EP0903770B1 - Lampe à halogenures - Google Patents

Lampe à halogenures Download PDF

Info

Publication number
EP0903770B1
EP0903770B1 EP98111187A EP98111187A EP0903770B1 EP 0903770 B1 EP0903770 B1 EP 0903770B1 EP 98111187 A EP98111187 A EP 98111187A EP 98111187 A EP98111187 A EP 98111187A EP 0903770 B1 EP0903770 B1 EP 0903770B1
Authority
EP
European Patent Office
Prior art keywords
metal halide
voltage
halide lamp
lamp according
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98111187A
Other languages
German (de)
English (en)
Other versions
EP0903770A3 (fr
EP0903770A2 (fr
Inventor
Klaus Dr. Stockwald
Dieter Lang
Dietrich Dr. Fromm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0903770A2 publication Critical patent/EP0903770A2/fr
Publication of EP0903770A3 publication Critical patent/EP0903770A3/fr
Application granted granted Critical
Publication of EP0903770B1 publication Critical patent/EP0903770B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent

Definitions

  • the invention is based on a metal halide lamp according to the preamble of claim 1.
  • Metal halide lamps are used in particular as lamps used with ceramic discharge vessel. You treated also a lighting system consisting of lamp and ballast.
  • a metal halide lamp with a ceramic discharge vessel is already known, the mercury-free filling of which contains noble gas (xenon) and a halide of lithium (or also of Na, Tl, In) to produce an arc discharge. Furthermore, the filling contains a substance which forms a halide complex, for example a halide of aluminum or tin, which forms complexes with the halides of sodium or lithium.
  • a mercury-containing filling with noble gases and metal halides which contains thallium, one or two rare earth metals (Dy, Ho) and / or an alkali metal (Na, Cs) and possibly indium.
  • a metal halide lamp with high luminous efficacy which uses mercury as a buffer gas.
  • An exemplary embodiment also shows a mercury-free filling for daylight use with a color temperature of 5350 K using HfBr 4 as the metal halide and addition of elemental tin.
  • the xenon (cold filling pressure 1 bar) takes on the role of the buffer gas.
  • these lamps have enormous re-ignition peaks of around 600 V and can therefore only be operated with complex circuitry.
  • low-mercury or almost mercury-free fillings are mainly used for electrodeless high-pressure metal halide lamps, since the coupling of the electrical energy via electromagnetic waves decreases with increasing mercury density and is shielded in the outer plasma layers.
  • metal halide lamps too, predominantly xenon (Xe) or other noble gases are used as buffer gases or mercury is filled in in very small amounts ( ⁇ 1 mg / cm 3 , "essentially mercury-free").
  • Xe xenon
  • this technology is very complex and unsuitable for lamps with low power (below 250 W), since the luminous efficiency then drops drastically.
  • the underlying task requires a substitute or a mixture of substitutes for mercury in high-pressure lamps with at the same time extensive Preservation of the lighting and electrical properties of the typical Metal halide high-pressure lamp.
  • the discharge vessel can consist of quartz glass.
  • a discharge vessel made of ceramic, transparent or translucent material that can withstand higher thermal loads is.
  • This material can be made of monocrystalline metal oxide (e.g. sapphire), polycrystalline sintered metal oxide (e.g .: PCA: polycrystalline, densely sintered Aluminum oxide, yttrium aluminum garnet or yttrium oxide) or consist of polycrystalline non-oxidative material (e.g. AlN).
  • Xe is mainly used as a substitute for Hg as a buffer gas heaviest of the stable noble gases used. It can be used when using Discharge vessels made of quartz glass can be filled in by freezing out, see above that the lamp filling contains the buffer gas in excess pressure. When using of ceramic bodies as a discharge vessel can this filling process because the resulting high temperature gradient along the discharge vessel lead to jumps and is therefore only with great effort and risk applicable.
  • xenon only makes a small contribution as a buffer gas (10 to 20%) to the voltage gradient in the lamp.
  • a mercury-free electrode-containing metal halide lamp with a ceramic discharge vessel in an evacuated outer bulb Quartz glass or hard glass with high luminous efficacy (typically> 80 lm / W), and high Color rendering index (typically Ra> 80).
  • the area can preferably be filled with the filling substances according to the invention Realize warm white to neutral white color temperatures (typ. 3000 - 4500 K). It may be but also possible, daylight white color temperatures (um 5300 K) with high Ra (approx. 90).
  • Halogen here and below always includes iodine, bromine or chlorine, however not fluorine. The same applies to halides.
  • first additional additives preferably metal halides, to improve the electrical Lamp properties and for influencing the arc temperature profile used.
  • Metals or metal compounds are particularly suitable for this, their excitation or ionization energies in the range of the above metal halides lie and are preferably below.
  • second additives preferably elemental metals
  • metal compounds which can possibly be formed from the material of the electrodes and that of the current leads (W, Mo) in the lamp. They essentially serve to extend the life of the lamps and support an effective, stable chemical cycle.
  • These are usually elemental metals which are present in excess of the halides of these metals which have already been introduced, in particular aluminum, tin and magnesium. Good experiences have also been achieved with elementary tantalum. The maximum dosage of these metals is 10 mg / cm 3 .
  • discharge vessels are made of for the present invention Quartz glass can be used. However, preference is given to lamps with ceramic vessels which allow much higher wall temperatures. So one can clearly higher total pressure and partial vapor pressure as well as a higher particle density adjust the materials used to generate light. Also be the conditions for the possibility of metal halide complex formation and the possibility of the formation of supersaturated metal vapors to form metal-atom clusters by increasing the Wall temperature improved.
  • the ratio of the total molar amount of all the metals introduced is preferably to the total molar quantity of all filled-in halogens between 0.1 and 10.
  • the lamps are operated on AC voltage in such a way that that the rate of change in lamp voltage is (in absolute terms voltage rise in negative or positive direction) occurs so quickly during the polarity change that re-ignition peaks occur can be greatly reduced over the course of the lamp voltage. Thereby extinguishing of the lamp is reliably prevented. These reignition tips arise from the extinction of the discharge arc when the polarity changes and by cooling the electrodes.
  • the level of the still acceptable reignition peak is determined on the one hand after the open circuit voltage, i.e. after the supply voltage, the maximum is attainable, and on the other hand after the response voltage of an im Ignition device located voltage path, which is exceeded when a certain voltage level (just the response voltage) ignition pulses the lamp voltage generated.
