen relativ nahe im Ansaugbereich der Vakuumpumpen angeordnet. (Überdruckmeßgeräte befinden sich in der Regel im Abfüllrohrleitungssystem). Hierbei wird der Druck in der Druckgasflasche nicht ausreichend genau gemessen. Dieses Problem wird mit dem parallel zu den Füll-Druckgasflaschen angeschlossenen Meßbehälter (
Figure 00040001
Dummy-Flasche") gelöst, der bevorzugt mit einer oder mehreren gasartunabhängigen Absolutdruckmeßröhren ausgerüstet ist und damit den realen Druck in jeder Druckgasflasche wiedergibt. Zum Schutz der Vakuumeßröhren bei der Herstellung von Hochdruckgasgemischen kann entweder der Meßbehälter von der Abfüll-Gasleitung abgesperrt werden oder es kann ein Absperrventil zwischen Meßbehälter und Meßgerät angebracht werden, das geschlossen wird, sobald der zulässige Meßdruckbereich überschritten wird. Es kann von Vorteil sein, mehrere Meßbehälter einzusetzen, z. B. ein Meßbehälter zur Messung im Niederdruckbereich und ein Meßbehälter im Mittel- und Hochdruckbereich.
Die überlicherweise eingesetzten Vakuummeßröhren, z. B. Thermovac, Pirani- oder Penning-Meßröhren besitzen aufgrund des Meßprinzips eine stark gasartabhängige Druckmessung. Hinzu kommt, daß die Druckanzeige bei diesen Meßgeräten nicht linear ist. In Verbindung mit dem Meßbehälter werden Meßsysteme bevorzugt, die eine gasartunabhängige, absolute Druckmessung erlauben.
Eine gasartunabhängige, absolute Druckmessung kann beispielsweise mit Druckmeßgeräten wie Kapazitätsmanometern (z. B. Gerät mit der Bezeichnung 600 Barocel® der Firma Edwards, USA; Meßbereiche: 0-10, 0-100, 0-1000 mbar) erfolgen. Bei diesen Kapazitätsmanometern lenkt der Eingangsdruck eine dünne, radial im Gehäuse eingeschweißte Membrane gegenüber einer festen Elektrode aus, dabei bilden beide Elektroden einen Kondensator. Dies führt zu einer Kapazitätsänderung, die nach elektronischer Signalverarbeitung über die Steuer- und Anzeigeelektronik direkt proportional zum Druck ist. Als Ausgangssignal wird eine lineare Gleichspannung geliefert. Die Bezugselektrode befindet sich in einem Referenz-Ultra-Hochvakuumraum, der durch chemische Getter langzeitstabil ist.
Gasartunabhängige Meßröhren zur kapazitive Messung sind für Drücke von beispielsweise 0,0001 mbar bis 1000 mbar erhältlich.
Der Meßbehälter enthält vorteilhaft einen Anschluß eine externe Evakuiermöglichkeit zum schnelleren Kalibrieren von Vakuum-Meßröhren: Der Anschluß wird beispielsweise seitlich an Wand einer Druckgasflasche angebracht.
Der Einsatz der Meßbehälter ist vorteilhaft bei allen manometrischen Verfahren zur Herstellung von Gasgemischen, insbesondere bei der Druckmessung bei Verfahren zur Herstellung von Gasgemischen in Druckgasbehältern, wo in mindestens einem Schritt zunächst ein Druck eines Gases grob vorgegeben wird (Grobdruck) und dann ein kleinerer präziser Druck (Feindruck) in dem Druckgasbehälter mit Hilfe eines Vakuums eingestellt wird.
Der Feindruck liegt beispielsweise im Bereich von 0,0001 bis 1000 mbar bei 15 °C.
Der Einsatz des Meßbehälters ist besonders von Vorteil bei der Herstellung eines Gasgemisches mit einer Hauptkomponente und einer Nebenkomponente, die in kleiner Konzentration, z. B. im Spurenbereich, vorliegt.
Bei der Herstellung binärer Gasgemische erfolgt die Befüllung und Dosierung vorteilhaft zuerst mit der Gaskomponente, die in dem herzustellenden Gasgemisch in der geringsten Konzentration vorliegt (Nebenkomponente), da der erste Dosierschritt in dem Verfahren mit der größten Genauigkeit ausgeführt werden kann.
Der gespülte, konditionierte und evakuierte Druckgasbehälter wird mit der ersten Gaskomponente befüllt. Hier zeigt sich der Vorteil der Verwendung der ersten Gaskomponente als Gas für das Spülen und die Konditionierung des Druckgasbehälters: der Druckgasbehälter braucht zur ersten Dosierung nicht evakuiert zu werden. Sollte sich das Spülen mit der ersten Gaskomponente aus wirtschaftlichen Gründen verbieten, so wäre es von Vorteil, wenn wenigstens der Spülschritt des letzten Spülvorganges mit der ersten Gaskomponente erfolgt. Die Befüllung mit der ersten Gaskomponente erfolgt zunächst bis zu einem Grobdruck, der größer ist als der eigentliche Dosierdruck, durch den die Menge der Gaskomponente bestimmt wird. Der Grobdruck liegt im allgemeinen bei einem Druck im Bereich von 0,1 bis 10 bar, bevorzugt im Bereich von 0,1 bis 5 bar und besonders bevorzugt im Bereich von 0,8 bis 1,5 bar, je nach einzustellendem Feindruck. Der Feindruck und der Grobdruck sollten so weit auseinanderliegen, daß eine Dosierung mittels Vakuum gut durchgeführt werden kann. Das ist beispielsweise gegeben, wenn der Feindruck etwa 10 Prozent unter dem Wert des Grobdruckes liegt. Besonders wenn der Feindruck unter 100 millibar, insbesondere unter 10 millibar, liegt, erfolgt die Änderung des Druckes bei Anlegen des Vakuums langsam, so daß der gewünschte Wert des Feindruckes sehr genau eingestellt werden kann. Bei Feindrücken über 10 millibar kann die Einstellung des Feindruckes durch eine Drosselung (Ventil) in der Vakuumleitung erleichtert werden. Die Dosierung von weiteren Gaskomponenten erfolgt additiv wie bei üblichen manometrischen Verfahren durch Befüllung bis zu einem vorgegebenen Dosierdruck. Die Befüllung mit der anteilig größten Gaskomponente (Hauptkomponente) wird vorteilhaft als letzter Schritt durchgeführt, dabei wird diese Gaskomponente bis zu dem letzten Dosierdruck, das ist der Fülldruck des Druckbehälters mit dem fertigen Gasgemisch, aufgefüllt.
