EP0900333A1 - Elektromagnetisch betätigbares ventil - Google Patents

Elektromagnetisch betätigbares ventil

Info

Publication number
EP0900333A1
EP0900333A1 EP98902943A EP98902943A EP0900333A1 EP 0900333 A1 EP0900333 A1 EP 0900333A1 EP 98902943 A EP98902943 A EP 98902943A EP 98902943 A EP98902943 A EP 98902943A EP 0900333 A1 EP0900333 A1 EP 0900333A1
Authority
EP
European Patent Office
Prior art keywords
closing body
valve
armature
longitudinal bore
valve according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98902943A
Other languages
English (en)
French (fr)
Other versions
EP0900333B1 (de
Inventor
Clemens Willke
Jürgen GRANER
Dieter Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0900333A1 publication Critical patent/EP0900333A1/de
Application granted granted Critical
Publication of EP0900333B1 publication Critical patent/EP0900333B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • F02M51/0657Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/90Electromagnetically actuated fuel injector having ball and seat type valve

Definitions

  • the invention relates to an electromagnetically actuated valve according to the preamble of the main claim.
  • An electromagnetically actuated valve is already known from DE-PS 38 31 196, in which a valve needle is formed from an armature, a tubular connecting part and a spherical valve closing body.
  • the armature and the valve closing body are connected to one another via the tubular connecting part, the connecting part with which the valve closing body is firmly connected by means of a weld seam serving as the direct closing body carrier.
  • the connecting part has a multiplicity of flow openings through which fuel exit from an inner through opening and outside of the
  • Connection part can flow to the valve closing body or to a valve seat surface interacting with the valve closing body.
  • the connecting pipe has a longitudinal slot running over the entire length, through which fuel can flow very quickly coming from the inner through opening due to its large hydraulic flow cross section. The Most of the fuel to be sprayed flows out of the connecting part over the length of the connecting part, while a small remaining amount only emerges from the connecting part at the ball surface.
  • an electromagnetically actuated injection valve which has a valve needle, the closing body carrier serving as a connecting part is formed from plastic.
  • the spherical valve closing body and the closing body carrier are firmly connected to one another by a snap connection.
  • a plurality of transverse openings are provided in the closing body support, through which fuel can emerge from an inner opening upstream of the valve closing body. The fuel subsequently flows outside of the closing body carrier in the direction of a valve seat surface, wherein it flows through flow channels formed on the outer circumference of the closing body carrier shortly before the valve seat surface.
  • the electromagnetically actuated valve according to the invention with the characterizing features of the main claim has the advantage that it can be produced inexpensively in a particularly simple manner. It is particularly advantageous that an extremely simple and inexpensive connection between a closing body carrier and a spherical valve closing body can be achieved.
  • the closing body carrier is in an end region for reaching around formed of the valve closing body in such a way that it forms one or more channels directly on the surface of the valve closing body, through which fuel can flow unhindered coming from an inner longitudinal bore towards a valve seat surface.
  • Optimal inflow to the metering area of the valve is achieved with little manufacturing effort.
  • the armature itself can serve directly as a closing body carrier, so that a two-part valve needle is present together with the valve closing body.
  • a valve needle is particularly simple and inexpensive to manufacture and, due to the reduced number of parts, has only a single connection point.
  • the longitudinal bore of the armature is advantageously designed with flow arms which merge directly into the channels in the end region of the closing body carrier. Especially such flow arms and the channels can be effectively shaped by means of spaces.
  • the anchor can advantageously be designed as a cold-pressed part.
  • a connecting part serving as a closing body support can also be extruded.
  • the channel-forming recesses can be formed very easily. The recesses no longer have to be deburred.
  • the armature can advantageously be designed as a sintered part or MIM part.
  • FIG. 1 shows a first electromagnetically actuated valve according to the invention
  • FIG. 2 shows a first exemplary embodiment of a valve needle
  • FIG. 3 shows a section through the valve needle according to FIG. 2 along the line III-III
  • FIG. 4 shows a second
  • Embodiment of a valve needle and Figure 5 shows a third embodiment of a valve needle.
  • the electromagnetically actuated valve according to the invention in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines, shown by way of example and partially in simplified form in FIG. 1, has a largely tubular core 2 surrounded by a magnetic coil 1, serving as the inner pole and partially as fuel flow an upper, disk-shaped cover element 3, the core 2 enables a particularly compact structure of the injection valve in the region of the Magnetic coil 1.
  • the magnetic coil 1 is surrounded by an outer, ferromagnetic valve jacket 5 as the outer pole, which completely surrounds the magnetic coil 1 in the circumferential direction and at its upper end firmly with the cover element 3 z. B. is connected by a weld 6.
  • valve jacket 5 is designed stepped at its lower end, so that a guide section 8 is formed, which axially encloses the magnet coil 1 similar to the cover element 3 and which represents the boundary of the magnet coil region 1 downwards or in the downstream direction .