  • a faulty mode of operation with too high Re-ignition tip leads to overloading of the igniter and shortens it its lifespan.
  • the Voltage change rate of the lamp voltage which is called the absolute value of the Voltage change divided by the duration of the voltage change is defined (therefore in the following it is often simplified as the voltage rise rate designated), at least at 0.3 V / ⁇ s, particularly preferably at are at least 1 V / ⁇ s. Good results are achieved at around 3 V / ⁇ s.
  • a sufficient rate of voltage rise can in principle be determined by a realize relatively high-frequency sinusoidal AC voltage (at least 1 kHz, preferably more than 250 kHz). In principle, they are suitable also other similar voltage forms (e.g. sawtooth shape) comparable duration of the half period.
  • the latter corresponds to the usual mains voltage of 230 V eff .
  • a medium-voltage mains voltage (approx. 110 V rms ) can of course also be used.
  • Acceptable re-ignition peaks of the lamp voltage here the peak voltage is of primary interest and less the effective value of the voltage) must be significantly below the response voltage.
  • a value of approximately 75% of the open circuit voltage is therefore acceptable for the re-ignition peak.
  • this gives a value of 173 V eff i.e. a peak voltage of 244 V pk .
  • Operation on an electronic ballast is particularly preferred with rectangular current injection, since this pulse shape is steep from the start Flanks guaranteed.
  • a frequency of 50 Hz is sufficient to increase the voltage rise rate when changing polarity to the above set the range above 0.3 V / ⁇ s. This is due to the steepness the edges of the rectangle. But it is also a higher frequency operation (for example 120 Hz or more) possible.
  • a period of time is advantageous Voltage rise of at most about 400 ⁇ s, in a particularly preferred one Embodiment, it is less than 100 microseconds.
  • A is very suitable Value of about 10 to 50 ⁇ s.
  • a suitable electronic ballast is in principle, for example, from the US Pat. No. 4,291,254 or DE-OS 44 00 093, both of which are known express reference is made. However, there is above all the aspect the increased luminous efficacy (up to 8%) due to the high operating frequency.
  • a particular advantage of rectangular operation is that it provides the basis is created for stable continuous operation without acoustic resonances.
  • high-frequency sinusoidal excitation is also possible when operating at frequencies> 1 kHz with sinusoidal voltage edges takes place, the time scale of which is typically the steep flanks of rectangles takes place, their time scale typically the steep edges in rectangular operation (Order of magnitude 10 to 100 ⁇ s).
  • a high frequency > 250 kHz
  • the voltage rise rate in V / ⁇ s
  • the voltage rise rate is such is set that re-ignition peaks that on the burning voltage of the Lamp are stamped, are suppressed as possible. Then also at sinusoidal AC voltage, stable operation possible.
  • Another advantageous aspect of rectangular current operation is also that the performance of the lamp is constant to within a few percent can be maintained (constant wattage operation).
  • the lamp should at least 50% during start-up in the first minutes (preferably more than 60%) of the nominal power.
  • Advantageous therefore electronic ballasts with rectangular operation are used, with which a "constant wattage" operation can be realized and the occurrence of high reignition peaks is reliably avoided.
  • in principle is a circuit for operating a high-pressure discharge lamp with constant Performance known for example from EP-A 680 245.
  • the approach according to the invention now consists in instead of xenon primarily iodides or bromides of easily evaporable metals use to generate a voltage gradient comparable to Hg.
  • Bromine and iodine (atomic or molecular) alone or in combination have a large cross section for electron capture. Thereby the operating voltage of a lamp is raised to form negative Ions or molecules.
  • the concept of the voltage gradient generator can be modified accordingly that the metal halides alone do not perform this function, but a certain contribution to the voltage gradient (up to 40%) due to a correspondingly high xenon pressure (more than 500 mb cold filling pressure) is contributed.
  • This allows a good coordination with regard to on the simplest possible filling systems in which a part of the Voltage gradient formers also used metal halides as Light formers act, for example halides of Al, In, Mg and before All of the part.
  • the advantage of this concept is that when starting with high starting current (typically 2 A) the electrodes against excessive overheating be protected if xenon acts as an ignition gas and gradient generator.
  • a metal halide lamp with an output of 70 W is shown schematically in FIG. It consists of a cylindrical outer bulb 1 made of quartz glass which defines a lamp axis and is squeezed (2) and base (3) on two sides.
  • the axially arranged discharge vessel 4 made of Al 2 O 3 ceramic is bulged in the middle 5 and has two cylindrical ends 6a and 6b.
  • it can also be cylindrical with elongated capillary tubes as plugs, as is known, for example, from EP-A 587 238.
  • the discharge vessel is held in the outer bulb 1 by means of two power supply lines 7, which are connected to the base parts 3 via foils 8.
  • the power supply lines 7, one of which is a molybdenum band to compensate for the large differences in expansion, are welded to bushings 9, 10, which are each fitted in an end plug 11 at the end of the discharge vessel.
  • the bushings 9, 10 are, for example, molybdenum pins. Both executions 9, 10 are on both sides of the stopper 11 and hold on the discharge side Electrodes 14, consisting of an electrode shaft 15 Tungsten and a helix 16 pushed on at the discharge end.
  • the bushing 9, 10 is in each case with the electrode shaft 15 and with the outer power supply 7 butt welded.
  • the end plugs 11 essentially consist of a cermet known per se with the ceramic component Al 2 O 3 and the metallic component tungsten or molybdenum.
  • the filling of the discharge vessel consists of an inert ignition gas / buffer gas, here argon with 250 mbar cold filling pressure and from various additives on metal halides.
  • TlJ has a dual function as a voltage gradient generator and photographers proven in combination with others
  • Table 2 shows some fillings, with voltage gradient formers and light formers shown separately.
  • the light color is in the warm white to neutral white range (3500 to 4250 K).
  • the voltage gradient is usually in the order of 60 to 120 V / cm. Surprisingly, however, relatively low voltage gradients between 45 and 60 V / cm still lead to good lighting values.
  • the voltage gradient in a conventional metal halide lamp with a mercury filling is approximately between 75 and 110 V / cm.
  • the metal halide mixtures shown in Table 3 are used as light formers resorted to, with CsJ as an additional additive of the first Type is taken into account.