Bei herzustellenden Gasgemischen mit mehreren Nebenkomponenten mit kleinen Partialdrücken erlaubt der Meßbehälter aufgrund der präzisen Druckmessung auch eine direkte Gasdosierung (additive Gasdosierung) im Vakuum (d. h. bei einem Druck unter einem bar).
Mit der Gasdosierung mittels Vakuum oder additiven Gasdosierung im Vakuum und einer präzisen Druckbestimmung mittels des Meßbehälters ist es nunmehr möglich, kostengünstig und unter geringem, zeitlich akzeptablem Aufwand Gasgemische, insbesondere mit einer oder mehreren Nebenkomponenten im Konzentrationsbereich zwischen 10 ppb und 5000 ppm, insbesondere im Bereich zwischen 10 ppb und 100 ppm, sehr exakt zudosieren.
Konditionierung und Befüllung der Druckgasbehälter mit den Gaskomponenten können gleichzeitig mit mehreren Druckgasbehältern (z. B. 1 bis 100 Druckgasbehälter) am Abfüllstand erfolgen. Auf die Bevorratung von Muttergemischen sowie auf aufwendige gravimetrische Dosierungen kann verzichtet werden, so daß Gasgemische mit Gaskomponenten geringer Konzentration direkt hergestellt werden können.
Es wird die Herstellung eines binären Gasgemisches (Gasgemisch aus Haupt- und Nebenkomponente) im folgenden als Beispiel beschrieben.
Eine Druckgasflasche, die thermisch konditioniert und mit einem Druck bis zu 3 bar mit einem Konservierungsgas (z. B. Stickstoffgas) befüllt wurde, wird durch Ablassen von Gas auf einen Innendruck von etwa Atmosphärendruck gebracht. Anschließend wird die Druckgasflasche mit einer Vakuumpumpe (z. B. ölfreie Membranpumpe) auf einen Druck von etwa 10 millibar evakuiert. Das entspricht einer Drucksenkung um ca. 2 Zehnerpotenzen. Die evakuierte Druckgasflasche wird mit dem Gas der einzuspeisenden Nebenkomponente bis auf einen Druck im Bereich von 800 bis etwa 1000 millibar geflutet. Zum Spülen der Druckgasflasche mit der Nebenkomponente wird das Evakuieren und Fluten mit dem Gas der Nebenkomponente zweimal, dreimal oder mehrmals durchgeführt, je nach der Anforderung an die Reinheit und je nach Zusammensetzung des Gasgemisches. Das Spülen wie auch die nachfolgenden Schritte erfolgen bevorzugt bei Raumtemperatur (20 bis 25° C). Die Druckgasflasche ist nun mit dem Gas der Nebenkomponente etwa bei Atmosphärendruck gefüllt und die innere Oberfläche mit dem Gas der Nebenkomponente in ein Gleichgewicht gebracht. Die Druckgasflasche ist damit konditioniert. Die eigentliche Dosierung der Nebenkomponente erfolgt durch Evakuieren (Entnahme von Gas) auf den gewünschten Feindruck, der dem Partialdruck der Nebenkomponente in dem fertigen, komprimierten Gasgemisch entspricht. Der notwendige Druck kann theoretisch (z. B. anhand einer Gasgleichung wie ideales Gasgesetz oder anhand eines Berechnungsmodells) oder empirisch (z. B. anhand von Gasanalysen) ermittelt werden. Ist der Feindruck der Nebenkomponente eingestellt, so ist die Dosierung der Nebenkomponente abgeschlossen. Auf diese Weise können Nebenkomponenten z. B. zwischen 10-4 und 1000 millibar sehr exakt vorgelegt werden. Die Hauptkomponente des Gasgemisches wird nun auf den Enddruck (Fülldruck) in der Druckgasflasche, beispielsweise 200 bar, aufgedrückt. Dies kann mittels eines Kompressors oder durch Anschluß eines Vorratsbehälters einer Gasversorgung (Gas der Hauptkomponente) mit höherem Druck (z. B. 350 bar) erfolgen. Das Auffüllen mit der Hauptkomponente kann auch gravimetrisch kontrolliert werden.
Beispiel für ein binäres Gasgemisch:
  • 1.) Nebenkomponente: Sauerstoff, Feindruck: 10 mbar
  • 2.) Hauptkomponente: Stickstoff, Dosierdruck= Fülldruck: 200 bar
  • 3.) Ergebnis: Gasgemisch von 0,005 vol.-% (50 ppm) Sauerstoff in Stickstoff.
  • Die Figur zeigt schematisch einen Meßbehälter 1 mit Beispielen von Meßeinrichtungen 2 (2a, 2b, 2c und 2d: Temperaturfühler) und 3 (3a, 3b: Gasleitung mit Absperrventil und Druckmeßgerät, z. B. Manometer), Gasentnahmeeinrichtung 4 und Anschlußstutzen 7. Der Meßbehälter ist parallel zu einem zweiten Druckgasbehälter 5 (oder weiteren Druckgasbehältern) angeordnet. Die Temperaturfühler 2a bis 2d sind zum Beispiel in einer Reihe angeordnet für die Messung des Temperaturprofils entlang der Meßpunkte. Die Temperaturmeßpunkte können z. B. in Längsrichtung (hier vertikal) einer Druckgasflasche oder kreisförmig (hier horizontal) angeordnet sein. Die Druckmeßeinrichtungen 3a und 3b sind vorteilhaft mit einem Absperrventil versehen. Als Druckmeßgeräte können beispielsweise ein Kapazitätsmanometer für die Vakuummessung und ein Manometer für höhere Druckbereiche angeschlossen sein. Die Gasentnahmestelle 4 dient zur Entnahme von Gasproben zur Analyse oder zum on-line Anschluß von Analysegeräten (z. B. Massenspektrometer oder IR-Spektrometer). Der Anschlußstutzen 7 dient vorzugsweise zur separaten Evakuierung des Meßbehälters zur Kalibrierung von Vakuummeßgeräten. Meßbehälter 1 und Druckgasbehälter 5 sind über eine Leitung mit einer Vakuumpumpe 6 (Pfeile zeigen die Richtung des Gasflusses bei Anlegen von Vakuum) und/oder einer Gasquelle 6 (z. B. Kompressor mit Vorratsgasbehältern).
    Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Befüllung von Druckgasbehältern mit Gas oder der Herstellung von Gasgemischen in Druckgasbehältern, wobei eine physikalische oder chemische Untersuchung mittels eines Meßbehälters erfolgt.
    Physikalische Untersuchungen sind z. B. Druck- oder Temperaturmessung. Chemische Untersuchungen sind z. B. Analysen zur Ermittlung der Gaszusammensetzung, die physikalische Methoden beinhalten können. Als chemische Untersuchungen werden auch Analysen mittels Infrarotspektroskopie oder Massenspektrometrie angesehen.