  • the guide section 8 of the valve jacket 5, the magnet coil 1 and the cover element 3 form an inner opening 11 or 58, which extends concentrically to a longitudinal valve axis 10 and in which an elongated sleeve 12 extends.
  • An inner longitudinal opening 9 of the ferritic sleeve 12 partially serves as a guide opening for a valve needle 13 that is axially movable along the longitudinal axis 10 of the valve.
  • the sleeve 12 is therefore made to precise dimensions with respect to the inner diameter of the inner opening 9.
  • the sleeve 12 ends viewed in the downstream direction, for example in the region of the guide section 8 of the valve jacket 5, with which it is fixedly connected, for example, with a weld seam 54.
  • the fixed core 2 is also arranged in the longitudinal opening 9 of the sleeve 12.
  • the sleeve 12 also fulfills a sealing function, so that a dry magnet coil 1 is present in the injection valve. This is also achieved in that the disc-shaped cover element 3 completely covers the magnet coil 1 on its upper side.
  • the inner opening 58 in the cover element 3 allows the sleeve 12 and thus also the core 2 to be elongated, so that both Components protrude beyond the cover element 3 through the opening 58.
  • a valve seat body 14 adjoins the lower guide section 8 of the valve jacket 5 and has a fixed valve seat surface 15 as a valve seat.
  • the valve seat body 14 is fixedly connected to the valve jacket 5 by means of a second weld 16, for example generated by a laser.
  • the valve needle 13 is formed by a tubular armature 17 and a spherical one
  • Valve closing body 18 is formed, the armature 17 serving directly as a closing body carrier.
  • the armature 17 serving directly as a closing body carrier.
  • On the downstream end face of the valve seat body 14 is, for. B. in a recess 19 a flat spray plate 20, the fixed connection of
  • Valve seat body 14 and spray plate 20 z. B. is realized by a circumferential dense weld 21.
  • the tubular armature 17 is fixedly connected at its downstream end facing the spray orifice plate 20 to the spherical valve closing body 18, for example by flanging, grooves or channels being provided in the connection area, so that fuel flowing through the armature 17 in an inner longitudinal bore 23 comes out and can flow directly along the valve closing body 18 to the valve seat surface 15.
  • the injection valve is actuated electromagnetically in a known manner.
  • the electromagnetic circuit with the solenoid 1, the inner core 2, the outer valve jacket 5 and the armature 17 is used for the axial movement of the valve needle 13 and thus for opening against the spring force of a return spring 25 or closing the injection valve.
  • the armature 17 is connected to the the valve closing body 18 facing away from the core 2.
  • the spherical valve closing body 18 interacts with the valve seat surface 15 of the valve seat body 14 which tapers in the shape of a truncated cone and is formed in the axial direction downstream of a guide opening 26 in the valve seat body 14.
  • the spray plate 20 has at least one, for example four, spray openings 27 formed by erosion or stamping.
  • the insertion depth of the core 2 in the injection valve is, among other things, decisive for the stroke of the valve needle 13.
  • the one end position of the valve needle 13 when the solenoid coil 1 is not energized is determined by the valve closing body 18 bearing against the valve seat surface 15 of the valve seat body 14, while the other The end position of the valve needle 13 when the solenoid coil 1 is excited results from the contact of the armature 17 at the downstream end of the core 2.
  • the stroke is adjusted by axially displacing the core 2 in the sleeve 12, which is subsequently firmly connected to the sleeve 12 in accordance with the desired position, laser welding being useful for achieving a weld seam 22.
  • an adjusting sleeve 29 is inserted into a flow bore 28 of the core 2, which runs concentrically with the valve longitudinal axis 10 and serves to supply the fuel in the direction of the valve seat surface 15.
  • the adjusting sleeve 29 is used to adjust the spring preload of the return spring 25 abutting the adjusting sleeve 29, which in turn is supported with its opposite side on the armature 17, the dynamic injection quantity also being adjusted using the adjusting sleeve 29.
  • Such an injection valve is characterized by its particularly compact construction, so that a very small, Handy injection valve is formed, the valve jacket 5 of which, for example, has an outer diameter of only approximately 11 mm.
  • the components described so far form a preassembled independent assembly, which can be referred to as functional part 30.
  • the fully set and assembled functional part 30 has z. B. on an upper end face 32, for example, two contact pins 33 protrude. The electrical contacting of the magnetic coil 1 and thus its excitation takes place via the electrical contact pins 33, which serve as electrical connecting elements.
  • connection part (not shown) can be connected, which is distinguished above all by the fact that it comprises the electrical and the hydraulic connection of the injection valve.
  • a hydraulic connection between the connection part (not shown) and the functional part 30 is achieved in the fully assembled injection valve in that flow bores of both assemblies are brought together so that an unimpeded flow of fuel is ensured.
  • the connection part is mounted on the functional part 30, the part of the core 2 and the sleeve 12 projecting beyond the end face 32 can protrude into a flow bore of the connection part in order to increase the connection stability.
  • a sealing ring 36 is provided, which rests on the end face 32 of the cover 3, the sleeve 12.
  • the contact pins 33 serving as electrical connecting elements go with a secure electrical connection in the fully assembled valve corresponding electrical connecting elements of the connecting part.
  • Figure 2 shows the valve needle 13 on an enlarged scale compared to Figure 1.
  • the tubular armature 17 is designed as a turned part, which has a multi-step outer contour.