  • a three-component mixture is particularly suitable as a light generator, consisting of thallium as the first component, Sodium and / or cerium as a second component and at least one rare earth metal as the third component.
  • a lamp volume of 0.3 cm 3 was used for all fillings.
  • the electrode gap is 9 mm.
  • the specific wall load (defined as electrical power / inner surface) varies between 15 and 50 W / cm 2 . On average, it is 25 W / cm 2 .
  • the specific electrical power density varies between 100 and 500 W / cm 3 . On average, it is 235 W / cm 3 .
  • the lamps were each operated on an electronic ballast with rectangular current injection in a regulated power mode with I eff ⁇ 1.8 A.
  • the lamp is a metal halide lamp 18 with 70 W power, which is squeezed on one side, and also the discharge vessel 19 is a quartz glass bulb squeezed on one side. Details Details of this can be found, for example, in US Pat. No. 4,717,852. Otherwise correspond to the same reference numerals for analog components as in FIG. 1. A getter 17 is also accommodated in the outer bulb 1.
  • a neutral white filling was used on the basis of voltage gradient formers that form easily evaporable halides (AlJ 3 , SnJ 4 , HfJ 4 ) and that approximate the voltage gradient of Hg.
  • An Xe filling of 800 mbar was used as the starting gas.
  • HfJ 4 filling shows the strongest voltage gradient due to its high vapor pressure, while AIJ 3 (symbolized as ⁇ ) and SnJ 4 (symbolized as ⁇ ) show approximately the same behavior, even with different dosage amounts.
  • the lamps according to the invention should preferably be operated with a rectangular electronic ballast in which the edges of the rectangular pulse are so steep (approximately 10 to 50 ⁇ sec) that no noticeable re-ignition peaks occur. Then, for example, the SnJ 4 dosage (11 mg) lowers the operating voltage from 92.8 V to 78.0 V, that is to say by 14.9 V (symbolized as a large ⁇ in FIG. 4). The associated re-ignition peak, which still had a value of 329 V during KVG operation, disappears almost completely (symbolized as a small ⁇ in FIG. 4).
  • the lamps initially only after taking over the discharge arc have a burning voltage of approx. 20 V (because no halides have yet evaporated are, the power at the KVG is only about 25-30 W, because the choke limited the current to just over 1 A. With this low performance the lamp remains so cold that the halides cannot evaporate and the lamp gets stuck in the start-up phase. For measurements at the KVG the lamp current was therefore started up by means of a control choke almost 2 A increased. This is sufficient for the evaporation of the halides then causes an increase in the burning voltage, so that the current again can be withdrawn.
  • argon with a cold filling pressure of 150 mbar was used as the starting gas.
  • the voltage gradient formers AlJ 3 and SnJ 4 light additions of DyJ 3 and TmJ 3 (0.27 mg each) and TlJ (0.1 mg) and NaJ (0.4 mg) were used to reduce the emission to strengthen in the visible spectral region.
  • the DyJ 3 is used as an additive to the AlJ 3 to achieve a better emission in the red.
  • the TmJ 3 is used as an addition to the SnJ 4 to increase the emission in the blue and green.
  • the AlJ 3 / DyJ 3 / NaJ / TIJ system achieved an operating voltage of 64.1 V.
  • a very similar filling was used for a metal halide lamp with a ceramic discharge vessel.
  • the filling consists of 5 mg AlJ 3 as a voltage gradient and the light formers DyJ 3 , TmJ 3 , TlJ, NaJ.
  • the ceramic discharge vessel has a volume of 0.3 cm 3 and an electrode spacing of 9 mm. 51.2 V operating voltage was achieved with a very high luminous flux of 5 klm.
  • Figure 5 is another embodiment of an inventive Metal halide lamp 20 shown with a power of 70 W.
  • Figure 5a and 5b each show side views rotated by 90 °
  • FIG. 5c shows a view of FIG above.
  • FIG. 5d shows a section through a lamp corresponding to FIG. 5c.
  • the holding frame 23 is also on the foils 24a, 24b of the outer bulb 25 squeezed on one side attached to a G12 ceramic base.
  • the squeeze-close implementation 26 is via a short angled power supply 27 with one Foil 24a connected.
  • the pinch-free bushing 28 is over a Conductor system with double symmetry and a short power supply 36 connected to the other film 24b.
  • the conductor system consists of one semicircular arch 30, the level of the crushing implementation 26 in a plane transverse to the lamp axis on the inside of the wall of the outer bulb is led.
  • connection bow 32 which in a including the lamp axis Level lies and at the end 29 of the outer bulb which is distant from the squeeze is connected.
  • the connecting arch is in the apex 32 welded to the pinch-free bushing 28. This is with its end in a channel 35 at the tip of the rounded end 29 anchored.
  • a typical value for current 1 is 1 to 2 A.
  • the force deflecting the discharge arc is proportional to I 2 and the effective length l of the return, which corresponds to the length of the arc, and inversely proportional to the distance r between the return and discharge arc: K ⁇ F (f) ⁇ I 2 ⁇ l r
  • the returns (31; 38) with sleeves 39 made of suitable ones are advantageous Materials (quartz stocking, ceramic tube) coated in a manner known per se to avoid photo effects from UV radiation. More than four Returns (four-fold symmetry) lead to a noticeable Shading and are therefore, especially for cost reasons, less suitable.
  • FIG 6 is a corresponding section through a lamp with three Symmetry shown.
  • the three returns 38 decrease according to Eq. (1) the magnetic force to a ninth, compared to the magnetic By force of a single repatriation. They run at the end of the ceramic remote from the base Discharge vessel in a star shape for the metallic feedthrough together.
  • the returns 38 are from ceramic sleeves 39 for Shield surrounded by UV radiation.
  • the mercury-free filling for the lamp of FIGS. 5 and 6 consists of the voltage gradient formers InBr (2 mg) and TlJ and contains the filling MHS 8-6 (5 mg), see Table 3.
  • 1 mg elemental indium is added. It has been found that the addition of elemental metal further reduces the re-ignition peak.
  • the electrode gap is 9 mm.
  • the discharge volume is 0.3 cm 3 . The behavior regarding the reignition peak was investigated in detail on this system.
  • the lamp voltage (in V) is a function of time (in milliseconds ms).
  • the lamp was at a frequency of each 120 Hz either a sinusoidal AC voltage (curve A) or a rectangular AC voltage (curves B to E) is impressed.
  • the amplitude of the operating voltage in the first half-wave is approximately 65 V.
  • the corresponding voltage change rates can be calculated from FIG. 8, where the reignition peak voltage (in V) as a function of time the voltage change (in ⁇ s) is specified.
  • the Voltage change rate is to be noted that in each case to the specified Measured value of the peak voltage in the area of the re-ignition peak or Base value of the burning voltage (denoted by x) from the previous one Half period (approx. -65 V) must be added.
  • curve A correspond to a voltage change rate of 0.25 V / ⁇ s, this value is significantly higher for rectangular operation.