    Claims (12)

    1. Druckgasbehälter mit mehr als einer Öffnung.
    2. Druckgasbehälter nach Anspruch 1, dadurch gekennzeichnet, daß der Druckgasbehälter eine Druckgasflasche oder eine Druckdose ist.
    3. Druckgasbehälter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Öffnung ein Gewinde aufweist.
    4. Druckgasbehälter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Öffnung zum Anschluß von einem Sensor, Meßgerät oder Analysegerät oder zur Entnahme von Proben oder zur Aufnahme einer Sonde dient.
    5. Druckgasbehälter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Öffnung zum Anschluß eines oder mehrerer Thermoelemente, ein oder mehrerer Vakuummeßgeräte oder ein oder mehrerer Druckmeßgeräte dient.
    6. Druckgasbehälter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Öffnung zur Befestigung oder Positionierung von einem oder mehrerer Sensoren oder Sonden im Innenraum des Druckgasbehälters dient.
    7. Druckgasbehälter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Druckgasbehälter eine handelsübliche Druckgasflasche mit einem Flaschenvolumen von 50, 40, 20, 10, 5, 2, 1 oder 0,5 Liter dient.
    8. Druckgasbehälter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Öffnung mit einem zylindrischen oder konischen Gewinde oder einer Löt- oder Schweißverbindung versehen ist.
    9. Verfahren zur Befüllung von Druckgasbehältern mit Gas oder der Herstellung von Gasgemischen in Druckgasbehältern, dadurch gekennzeichnet, daß eine physikalische oder chemische Untersuchung mittels eines Druckgasbehälters gemäß einem der Ansprüche 1 bis 8 erfolgt.
    10. Verwendung eines Druckgasbehälters nach einem der Ansprüche 1 bis 8 zur Durchführung physikalischer oder chemischer Untersuchungen bei der Befüllung von Druckgasbehältern mit Gas oder Verfahren zur Herstellung von Gasgemischen in Druckgasbehältern.
    11. Verwendung gemäß Anspruch 10, dadurch gekennzeichnet, daß die physikalische Untersuchung eine Druck- oder Temperaturmessung darstellt und die chemische Untersuchung Informationen zur Gaszusammensetzung liefert.
    12. Verwendung gemäß Anspruch 10 oder 11, dadurch gekennzeichnet, daß bei Verfahren zur Herstellung von Gasgemischen in Druckgasbehältern als physikalische Untersuchung eine Druckmessung erfolgt und in mindestens einem Schritt zunächst ein Druck eines Gases grob vorgegeben und dann ein kleinerer Druck in den Druckgasbehältern mit Hilfe eines Vakuums präzise eingestellt wird.
    EP98117220A 1997-10-09 1998-09-11 Messgasbehälter Expired - Lifetime EP0908665B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19744559A DE19744559C2 (de) 1997-10-09 1997-10-09 Meßgasbehälter
    DE19744559 1997-10-09