  • the inner longitudinal bore 23 in the armature 17 has a largely circular cross section, but the z. B. is interrupted after 120 ° in circumference, since three flow arms 44 extend from it.
  • the flow arms 44 introduced for example by broaching, run over the entire axial length of the armature 17.
  • the profiled inner contour of the armature 17 can be produced by means of so-called inner broaching, the broaching tool having a plurality of staggered cutting edges and a straight line
  • the inner longitudinal bore 23 has a conical shoulder 45, through which the longitudinal bore 23 widens in the downstream direction and which serves as a stop for the valve closing body 18.
  • an end region 46 of the armature 17 extends along the outer circumference of the spherical valve closing body 18, the flow arms 44 also ensuring corresponding interruptions in the end region 46.
  • the spherical valve closing body 18 has a spherical equator 48 running perpendicular to the longitudinal axis 10 of the valve, up to or over which the end region 46 extends as seen in the downstream direction.
  • At least one hemisphere and thus the radius of the spherical valve closing body 18 are encompassed by the armature 17.
  • the end region 46 has a larger outer diameter than the valve closing body 18.
  • the firm connection of the armature 17 serving as the closing body carrier and the valve closing body 18 is achieved, for example, by flanging or pressing or by pressing in and subsequent flanging, the encompassing region downstream of the ball equator 48 being one of them secure connection guaranteed.
  • the flow arms 44 of the longitudinal bore 23 merge in the region of the valve closing body 18 into narrow channels 49 which are open towards the circumference of the end region 46 and through which the fuel supplied in the longitudinal bore 23 and flowing along the spherical surface is passed in the direction of the valve seat surface 15.
  • FIG. 3 is a sectional view of a section along the
  • FIG. 4 shows a second exemplary embodiment of a valve needle 13, in which the parts that are the same or have the same effect as the exemplary embodiment shown in FIG. 2 are identified by the same reference numerals.
  • the valve needle 13 according to FIG. 4 is characterized by a slightly differently shaped inner longitudinal bore 23.
  • the anchor 17, now available as a cold pressed part, has a stepped longitudinal bore 23 which has a continuously circular cross section.
  • guide surfaces 40 and 41 are provided on the outer circumference of the armature, which serve to guide the valve needle 13.
  • the end region 46 of the armature 17 extends beyond the spherical equator 48 of the valve closing body 18 in the downstream direction.
  • At least one, for example three grooves or channels 49 are in turn formed in the end region 46, which have an axial extension component starting from the longitudinal bore 23 and through which the fuel flows in the direction of the valve seat surface 15.
  • the spherical valve closing body 18 is, for example, pressed into the longitudinal bore 23 of the armature 17 and / or fastened in the end region 46 by flanging.
  • FIG. 5 A further exemplary embodiment of a valve needle 13 is shown in FIG. 5.
  • the armature 17 and the valve closing body 18 are connected to one another via a sleeve-shaped connecting part 50. All connections on the valve needle 13 are made by means of non-integral joining processes.
  • the ferritic anchor 17, which is for example an extruded part, is, for. B. pressed onto the upstream end of the connecting part 50 with a central holding area 53.
  • An upper annular guide surface 40 for guiding the valve needle 13 during its axial movement results from the armature 17 having a dimensionally accurate
  • Ring leg 51 is formed.
  • connection area with the armature 17 there is, for example, also extruded but austenitic connection part 50 with at least one axially extending slot-shaped recess 52 provided by which the assembly of the armature 17 on the connecting part 50 is improved.
  • a guide ring 55 is pressed onto the outer circumference of the connecting part 50, which has an H-shaped cross section and has the lower guide surface 41 on its outer circumference.
  • the spherical valve closing body 18 is in turn firmly connected by pressing or flanging, but here not with the armature 17, but with the connecting part 50 which now serves as a closing body carrier.
  • the grooves or channels 49 required for the passage of fuel become open during the extrusion of the connecting part 50 cut out one or more times very easily.
  • the spherical valve closing body 18 is introduced into the downstream end of the longitudinal bore 23 supplying the fuel, with a conical shoulder 45 again serving as a stop.
  • the grooves or channels 49 or recesses 52 made during the extrusion of the connecting part 50 need not be deburred. Furthermore, no cuts are required on the valve closing body 18 for fuel to pass through, since coming from the longitudinal bore 23 it can flow freely through the channels 49 along the surface of the valve closing body 18.
  • closing body support 17, 50 As a turned part or cold pressed part, designs as a sintered part or MIM (metal injection molding) part are also possible.
  • MIM metal injection molding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Die Erfindung betrifft ein elektromagnetisch betätigbares Ventil, das eine axial bewegbare Ventilnadel (13) besitzt, die wenigstens einen Anker (17) und einen kugelförmigen Ventilschließkörper (18) umfaßt. Der Anker (17) bildet einen Schließkörperträger, der mit einem stromabwärtigen Endbereich (46) den Ventilschließkörper (18) aufnimmt. Dabei umgreift der Endbereich (46) den Ventilschließkörper (18) derart, daß wenigstens ein direkt mit einer Längsbohrung (23) des Ankers (17) in Verbindung stehender Kanal (49) an der Oberfläche des Ventilschließkörpers (18) gebildet ist. Das Ventil eignet sich besonders für den Einsatz in Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen.