Landscapes

  • Discharge Lamp (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glass Compositions (AREA)

Claims (22)

  1. Lampe aux halogénures métalliques ayant un rendement lumineux d'au moins 75 lm/W et un indice de rendu des couleurs d'au moins 75, destinée à fonctionner sur un ballast électronique donnant une tension alternative, qui donne un changement de polarité à une vitesse de variation de la tension d'au moins 0,3 V/µs, la lampe comprenant une enceinte de décharge dans laquelle des électrodes sont introduites d'une manière étanche au vide et l'enceinte de décharge contenant comme atmosphère au moins un halogénure métallique et un gaz tampon qui agit aussi en tant que gaz d'amorçage pour l'amorçage de la lampe, ce gaz d'amorçage étant un gaz rare ou un mélange de gaz rares, caractérisée en ce que
    l'atmosphère est sans mercure et l'atmosphère d'halogénures métalliques comprend les constituants suivants :
    un agent de formation d'un gradient de tension, constitué d'au moins un halogénure métallique qui s'évapore facilement, l'agent donnant un gradient de tension étant au moins un halogénure, à l'exception d'un fluorure, des métaux suivants : Al, Bi, Hf, In, Mg, Sc, Sn, TI, Zr, Zn, Sb, Ga, dans lequel l'agent donnant un gradient de tension est présent dans l'enceinte de décharge en une quantité de 1 à 200 µmoles/cm3 ;
    un agent donnant de la lumière, constitué d'au moins un halogénure métallique et/ou d'un métal, l'agent donnant de la lumière étant au moins l'un des métaux suivants ou un composé de ces métaux, notamment un de leurs halogénures : Na, Pr, Nd, Ce, La, Dy, Ho, TI, Sc, Hf, Zr, Tm, l'agent donnant de la lumière étant présent dans l'enceinte de décharge en une quantité comprise entre 1 et 30 mg/cm3 ;
    le gradient de tension de la lampe étant en fonctionnement de 45 V/cm.
  2. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que l'agent donnant un gradient de tension est un iodure métallique et/ou un bromure métallique ayant, notamment, une pression de remplissage en fonctionnement d'au moins 0,5 bar.
  3. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que le gaz d'amorçage a une pression de remplissage à froid d'au moins 1 mbar.
  4. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que le gradient de tension correspond à peu près à celui du mercure.
  5. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que l'atmosphère contient des additifs supplémentaires pour améliorer les propriétés electriques de la lampe et pour influer sur le profil de température de l'arc, notamment des halogénures métalliques ayant des énergies d'excitation ou d'ionisation qui sont basses.
  6. Lampe aux halogénures métalliques suivant la revendication 5, caractérisée en ce que les additifs supplémentaires contiennent du césium et éventuellement du lithium, le lithium n'étant utilisé que dans le cas où l'atmosphère n'a pas de sodium.
  7. Lampe aux halogénures métalliques suivant la revendication 5, caractérisée en ce que la proportion des additifs supplémentaires est de l'ordre de grandeur de 5 à 50 % en mole par rapport à la proportion de l'agent donnant de la lumière.
  8. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que l'atmosphère contient des métaux élémentaires (en excès) qui diminuent les pointes de réamorçage, notamment en une quantité comprise entre 1 et 10 mg/cm3.
  9. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que l'atmosphère contient du Ta ou du In élémentaire.
  10. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que l'enceinte de décharge est en céramique.
  11. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que du zinc élémentaire est contenu en tant qu'agent donnant un gradient de tension.
  12. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que la puissance de la lampe est au maximum de 250 W.
  13. Lampes aux halogénures métalliques suivant la revendication 1, caractérisée en ce que l'enceinte de la lampe est entourée d'une ampoule extérieure mise sous vide.
  14. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que la température de couleur de la lampe est comprise entre 2 800 et 4 600 K.
  15. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que la température de couleur de la lampe est d'environ 5 300 K.
  16. Lampe aux halogénures métalliques suivant la revendication 1, caractérisée en ce que l'enceinte(21)de décharge est fixée dans une ampoule (25) extérieure à pincement d'un côté au moyen d'une monture (23) de maintien, la monture de maintien ayant une entrée (31, 38) de courant de retour, de symétrie au moins binaire.
  17. Lampe aux halogénures métalliques suivant la revendication 16, caractérisée en ce que la monture (23) de maintien a un système de conducteur de retour constitué d'au moins trois entrées (38) de courant, qui sont disposées symétriquement.
  18. Système d'éclairage comprenant une lampe aux halogénures métalliques suivant l'une des revendications précédentes et un ballast électronique qui donne une tension alternative, caractérisé en ce que le ballast électronique de la lampe donne une variation de la tension pendant le changement de polarité à une vitesse de variation de la tension d'au moins 0,3 V/µs, de préférence d'au moins 1 V/µs.
  19. Système d'éclairage suivant la revendication 18, caractérisé en ce que le ballast électronique de la lampe imprime une alimentation en courant rectangulaire.
  20. Système d'éclairage suivant la revendication 18, caractérisé en ce que le ballast électronique maintient constante la puissance en fonctionnement.
  21. Système d'éclairage suivant la revendication 18, caractérisé en ce que la durée de la variation de tension pendant un changement de polarité est si courte que la pointe de réamorçage est fortement supprimée, ce laps de temps étant notamment inférieur à 1 000 µs, de préférence inférieur à 100 µs.
  22. Système d'éclairage suivant la revendication 21, caractérisé en ce que la variation de tension est réalisée dans le front d'une impulsion rectangulaire.
EP98111187A 1997-07-21 1998-06-18 Lampe à halogenures Expired - Lifetime EP0903770B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19731168A DE19731168A1 (de) 1997-07-21 1997-07-21 Beleuchtungssystem
DE19731168 1997-07-21

Publications (3)

Publication Number Publication Date
EP0903770A2 EP0903770A2 (fr) 1999-03-24
EP0903770A3 EP0903770A3 (fr) 1999-04-07
EP0903770B1 true EP0903770B1 (fr) 2004-08-18

Family

ID=7836341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98111187A Expired - Lifetime EP0903770B1 (fr) 1997-07-21 1998-06-18 Lampe à halogenures

Country Status (7)