    Publications (3)

    Publication Number Publication Date
    EP0908665A2 true EP0908665A2 (de) 1999-04-14
    EP0908665A3 EP0908665A3 (de) 1999-09-01
    EP0908665B1 EP0908665B1 (de) 2006-11-02

    Family

    ID=7845022

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98117220A Expired - Lifetime EP0908665B1 (de) 1997-10-09 1998-09-11 Messgasbehälter

    Country Status (3)

    Country Link
    EP (1) EP0908665B1 (de)
    AT (1) ATE344419T1 (de)
    DE (2) DE19744559C2 (de)

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1043540A2 (de) * 1999-04-08 2000-10-11 Messer Griesheim Gmbh Abfüllstand zur Herstellung von Präzisionsgasgemischen
    WO2006108976A2 (fr) * 2005-04-13 2006-10-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de controle du remplissage de bouteilles de gaz
    DE102006016554A1 (de) * 2006-04-07 2007-10-11 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zum Befüllen mindestens eines Druckgasbehälters mit mindestens einem Gas, Zwischenstück zum Verbinden mit einer Öffnung eines Druckgasbehälters und Druckgasflaschenarmatur
    CN103041724A (zh) * 2012-12-13 2013-04-17 西南化工研究设计院有限公司 新型静态体积法配气装置及其配气的方法
    CN112881105A (zh) * 2021-01-28 2021-06-01 王欣丽 一种室内土壤微生物呼吸连续测定装置
    US20240035623A1 (en) * 2022-07-29 2024-02-01 Toyota Jidosha Kabushiki Kaisha Hydrogen filling method