Description

Elektromagnetisch betätigbares Ventil
Stand der Technik
Die Erfindung geht aus von einem elektromagnetisch betätigbaren Ventil nach der Gattung des Hauptanspruchs.
Es ist bereits ein elektromagnetisch betätigbares Ventil aus der DE-PS 38 31 196 bekannt, bei dem eine Ventilnadel aus einem Anker, einem rohrförmigen Verbindungsteil und einem kugelförmigen Ventilschließkörper gebildet ist. Über das rohrförmige Verbindungsteil sind der Anker und der Ventilschließkörper miteinander verbunden, wobei als unmittelbarer Schließkörperträger das Verbindungsteil dient, mit dem der Ventilschließkörper mittels einer Schweißnaht fest verbunden ist. Das Verbindungsteil weist eine Vielzahl von Strömungsöffnungen auf, durch die Brennstoff aus einer inneren Durchgangsöffnung hinaustreten und außerhalb des
Verbindungsteils bis zum Ventilschließkörper bzw. zu einer mit dem Ventilschließkörper zusammenwirkenden Ventilsitzfläche strömen kann. Außerdem weist das Verbindungsrohr einen über die gesamte Länge verlaufenden Längsschlitz auf, durch den aufgrund seines großflächigen hydraulischen Strömungsquerschnitts Brennstoff sehr schnell aus der inneren Durchgangsöffnung kommend strömen kann. Der größte Teil des abzuspritzenden Brennstoffs strömt bereits über die Länge des Verbindungsteils aus diesem heraus, während eine geringe Restmenge unmittelbar erst an der Kugeloberfläche aus dem Verbindungsteil austritt.
Aus der DE-OS 195 03 224 ist bereits ein elektromagnetisch betätigbares Einspritzventil bekannt, das eine Ventilnadel aufweist, deren als Verbindungsteil dienender Schließkörperträger aus Kunststoff ausgeformt ist. Der kugelförmige Ventilschließkörper und der Schließkörperträger sind dabei durch eine Schnappverbindung fest miteinander verbunden. Im Schließkörperträger sind mehrere Queröffnungen vorgesehen, durch die Brennstoff bereits stromaufwärts des Ventilschließkörpers aus einer inneren Öffnung austreten kann. Der Brennstoff strömt nachfolgend außerhalb des Schließkörperträgers entlang in Richtung zu einer Ventilsitzfläche, wobei er kurz vor der Ventilsitzfläche am äußeren Umfang des Schließkörperträgers ausgeformte Strömungskanäle durchströmt.
Hinlänglich bekannt ist es, wie auch der DE-OS 40 08 675 zu entnehmen ist, feste Verbindungen einzelner Bauteile von Ventilnadeln Stoffschlüssig, z. B. mittels Schweißnähten zu erzielen.
Vorteile der Erfindung
Das erfindungsgemäße elektromagnetisch betätigbare Ventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß es auf besonders einfache Art und Weise kostengünstig herstellbar ist. Von besonderem Vorteil ist dabei, daß eine äußerst einfache und kostengünstige Verbindung zwischen einem Schließkörperträger und einem kugelförmigen Ventilschließkörper erzielbar ist. Dabei ist der Schließkörperträger in einem Endbereich zum Umgreifen des Ventilschließkörpers derart ausgeformt, daß er einen oder mehrere Kanäle unmittelbar an der Oberfläche des Ventilschließkörpers bildet, durch die Brennstoff ungehindert von einer inneren Längsbohrung kommend in Richtung zu einer Ventilsitzfläche strömen kann. Mit geringem Fertigungsaufwand wird so eine optimale Zuströmung zum Zumeßbereich des Ventils erreicht. Gegenüber bekannten Ventilen entfallen einerseits Queröffnungen und Schlitze im Schließkörperträger und andererseits Anschliffe am Ventilschließkörper bzw. Durchströmnuten im Ventilsitzkörper.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen elektromagnetisch betätigbaren Ventils möglich.
Besonders vorteilhaft ist es, den Ventilschließkörper mittels eines nichtStoffschlüssigen Fügeverfahrens, z. B. mittels Einpressen oder Bördeln, am Schließkörperträger zu befestigen. Von Vorteil ist es dann, wenn der Endbereich des Schließkörperträgers in stromabwärtiger Richtung noch über einen Kugeläquator des kugelförmigen Ventilschließkörpers hinausragt .
In besonders vorteilhafter Weise kann der Anker unmittelbar selbst als Schließkörperträger dienen, so daß zusammen mit dem Ventilschließkörper eine zweiteilige Ventilnadel vorliegt. Eine solche Ventilnadel ist besonders einfach und kostengünstig herstellbar und weist durch die reduzierte Teileanzahl nur eine einzige Verbindungsstelle auf. In vorteilhafter Weise ist die Längsbohrung des Ankers mit Stromungsarmen ausgebildet, die unmittelbar in die Kanäle im Endbereich des Schließkörperträgers übergehen. Besonders effektiv sind solche Strömungsarme und die Kanäle mittels Räumen ausformbar.
In vorteilhafter Weise kann der Anker als Kaltpreßteil ausgeführt sein. Ebenso kann ein als Schließkörperträger dienendes Verbindungsteil fließgepreßt vorliegen. Beim Fließpressen lassen sich im Endbereich die Kanäle bildende Aussparungen sehr einfach ausbilden. Die Aussparungen müssen nicht mehr entgratet werden. In vorteilhafter Weise kann der Anker als Sinterteil oder MIM-Teil ausgebildet sein.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden
Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes erfindungsgemäßes elektromagnetisch betätigbares Ventil, Figur 2 ein erstes Ausführungsbeispiel einer Ventilnadel, Figur 3 einen Schnitt durch die Ventilnadel gemäß Figur 2 entlang der Linie III-III, Figur 4 ein zweites
Ausführungsbeispiel einer Ventilnadel und Figur 5 ein drittes Ausführungsbeispiel einer Ventilnadel.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielhaft und teilweise vereinfacht dargestellte, erfindungsgemäße elektromagnetisch betätigbare Ventil in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, f emdgezündeten Brennkraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als Innenpol und teilweise als Brennstoffdurchfluß dienenden weitgehend rohrförmigen Kern 2. Zusammen mit einem oberen, scheibenförmigen Abdeckelement 3 ermöglicht der Kern 2 einen besonders kompakten Aufbau des Einspritzventils im Bereich der Magnetspule 1. Die Magnetspule 1 ist von einem äußeren, ferromagnetischen Ventilmantel 5 als Außenpol umgeben, der die Magnetspule 1 in Umfangsrichtung vollständig umgibt und an seinem oberen Ende fest mit dem Abdeckelement 3 z. B. durch eine Schweißnaht 6 verbunden ist. Zum Schließen des magnetischen Kreises ist der Ventilmantel 5 an seinem unteren Ende gestuft ausgeführt, so daß ein Leitabschnitt 8 gebildet ist, der ähnlich dem Abdeckelement 3 die Magnetspule 1 axial umschließt und der die Begrenzung des Magnetspulenbereichs 1 nach unten hin bzw. in stromabwärtiger Richtung darstellt.
Der Leitabschnitt 8 des Ventilmantels 5, die Magnetspule 1 und das Abdeckelement 3 bilden eine innere, konzentrisch zu einer Ventillängsachse 10 verlaufende Öffnung 11 bzw. 58, in der sich eine langgestreckte Hülse 12 erstreckt. Eine innere Längsöffnung 9 der ferritischen Hülse 12 dient teilweise als Führungsöffnung für eine entlang der Ventillängsachse 10 axial bewegliche Ventilnadel 13. Die Hülse 12 ist deshalb bezüglich des Innendurchmessers der inneren Öffnung 9 maßgenau gefertigt. Die Hülse 12 endet in stromabwärtiger Richtung gesehen beispielsweise im Bereich des Leitabschnitts 8 des Ventilmantels 5, mit dem sie beispielsweise mit einer Schweißnaht 54 fest verbunden ist. Außer der axial beweglichen Ventilnadel 13 ist auch der feststehende Kern 2 in der Längsöffnung 9 der Hülse 12 angeordnet. Neben der Führung des Ankers 17 bzw. der Aufnahme des Kerns 2 erfüllt die Hülse 12 auch eine Abdichtfunktion, so daß im Einspritzventil eine trockene Magnetspule 1 vorliegt. Das wird auch dadurch erreicht, daß das scheibenförmige Abdeckelement 3 die Magnetspule 1 vollständig an ihrer oberen Seite überdeckt . Die innere Öffnung 58 im Abdeckelement 3 erlaubt es, die Hülse 12 und somit auch den Kern 2 verlängert auszubilden, so daß beide Bauteile die Öffnung 58 durchragend über das Abdeckelement 3 hinausstehen .
An den unteren Leitabschnitt 8 des Ventilmantels 5 schließt sich ein Ventilsitzkörper 14 an, der eine feste Ventilsitzfläche 15 als Ventilsitz auf eist. Der Ventilsitzkörper 14 ist mit einer beispielsweise mittels eines Lasers erzeugten zweiten Schweißnaht 16 fest mit dem Ventilmantel 5 verbunden. Die Ventilnadel 13 wird von einem rohrförmigen Anker 17 und einem kugelförmigen
Ventilschließkörper 18 gebildet, wobei der Anker 17 unmittelbar als Schließkörperträger dient. An der stromabwärtigen Stirnseite des Ventilsitzkörpers 14 ist z. B. in einer Vertiefung 19 eine flache Spritzlochscheibe 20 angeordnet, wobei die feste Verbindung von
Ventilsitzkörper 14 und Spritzlochscheibe 20 z. B. durch eine umlaufende dichte Schweißnaht 21 realisiert ist. Der rohrförmige Anker 17 ist an seinem stromabwärtigen, der Spritzlochscheibe 20 zugewandten Ende mit dem kugelförmigen Ventilschließkörper 18 beispielsweise durch Bördeln fest verbunden, wobei im Verbindungsbereich Nuten oder Kanäle vorgesehen sind, so daß den Anker 17 in einer inneren Längsbohrung 23 durchströmender Brennstoff nach außen treten und unmittelbar am Ventilschließkörper 18 entlang bis zur Ventilsitzfläche 15 strömen kann.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 13 und damit zum Öffnen entgegen der Federkraft einer Rückstellfeder 25 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem inneren Kern 2, dem äußeren Ventilmantel 5 und dem Anker 17. Der Anker 17 ist mit dem dem Ventilschließkörper 18 abgewandten Ende auf den Kern 2 ausgerichtet . Der kugelförmige Ventilschließkörper 18 wirkt mit der sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 15 des Ventilsitzkörpers 14 zusammen, die in axialer Richtung stromabwärts einer Führungsöffnung 26 im Ventilsitzkörper 14 ausgebildet ist. Die Spritzlochscheibe 20 besitzt wenigstens eine, beispielsweise vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 27.