Country Link
US (1) US6069456A (fr)
EP (1) EP0903770B1 (fr)
JP (1) JP4335332B2 (fr)
AT (1) ATE274236T1 (fr)
CA (1) CA2243737C (fr)
DE (2) DE19731168A1 (fr)
HU (1) HU221394B1 (fr)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653801B1 (en) * 1979-11-06 2003-11-25 Matsushita Electric Industrial Co., Ltd. Mercury-free metal-halide lamp
JPH11238488A (ja) 1997-06-06 1999-08-31 Toshiba Lighting & Technology Corp メタルハライド放電ランプ、メタルハライド放電ランプ点灯装置および照明装置
DE19857585A1 (de) * 1998-12-14 2000-06-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe
WO2000045419A1 (fr) * 1999-01-28 2000-08-03 Koninklijke Philips Electronics N.V. Lampe a halogenure de metal
US6166495A (en) * 1999-04-14 2000-12-26 Osram Sylvania Inc. Square wave ballast for mercury free arc lamp
US6392346B1 (en) * 1999-04-14 2002-05-21 Osram Sylvania Inc. Chemical composition for mercury free metal halide lamp
US6731069B1 (en) * 1999-04-14 2004-05-04 Osram Sylvania Inc. Mercury-free metal halide arc lamps
DE19923237A1 (de) * 1999-05-20 2000-11-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung, zugeordnetes elektrisches System sowie Entladungslampe mit derartiger Schaltungsanordnung und Verfahren zu ihrem Betrieb
DE19937312A1 (de) 1999-08-10 2001-02-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Quecksilberfreie Metallhalogenidlampe
CN1174464C (zh) * 1999-11-11 2004-11-03 皇家菲利浦电子有限公司 高压气体放电灯
US6498429B1 (en) * 1999-11-15 2002-12-24 General Electric Company Sodium-xenon lamp with improved characteristics at end-of-life
JP3415533B2 (ja) * 2000-01-12 2003-06-09 エヌイーシーマイクロ波管株式会社 高圧放電灯
CA2406194A1 (fr) * 2000-04-14 2001-10-25 Macquarie Research Ltd. Procedes et systemes permettant d'emettre des rayonnements incoherents et utilisation associee
US6608444B2 (en) 2000-05-26 2003-08-19 Matsushita Electric Industrial Co., Ltd. Mercury-free high-intensity discharge lamp operating apparatus and mercury-free metal halide lamp
KR20010110200A (ko) 2000-06-06 2001-12-12 마츠시타 덴끼 산교 가부시키가이샤 고휘도 방전램프 및 고휘도 방전램프 점등장치
US6573656B2 (en) 2000-07-14 2003-06-03 Matsushita Electric Industrial Co., Ltd. High-pressure discharge lamp and method for producing the same
US6639343B2 (en) 2000-07-14 2003-10-28 Matsushita Electric Industrial Co., Ltd. Mercury-free metal halide lamp
CN1333547A (zh) * 2000-07-14 2002-01-30 松下电器产业株式会社 无水银金属卤化物灯
DE10044562A1 (de) * 2000-09-08 2002-03-21 Philips Corp Intellectual Pty Niederdruckgasentladungslampe mit quecksilberfreier Gasfüllung
EP1393347A1 (fr) * 2001-05-10 2004-03-03 Koninklijke Philips Electronics N.V. Lampe a decharge gazeuse haute pression
DE10129229A1 (de) * 2001-06-19 2003-01-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe
DE60206215T2 (de) * 2001-06-27 2006-05-04 Matsushita Electric Industrial Co., Ltd., Kadoma Metall-Halogen-Lampe
JP2003016998A (ja) * 2001-06-28 2003-01-17 Matsushita Electric Ind Co Ltd メタルハライドランプ
JP3990582B2 (ja) 2001-06-29 2007-10-17 松下電器産業株式会社 メタルハライドランプ
US6670765B2 (en) 2001-08-24 2003-12-30 Stanley Electric Co., Ltd. Mercury-free metal halide lamp, with contents and electric power control depending on resistance properties
JP2003151787A (ja) 2001-08-29 2003-05-23 Harison Toshiba Lighting Corp 高圧放電ランプ点灯装置および自動車用ヘッドライト装置
KR20030019167A (ko) * 2001-08-30 2003-03-06 마쯔시다덴기산교 가부시키가이샤 고압방전 램프 및 그 제조방법
JP3701222B2 (ja) * 2001-09-14 2005-09-28 松下電器産業株式会社 高圧放電ランプ及びこれを用いた高圧放電ランプシステム
JP2003100251A (ja) * 2001-09-27 2003-04-04 Koito Mfg Co Ltd 放電ランプ装置用水銀フリーアークチューブ
US6844676B2 (en) * 2001-10-01 2005-01-18 Koninklijke Philips Electronics N.V. Ceramic HID lamp with special frame wire for stabilizing the arc
DE10163584C1 (de) * 2001-11-26 2003-04-17 Philips Corp Intellectual Pty Verfahren und Vorrichtung zur Herstellung von Lampenkolben mit nicht-rotationssymmetrischer und/oder konkaver innerer und/oder äußerer Form
US6979958B2 (en) 2002-01-31 2005-12-27 Matsushita Electric Industrial Co., Ltd. High efficacy metal halide lamp with praseodymium and sodium halides in a configured chamber
DE10392144B4 (de) 2002-07-02 2010-06-10 Mitsubishi Denki K.K. Elektronisches Vorschaltgerät für Entladungslampen
JP2004063158A (ja) * 2002-07-25 2004-02-26 Koito Mfg Co Ltd 放電バルブ
DE10242740A1 (de) * 2002-09-13 2004-03-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe für Kraftfahrzeugscheinwerfer
US7215081B2 (en) * 2002-12-18 2007-05-08 General Electric Company HID lamp having material free dosing tube seal
US7839089B2 (en) * 2002-12-18 2010-11-23 General Electric Company Hermetical lamp sealing techniques and lamp having uniquely sealed components
US7132797B2 (en) * 2002-12-18 2006-11-07 General Electric Company Hermetical end-to-end sealing techniques and lamp having uniquely sealed components
AU2003286305A1 (en) * 2002-12-20 2004-07-14 Koninklijke Philips Electronics N.V. High-pressure gas discharge lamp
JP4342810B2 (ja) 2003-02-25 2009-10-14 ハリソン東芝ライティング株式会社 高圧金属蒸気放電ランプ点灯装置および自動車用前照灯装置