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19959102A1 (de) * 1999-12-08 2001-06-21 Messer Griesheim Gmbh Innenbesichtigung von Gasflaschen
    DE102008015395A1 (de) * 2008-03-20 2009-09-24 L'Air Liquide, S.A. pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und Vorrichtung zur Herstellung eines Gasgemisches aus mindestens einer ersten und einer zweiten Komponente

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1159016A (fr) * 1956-10-08 1958-06-23 Bouteille à gaz
    FR1352976A (fr) * 1963-01-09 1964-02-21 Commissariat Energie Atomique Perfectionnements apportés aux moyens d'obtention et de régulation de températures, notamment de basses températures, dans une enceinte
    US4059424A (en) * 1975-02-25 1977-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the controlled supply of cryogenic fluid
    WO1991003679A1 (de) * 1989-09-11 1991-03-21 Hellmuth Sitte Vorrichtung zum nachfüllen von flüssigstickstoff
    US5370269A (en) * 1990-09-17 1994-12-06 Applied Chemical Solutions Process and apparatus for precise volumetric diluting/mixing of chemicals
    US5388720A (en) * 1994-04-15 1995-02-14 Essef Corporation Flanged diffuser and air cell retainer for pressure vessel

    Family Cites Families (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1708712U (de) * 1954-12-03 1955-10-13 Mannessmann Ag Transportbehaelter fuer fluessiggase.

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1159016A (fr) * 1956-10-08 1958-06-23 Bouteille à gaz
    FR1352976A (fr) * 1963-01-09 1964-02-21 Commissariat Energie Atomique Perfectionnements apportés aux moyens d'obtention et de régulation de températures, notamment de basses températures, dans une enceinte
    US4059424A (en) * 1975-02-25 1977-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the controlled supply of cryogenic fluid
    WO1991003679A1 (de) * 1989-09-11 1991-03-21 Hellmuth Sitte Vorrichtung zum nachfüllen von flüssigstickstoff
    US5370269A (en) * 1990-09-17 1994-12-06 Applied Chemical Solutions Process and apparatus for precise volumetric diluting/mixing of chemicals
    US5388720A (en) * 1994-04-15 1995-02-14 Essef Corporation Flanged diffuser and air cell retainer for pressure vessel

    Cited By (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1043540A2 (de) * 1999-04-08 2000-10-11 Messer Griesheim Gmbh Abfüllstand zur Herstellung von Präzisionsgasgemischen
    EP1043540A3 (de) * 1999-04-08 2001-01-31 Messer Griesheim Gmbh Abfüllstand zur Herstellung von Präzisionsgasgemischen
    WO2006108976A2 (fr) * 2005-04-13 2006-10-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de controle du remplissage de bouteilles de gaz
    FR2884592A1 (fr) * 2005-04-13 2006-10-20 Air Liquide Procede de controle du remplissage de bouteilles de gaz
    WO2006108976A3 (fr) * 2005-04-13 2006-11-30 Air Liquide Procede de controle du remplissage de bouteilles de gaz
    DE102006016554A1 (de) * 2006-04-07 2007-10-11 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zum Befüllen mindestens eines Druckgasbehälters mit mindestens einem Gas, Zwischenstück zum Verbinden mit einer Öffnung eines Druckgasbehälters und Druckgasflaschenarmatur
    WO2007115734A1 (de) * 2006-04-07 2007-10-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren zum befüllen mindestens eines druckgasbehälters mit mindestens einem gas, zwischenstück zum verbinden mit einer öffnung eines druckgasbehälters und druckgasflaschenarmatur
    JP2009532641A (ja) * 2006-04-07 2009-09-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 少なくとも1つの圧縮ガスタンクに少なくとも1種のガスを充填する方法、圧縮ガスタンクの開口部に連結するための連結器、および圧縮ガスボンベ装置
    CN101454609B (zh) * 2006-04-07 2011-09-14 乔治洛德方法研究和开发液化空气有限公司 以至少一种气体灌装至少一个压缩气体容器的方法,与压缩气体容器连接的中间体,和压缩气瓶配件
    CN103041724A (zh) * 2012-12-13 2013-04-17 西南化工研究设计院有限公司 新型静态体积法配气装置及其配气的方法
    CN112881105A (zh) * 2021-01-28 2021-06-01 王欣丽 一种室内土壤微生物呼吸连续测定装置
    CN112881105B (zh) * 2021-01-28 2023-09-12 江苏普朗睿恩生物科技有限公司 一种室内土壤微生物呼吸连续测定装置
    US20240035623A1 (en) * 2022-07-29 2024-02-01 Toyota Jidosha Kabushiki Kaisha Hydrogen filling method