Die Einschubtiefe des Kerns 2 im Einspritzventil ist unter anderem entscheidend für den Hub der Ventilnadel 13. Dabei ist die eine Endstellung der Ventilnadel 13 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 18 an der Ventilsitzfläche 15 des Ventilsitzkörpers 14 festgelegt, während sich die andere Endstellung der Ventilnadel 13 bei erregter Magnetspule 1 durch die Anlage des Ankers 17 am stromabwärtigen Ende des Kerns 2 ergibt. Die Hubeinstellung erfolgt durch ein axiales Verschieben des Kerns 2 in der Hülse 12, der entsprechend der gewünschten Position nachfolgend fest mit der Hülse 12 verbunden wird, wobei eine Laserschweißung zur Erzielung einer Schweißnaht 22 sinnvoll ist.
In eine konzentrisch zu der Ventillängsachse 10 verlaufende Strömungsbohrung 28 des Kerns 2, die der Zufuhr des Brennstoffs in Richtung der Ventilsitzfläche 15 dient, ist außer der Rückstellfeder 25 eine Einstellhülse 29 eingeschoben. Die Einstellhülse 29 dient zur Einstellung der Federvorspannung der an der Einstellhülse 29 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüberliegenden Seite am Anker 17 abstützt, wobei auch eine Einstellung der dynamischen Abspritzmenge mit der Einstellhülse 29 erfolgt.
Ein solches Einspritzventil zeichnet sich durch seinen besonders kompakten Aufbau aus, so daß ein sehr kleines, handliches Einspritzventil entsteht, dessen Ventilmantel 5 beispielsweise einen Außendurchmesser von nur ca. 11 mm aufweist. Die bisher beschriebenen Bauteile bilden eine vormontierte eigenständige Baugruppe, die als Funktionsteil 30 bezeichnet werden kann. Das fertig eingestellte und montierte Funktionsteil 30 weist z. B. eine obere Stirnfläche 32 auf, über die beispielsweise zwei Kontaktstifte 33 herausragen. Über die elektrischen Kontaktstifte 33, die als elektrische Verbindungselemente dienen, erfolgt die elektrische Kontaktierung der Magnetspule 1 und damit deren Erregung.
Mit einem solchen Funktionsteil 30 ist ein nicht dargestelltes Anschlußteil verbindbar, das sich vor allen Dingen dadurch auszeichnet, daß es den elektrischen und den hydraulischen Anschluß des Einspritzventils umfaßt. Eine hydraulische Verbindung von dem nicht dargestellten Anschlußteil und dem Funktionsteil 30 wird beim vollständig montierten Einspritzventil dadurch erreicht, daß Strömungsbohrungen beider Baugruppen so zueinander gebracht werden, daß ein ungehindertes Durchströmen des Brennstoffs gewährleistet ist. Dabei liegt dann z. B. die Stirnfläche 32 des Funktionsteils 30 unmittelbar an einer unteren Stirnfläche des Anschlußteils an und ist mit diesem fest verbunden. Bei der Montage des Anschlußteils auf dem Funktionsteil 30 kann der über die Stirnfläche 32 überstehende Teil des Kerns 2 und der Hülse 12 zur Erhöhung der Verbindungsstabilität in eine Strömungsbohrung des Anschlußteils hineinragen. Im Verbindungsbereich ist zur sicheren Abdichtung z. B. ein Dichtring 36 vorgesehen, der auf der Stirnfläche 32 des Abdeckelements 3 aufliegend die Hülse 12 umgibt . Die als elektrische Verbindungselemente dienenden Kontaktstifte 33 gehen im vollständig montierten Ventil eine sichere elektrische Verbindung mit korrespondierenden elektrischen Verbindungselementen des Anschlußteils ein.
Figur 2 zeigt die Ventilnadel 13 in einem gegenüber der Figur 1 vergrößerten Maßstab. Der rohrförmige Anker 17 ist als Drehteil ausgeführt, das eine mehrfach gestufte Außenkontur besitzt. Am äußeren Umfang des Ankers 17 sind beispielsweise zwei ringförmige Führungsflächen 40 und 41 ausgeformt, die einerseits der Führung der axial beweglichen Ventilnadel 13 in der Hülse 12 und andererseits der Führung im Ventilsitzkörper 14 dienen. Der beispielsweise aus einem ferritischen Material (Chromstahl) gefertigte Anker 17 weist eine obere, dem Kern 2 zugewandte Anschlagfläche 42 auf, die mit einer Verschleißschutzschicht versehen ist, z. B. verchromt ist .
Die innere Längsbohrung 23 im Anker 17 besitzt einen weitgehend kreisförmigen Querschnitt, der jedoch z. B. nach jeweils 120° im Umfang unterbrochen ist, da sich von ihr heraus drei Strömungsarme 44 erstrecken. Die beispielsweise durch Räumen eingebrachten Strömungsarme 44 verlaufen dabei über die gesamte axiale Länge des Ankers 17. Die profilierte Innenkontur des Ankers 17 kann mittels sogenannten Innenräumens erzeugt werden, wobei das Räumwerkzeug mehrere gestaffelte Schneiden aufweist und eine geradlinige
Schnittbewegung in der Längsbohrung 23 ausführt. An ihrem unteren, dem Ventilschließkörper 18 zugewandten Ende besitzt die innere Längsbohrung 23 eine konische Schulter 45, durch die sich die Längsbohrung 23 in stromabwärtiger Richtung erweitert und die als Anschlag für den Ventilschließkörper 18 dient. Von der Schulter 45 ausgehend erstreckt sich ein Endbereich 46 des Ankers 17 am Außenumfang des kugelförmigen Ventilschließkörpers 18 entlang, wobei die Strömungsarme 44 auch im Endbereich 46 für entsprechende Unterbrechungen sorgen. Der kugelförmige Ventilschließkörper 18 weist einen senkrecht zur Ventillängsachse 10 verlaufenden Kugeläquator 48 auf, bis zu dem sich oder über den sich der Endbereich 46 in stromabwärtiger Richtung gesehen hinweg erstreckt. Anders ausgedrückt wird also wenigstens eine Halbkugel und damit der