DE10312290A1 (de) 2003-03-19 2004-09-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe für Fahrzeugscheinwerfer
US20050104501A1 (en) * 2003-04-04 2005-05-19 Transworld Lighting, Inc. High efficiency gas discharge lamps
JP4317908B2 (ja) * 2003-11-07 2009-08-19 ハリソン東芝ライティング株式会社 自動車前照灯・赤外暗視装置兼用メタルハライドランプおよびメタルハライドランプ点灯装置
JP4086158B2 (ja) 2003-12-22 2008-05-14 株式会社小糸製作所 放電ランプ装置用水銀フリーアークチューブ
CN1918687A (zh) * 2004-02-12 2007-02-21 株式会社杰士汤浅 陶瓷金属卤化物灯、其使用方法及照明器具
DE102004024063A1 (de) * 2004-05-13 2005-12-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe
CN1957438A (zh) * 2004-05-27 2007-05-02 皇家飞利浦电子股份有限公司 包括放电维持化合物的低压放电灯
JP2006120599A (ja) * 2004-09-21 2006-05-11 Osram Melco Toshiba Lighting Kk 金属蒸気放電ランプおよび金属蒸気放電ランプ点灯装置
JP4488856B2 (ja) * 2004-09-27 2010-06-23 スタンレー電気株式会社 水銀フリーメタルハライドランプ
US7358666B2 (en) 2004-09-29 2008-04-15 General Electric Company System and method for sealing high intensity discharge lamps
WO2006046704A1 (fr) * 2004-10-29 2006-05-04 Toshiba Lighting & Technology Corporation Lampe d’halogénure de métal et équipement d’éclairage
US7256546B2 (en) * 2004-11-22 2007-08-14 Osram Sylvania Inc. Metal halide lamp chemistries with magnesium and indium
JP2008524792A (ja) * 2004-12-17 2008-07-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 多目的照明ユニット
US7825598B2 (en) * 2004-12-20 2010-11-02 General Electric Company Mercury-free discharge compositions and lamps incorporating Titanium, Zirconium, and Hafnium
US7847484B2 (en) * 2004-12-20 2010-12-07 General Electric Company Mercury-free and sodium-free compositions and radiation source incorporating same
US20060132043A1 (en) * 2004-12-20 2006-06-22 Srivastava Alok M Mercury-free discharge compositions and lamps incorporating gallium
US7944148B2 (en) * 2004-12-20 2011-05-17 General Electric Company Mercury free tin halide compositions and radiation sources incorporating same
JP2006244735A (ja) * 2005-02-28 2006-09-14 Toshiba Lighting & Technology Corp 高圧放電ランプおよび光学機器
US7245075B2 (en) * 2005-04-11 2007-07-17 Osram Sylvania Inc. Dimmable metal halide HID lamp with good color consistency
US7432657B2 (en) * 2005-06-30 2008-10-07 General Electric Company Ceramic lamp having shielded niobium end cap and systems and methods therewith
US7615929B2 (en) 2005-06-30 2009-11-10 General Electric Company Ceramic lamps and methods of making same
US7852006B2 (en) 2005-06-30 2010-12-14 General Electric Company Ceramic lamp having molybdenum-rhenium end cap and systems and methods therewith
ITTO20050585A1 (it) * 2005-08-23 2007-02-24 Space Cannon Vh Srl Lampada a scarica, in particolare alimentata da corrente continua
JP2007115652A (ja) * 2005-09-22 2007-05-10 Toshiba Lighting & Technology Corp 高圧放電ランプおよび照明装置
JP2007115653A (ja) * 2005-09-22 2007-05-10 Toshiba Lighting & Technology Corp 高圧放電ランプ、高圧放電ランプ点灯装置および照明装置
JP2007134086A (ja) * 2005-11-08 2007-05-31 Sony Corp 高圧放電ランプ
US20080224614A1 (en) * 2005-11-14 2008-09-18 Koninklijke Philips Electronics, N.V. Looped Frame Arc Tube Mounting Assembly for Metal Halide Lamp
US7378799B2 (en) * 2005-11-29 2008-05-27 General Electric Company High intensity discharge lamp having compliant seal
US7633228B2 (en) * 2005-11-30 2009-12-15 General Electric Company Mercury-free metal halide discharge lamp
DE102006048983A1 (de) 2006-10-17 2008-04-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Niederdruckentladungslampe
JP5045065B2 (ja) * 2006-11-06 2012-10-10 岩崎電気株式会社 セラミックメタルハライドランプ
US20080211971A1 (en) * 2007-01-08 2008-09-04 Luxim Corporation Color balancing systems and methods
US8299709B2 (en) * 2007-02-05 2012-10-30 General Electric Company Lamp having axially and radially graded structure
JP2010524167A (ja) * 2007-04-05 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無水銀高輝度ガス放電ランプ
US7868553B2 (en) * 2007-12-06 2011-01-11 General Electric Company Metal halide lamp including a source of available oxygen
US20090153053A1 (en) * 2007-12-18 2009-06-18 General Electric Company Low mercury ceramic metal halide lamp
US7777418B2 (en) * 2008-04-08 2010-08-17 General Electric Company Ceramic metal halide lamp incorporating a metallic halide getter
JP2009289518A (ja) * 2008-05-28 2009-12-10 Koito Mfg Co Ltd 自動車用水銀フリー放電バルブ
JP5242433B2 (ja) * 2009-01-29 2013-07-24 株式会社小糸製作所 放電ランプ装置用水銀フリーアークチューブ
DE102009009890A1 (de) * 2009-02-20 2010-08-26 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
DE102010039221A1 (de) * 2010-08-11 2012-02-16 Osram Ag Verfahren zum Betreiben einer Hochdruckentladungslampe außerhalb ihres nominalen Leistungsbereiches
US8497633B2 (en) 2011-07-20 2013-07-30 General Electric Company Ceramic metal halide discharge lamp with oxygen content and metallic component
JP5874589B2 (ja) * 2012-09-18 2016-03-02 岩崎電気株式会社 セラミックメタルハライドランプ
RU208591U1 (ru) * 2020-12-02 2021-12-24 Игорь Георгиевич Рудой Газоразрядная лампа ультрафиолетового диапазона спектра