    Also Published As

    Publication number Publication date
    DE59813783D1 (de) 2006-12-14
    EP0908665A3 (de) 1999-09-01
    EP0908665B1 (de) 2006-11-02
    ATE344419T1 (de) 2006-11-15
    DE19744559C2 (de) 2003-03-27
    DE19744559A1 (de) 1999-04-15

    Similar Documents

    Publication Publication Date Title
    DE69228724T2 (de) Kalibrierungssystem für die Analyse von ultrahoch reinen Gasen
    EP3198251B1 (de) Vorrichtung und verfahren zum kalibrieren einer folienkammer zur leckdetektion
    EP2005057B1 (de) Verfahren zum befüllen mindestens eines druckgasbehälters mit mindestens einem gas
    DE19915779B4 (de) Abfüllstand zur Herstellung von Präzisionsgasgemischen
    WO2014180469A1 (de) Dichtheitsprüfanordnung und dichtheitsprüfverfahren
    DE2408378A1 (de) Verfahren und vorrichtung zum fuellen eines hochdruck-speicherbehaelters mit genau bestimmbaren gasgemischen
    DE19744559C2 (de) Meßgasbehälter
    WO2017108754A1 (de) Grobleckmessung eines inkompressiblen prüflings in einer folienkammer
    EP2914944B1 (de) Verfahren zur prüfung einer dichtheitsprüfanlage
    DE2061675A1 (de) Gerat zur automatischen Adsorp tionsmessung
    DE2514146C2 (de) Automatischer CO&amp;darr;2&amp;darr;-Gehaltmesser
    DE19704868C1 (de) Manometrisches Füllverfahren
    EP2801808A1 (de) Dichtheitsprüfanordnung und Dichtheitsprüfverfahren
    DE4013373C1 (en) Pneumatic method ascertaining vol. of hollow chamber - subjecting sample to pressure corresp. to atmos. for comparison with reference vol. in reference vessel
    EP0727655B1 (de) Messeinrichtung und Verfahren zur Messung der Sauerstoffpermeabilität eines Prüflings
    DE19516602C2 (de) Druckdose mit Feindosierentnahmeeinrichtung
    DE3505490A1 (de) Sauersoffanalysengeraet und verfahren zur bestimmung des sauerstoffanteils in gasdichten verpackungen
    DE19535832C1 (de) Verfahren und Vorrichtung zum Nachweis eines leichten Spürgases
    EP1790965A1 (de) Verfahren zur Bereitstellung der in Flüssigkeiten von Hochspannungsanlagen gelösten Gase für die externe Analyse und eine Vorrichtung zur Durchführung des Verfahrens
    DE102004036133B4 (de) Verfahren und Vorrichtungen zur Ermittlung mindestens eines Volumens
    EP0889305B1 (de) Verfahren und Vorrichtung zur Prüfung von Druckgasflaschen
    DE2137656C3 (de) Meßgerät für die Gasdurchlässigkeit von Kunststoff-Folien
    DE102022116897A1 (de) System und Verfahren zum Detektieren der inneren Leckage eines Brennstoffzellenstapels
    WO2008071415A1 (de) Anordnung sowie ein verfahren zur steuerung von trocknungsprozessen für die herstellung von halbleiterbauelementen
    DE1923683A1 (de) Verfahren und Vorrichtung zur Volumenmessung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE FR GB IT LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 6F 17C 13/02 A, 6F 17C 13/00 B, 6F 17C 1/00 B

    17P Request for examination filed

    Effective date: 20000301

    AKX Designation fees paid

    Free format text: AT BE CH DE FR GB IT LI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: MESSER GRIESHEIM GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: MESSER GROUP GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: MESSER GROUP GMBH

    Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: MESSER GROUP GMBH

    Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20061102

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59813783

    Country of ref document: DE

    Date of ref document: 20061214

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20070208

    EN Fr: translation not filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070803

    BERE Be: lapsed

    Owner name: MESSER GROUP G.M.B.H.

    Effective date: 20070930

    Owner name: AIR LIQUIDE DEUTSCHLAND G.M.B.H.

    Effective date: 20070930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070615

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070930

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061102

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070911

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170928

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20170921

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59813783

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20180910

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20180910