Radius des kugelförmigen Ventilschließkörpers 18 vom Anker 17 umgriffen. Der Endbereich 46 besitzt einen größeren Außendurchmesser als der Ventilschließkörper 18. Die feste Verbindung von als Schließkörperträger dienendem Anker 17 und Ventilschließkörper 18 wird beispielsweise durch Bördeln oder Pressen bzw. durch Einpressen und nachfolgendes Bördeln erzielt, wobei vor allen Dingen der Umgreifungsbereich stromabwärts des Kugeläquators 48 eine sichere Verbindung gewährleistet. Die Strömungsarme 44 der Längsbohrung 23 gehen im Bereich des Ventilschließkörpers 18 in schmale, zum Umfang des Endbereichs 46 hin offene Kanäle 49 über, durch die der in der Längsbohrung 23 zugeführte und an der Kugeloberfläche entlangströmende Brennstoff in Richtung zur Ventilsitzfläche 15 weitergeleitet wird. Diese Kanäle 49 werden beispielsweise im gleichen Räumvorgang wie die Strömungsarme 44 ausgebildet. Diese Ausführung der Ventilnadel 13 ermöglicht ein sehr einfaches Zuströmen des Brennstoffs zum Zumeßbereich des Einspritzventils. Figur 3 ist eine Schnittdarstellung eines Schnittes entlang der
Linie III-III in Figur 2. Sie verdeutlicht hauptsächlich die Kontur der inneren Längsbohrung 23 im Anker 17 mit ihren drei jeweils um 120° ausgebildeten, radial nach außen verlaufenden Strömlingsarmen 44.
In der Figur 4 ist ein zweites Ausführungsbeispiel einer Ventilnadel 13 dargestellt, in dem die gegenüber dem in Figur 2 dargestellten Ausführungsbeispiel gleichbleibenden bzw. gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet sind. Die Ventilnadel 13 gemäß Figur 4 zeichnet sich durch eine etwas anders ausgeformte innere Längsbohrung 23 aus. Der nun als Kaltpreßteil vorliegende Anker 17 besitzt eine gestufte Längsbohrung 23, die einen durchgehend kreisförmigen Querschnitt aufweist. Am äußeren Umfang des Ankers sind wiederum Führungsflächen 40 und 41 vorgesehen, die der Führung der Ventilnadel 13 dienen. Ebenso erstreckt sich der Endbereich 46 des Ankers 17 über den Kugeläquator 48 des Ventilschließkörpers 18 in stromabwärtiger Richtung hinaus. Im Bereich der Schulter 45 beginnend sind im Endbereich 46 wiederum wenigstens eine, beispielsweise drei Nuten oder Kanäle 49 ausgeformt, die von der Längsbohrung 23 ausgehend eine axiale Erstreckungskomponente aufweisen und vom Brennstoff in Richtung zur Ventilsitzfläche 15 durchströmt werden. Der kugelförmige Ventilschließkörper 18 ist beispielsweise in die Längsbohrung 23 des Ankers 17 eingepreßt und/oder durch Bördeln im Endbereich 46 befestigt.
Ein weiteres Ausführungsbeispiel einer Ventilnadel 13 zeigt Figur 5. Bei diesem Ausführungsbeispiel der Ventilnadel 13 sind der Anker 17 und der Ventilschließkörper 18 über ein hülsenförmiges Verbindungsteil 50 miteinander verbunden. Alle Verbindungen an der Ventilnadel 13 sind dabei mittels nichtstoffschlüssiger Fügeverfahren hergestellt. Der ferritische Anker 17, der beispielsweise ein Fließpreßteil darstellt, ist z. B. auf das stromaufwärtige Ende des Verbindungsteils 50 mit einem zentralen Haltebereich 53 aufgepreßt. Eine obere ringförmige Führungsfläche 40 zur Führung der Ventilnadel 13 bei ihrer Axialbewegung ergibt sich dadurch, daß der Anker 17 mit einem maßgenauen
Ringschenkel 51 ausgeformt ist. Im Verbindungsbereich mit dem Anker 17 ist das beispielsweise ebenfalls fließgepreßte, jedoch austenitische Verbindungsteil 50 mit wenigstens einer sich axial erstreckenden schlitzförmigen Aussparung 52 versehen, durch die die Montage des Ankers 17 auf dem Verbindungsteil 50 verbessert wird.
Am stromabwärtigen Ende des Verbindungsteils 50 ist auf den äußeren Umfang des Verbindungsteils 50 ein Führungsring 55 aufgepreßt, der einen H-förmigen Querschnitt besitzt und die untere Führungsfläche 41 an seinem äußeren Umfang aufweist. Wie bereits beschrieben ist der kugelförmige Ventilschließkorper 18 wiederum durch Einpressen oder Bördeln fest verbunden, hier jedoch nicht mit dem Anker 17, sondern mit dem nun als Schließkörperträger dienenden Verbindungsteil 50. Die für den Brennstoffdurchtritt benötigten Nuten oder Kanäle 49 werden beim Fließpressen des Verbindungsteils 50 auf sehr einfache Weise einmal oder mehrfach ausgespart. Der kugelförmige Ventilschließkorper 18 ist auf Anschlag in das stromabwärtige Ende der den Brennstoff zuführenden Längsbohrung 23 eingebracht, wobei als Anschlag wiederum eine konische Schulter 45 dient. In vorteilhafter Weise müssen die beim Fließpressen des Verbindungsteils 50 eingebrachten Nuten oder Kanäle 49 bzw. Aussparungen 52 nicht entgratet werden. Des weiteren werden an dem Ventilschließkorper 18 keine Anschliffe zum Brennstoffdurchtritt benötigt, da dieser von der Längsbohrung 23 kommend an der Oberfläche des Ventilschließkörpers 18 entlang durch die Kanäle 49 ungehindert durchströmen kann.
Neben der Ausbildung des Schließkörperträgers 17, 50 als Drehteil oder Kaltpreßteil kommen auch Ausführungen als Sinterteil oder MIM(Metal Injection Moulding) -Teil in Frage.