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU172230B (hu) * 1976-04-07 1978-07-28 Egyesuelt Izzolampa Razrjadnyj istochnik sveta vysokogo davlenija s metallo-galogennoj dobavkoj
DE2909605A1 (de) * 1979-03-12 1980-09-25 Patra Patent Treuhand Vorschaltanordnung zum betreiben einer entladungslampe
US4373146A (en) * 1980-10-20 1983-02-08 Gte Products Corporation Method and circuit for operating discharge lamp
US4647821A (en) * 1984-09-04 1987-03-03 Gte Laboratories Incorporated Compact mercury-free fluorescent lamp
JPH03152852A (ja) * 1989-11-08 1991-06-28 Matsushita Electric Works Ltd 高輝度放電ランプ及び無電極放電灯装置
JPH04303549A (ja) * 1991-03-30 1992-10-27 Toshiba Lighting & Technol Corp 高周波点灯式放電ランプ
DE4132530A1 (de) * 1991-09-30 1993-04-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe kleiner leistung
US5491387A (en) * 1992-06-29 1996-02-13 Kansei Corporation Discharge lamp lighting circuit for increasing electric power fed in initial lighting of the lamp
EP0609477B1 (fr) * 1993-02-05 1999-05-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Enceinte céramique à décharge pour lampe à décharge à haute pression et sa méthode de fabrication et matériau d'étanchéité associé
KR950001852A (ko) * 1993-06-01 1995-01-04 에프.제이.스미트 고압금속 할로겐 램프
US5323090A (en) * 1993-06-02 1994-06-21 Lestician Ballast, Inc. Lighting system with variable control current sensing ballast
DE4334074A1 (de) * 1993-10-06 1995-04-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidentladungslampe
TW323379B (fr) * 1994-01-18 1997-12-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh
US5565741A (en) * 1994-03-16 1996-10-15 Osram Sylvania Inc. Method of operating a neon discharge lamp particularly useful on a vehicle
CN1118854C (zh) * 1996-03-22 2003-08-20 皇家菲利浦电子有限公司 高压金属卤化物灯

Also Published As

Publication number Publication date
US6069456A (en) 2000-05-30
EP0903770A3 (fr) 1999-04-07
EP0903770A2 (fr) 1999-03-24
HU221394B1 (en) 2002-09-28
CA2243737A1 (fr) 1999-01-21
JPH1186795A (ja) 1999-03-30
HUP9801641A2 (hu) 1999-04-28
DE19731168A1 (de) 1999-01-28
HUP9801641A3 (en) 2001-02-28
HU9801641D0 (en) 1998-09-28
JP4335332B2 (ja) 2009-09-30
CA2243737C (fr) 2006-11-28
ATE274236T1 (de) 2004-09-15
DE59811826D1 (de) 2004-09-23

Similar Documents

Publication Publication Date Title
EP0903770B1 (fr) Lampe à halogenures
EP0834905B1 (fr) Lampe haute pression au sodium de faible puissance
EP0314732B1 (fr) Lampe a decharge xenon a arc court
DE10354868B4 (de) Quecksilber-freie Bogenentladungsröhre für eine Entladungslampeneinheit
DE1940539C3 (de) Quecksilberdampf-Hochdruckentladungslampe mit Zusatz von Halogeniden der Seltenen Erden
DE1464181B2 (de) Elektrische hochdruck dampfentladungslampe
EP0733266A1 (fr) Procede permettant de faire fonctionner une source de rayonnenent a emission incoherente
DE19857585A1 (de) Metallhalogenidlampe
DE19801485A1 (de) Halogen-Metalldampflampe
DE1589171B1 (de) Natriumdampflampe hoher intensitaet mit quecksilber
DE10243867A1 (de) Quecksilberfreie Bogenentladungsröhre für Entladungslampeneinheit
DE2359138A1 (de) Quecksilber-metallhalogenid-entladungslampen
DE2930328C2 (de) Verwendung eines Zündgases aus einer Penning-Mischung
DE2422411A1 (de) Hochdruckquecksilberdampfentladungslampe
EP2499657B1 (fr) Lampe à décharge haute pression sans mercure et à teneur réduite en halogénures de zinc
EP2347430B1 (fr) Lampe à décharge sans mercure
EP2147456B1 (fr) Lampe à décharge haute pression et phare de véhicule automobile avec lampe à décharge haute pression
DE10209424A1 (de) Quecksilber-Kurzbogenlampe
DE2461568A1 (de) Dampfentladungslampe
DE1639113B1 (de) Dampfentladungslampe fuer photochemische Zwecke
DE3044121A1 (de) Natriumhochdrucklampe
EP0334355B1 (fr) Lampe à décharge à haute pression à paroi stabilisée
DE1464181C (de) Elektrische Hochdruck Dampfentladungs lampe
DE748762C (de) Elektrische Hochdruckentladungslampe mit flachem Entladungsrohr
DE69333340T2 (de) Bogenentladungslampenröhre und Verfahren zur Herstellung einer Bogenentlandungslampenröhre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990505

AKX Designation fees paid

Free format text: AT BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20021030

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METAL HALIDE LAMP

RTI1 Title (correction)

Free format text: METAL HALIDE LAMP

RTI1 Title (correction)

Free format text: METAL HALIDE LAMP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59811826

Country of ref document: DE

Date of ref document: 20040923

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041209

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060517

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060912

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110630

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110617

Year of fee payment: 14

Ref country code: GB

Payment date: 20110613

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110627

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110819

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110713

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59811826

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20120630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120618

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59811826

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59811826

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120618

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101