Claims

Patentansprüche
1. Elektromagnetisch betätigbares Ventil, insbesondere Einspritzventil für Brennstoffeinspritzanlagen von
Brennkraftmaschinen, mit einer Ventillängsachse, mit einem von einer Magnetspule wenigstens teilweise umgebenen Kern, mit einer axial bewegbaren Ventilnadel, die wenigstens einen Schließkörperträger und einen kugelförmigen Ventilschließkorper umfaßt, wobei der Ventilschließkorper fest mit dem Schließkörperträger verbunden ist und mit einem festen Ventilsitz zusammenwirkt, und der Schließkörperträger eine innere Längsbohrung hat, die bis zur Oberfläche des Ventilschließkorpers verläuft, sowie einen stromabwärtigen Endbereich besitzt, der einen größeren Außendurchmesser als den Durchmesser des Ventilschließkorpers aufweist, dadurch gekennzeichnet, daß der Schließkörperträger (17, 50) den Ventilschließkorper (18) mit dem Endbereich (46) derart umgreift, daß wenigstens ein mit der Längsbohrung (23) in Verbindung stehender und eine axiale Erstreckungskomponente aufweisender Kanal (49) an der Oberfläche des Ventilschließkorpers (18) entlang gebildet ist, der sich bis zum Ende des Endbereichs (46) und dabei wenigstens bis zu einem Kugeläquator (48) des Ventilschließkorpers (18) in stromabwärtiger Richtung erstreckt.
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß der Ventilschließkorper (18) mittels Einpressen in der Längsbohrung (23) im Endbereich (46) des Schließkörperträgers (17, 50) befestigbar ist.
3. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß der Ventilschließkorper (18) mittels Bördeln in der Längsbohrung
(23) im Endbereich (46) des Schließkörperträgers (17, 50) befestigbar ist.
4. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schließkörperträger (17) als Anker ausgeführt ist.
5. Ventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein einen Anker (17) und den Ventilschließkorper (18) verbindendes Verbindungsteil (50) vorgesehen ist, das als Schließkörperträger dient.
6. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schließkörperträger (17, 50) in der Längsbohrung (23) eine Schulter (45) besitzt, die als Anschlag für den Ventilschließkorper (18) dient.
7. Ventil nach Anspruch 4, dadurch gekennzeichnet, daß in der Längsbohrung (23) des Ankers (17) mehrere Strömungsarme (44) vorgesehen sind, die in axialer Richtung unmittelbar in die Kanäle (49) übergehen.
8. Ventil nach Anspruch 7, dadurch gekennzeichnet, daß die Strömungsarme (44) und die Kanäle (49) mittels Räumen in dem Anker (17) ausformbar sind.
9. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß drei Kanäle (49) im Endbereich (46) vorgesehen sind.
10. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schließkörperträger (17, 50) ein Drehteil oder ein Kaltpreßteil darstellt.
11. Ventil nach einem der /Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Schließkörperträger (17, 50) ein Sinterteil oder ein MIM-Teil darstellt.
EP98902943A 1997-03-26 1998-01-09 Elektromagnetisch betätigbares ventil Expired - Lifetime EP0900333B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19712590 1997-03-26
DE19712590A DE19712590A1 (de) 1997-03-26 1997-03-26 Elektromagnetisch betätigbares Ventil
PCT/DE1998/000052 WO1998042976A1 (de) 1997-03-26 1998-01-09 Elektromagnetisch betätigbares ventil

Publications (2)

Publication Number Publication Date
EP0900333A1 true EP0900333A1 (de) 1999-03-10
EP0900333B1 EP0900333B1 (de) 2003-05-07

Family

ID=7824611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98902943A Expired - Lifetime EP0900333B1 (de) 1997-03-26 1998-01-09 Elektromagnetisch betätigbares ventil

Country Status (9)

Country Link
US (1) US6045116A (de)
EP (1) EP0900333B1 (de)
JP (1) JP2000511616A (de)
KR (1) KR20000015943A (de)
CN (1) CN1089856C (de)
BR (1) BR9804798A (de)
DE (2) DE19712590A1 (de)
ES (1) ES2199419T3 (de)
WO (1) WO1998042976A1 (de)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19744739A1 (de) * 1997-10-10 1999-04-15 Bosch Gmbh Robert Brennstoffeinspritzventil
US6199776B1 (en) * 1997-11-22 2001-03-13 Robert Bosch Gmbh Fuel injection valve and method for the production of a valve needle for a fuel injection valve
US6047907A (en) 1997-12-23 2000-04-11 Siemens Automotive Corporation Ball valve fuel injector
DE19855568A1 (de) 1998-12-02 2000-06-08 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19900406A1 (de) 1999-01-08 2000-07-13 Bosch Gmbh Robert Brennstoffeinspritzventil
US6409102B1 (en) * 1999-03-15 2002-06-25 Aerosance, Inc. Fuel injector assembly
JP4186330B2 (ja) * 1999-08-27 2008-11-26 株式会社デンソー 電磁弁及び液圧回路
DE19960605A1 (de) * 1999-12-16 2001-07-19 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10014962A1 (de) * 2000-03-25 2001-10-04 Gsf Forschungszentrum Umwelt Pulsbares Kapillarventil
US6676044B2 (en) 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
DE10027662A1 (de) * 2000-06-03 2001-12-06 Bosch Gmbh Robert Dichtmittel und Niederhalter für ein Brennstoffeinspritzventil
US6409101B1 (en) 2000-06-30 2002-06-25 Siemens Automotive Corporation Hollow oversized telescopic needle with armature
US6434822B1 (en) * 2000-09-13 2002-08-20 Delphi Technologies, Inc. Method of fuel injector assembly
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
US6543707B2 (en) 2000-12-29 2003-04-08 Siemens Automotive Corporation Modular fuel injector having a lift set sleeve
US6523761B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a lift set sleeve
US6499668B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6511003B2 (en) 2000-12-29 2003-01-28 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6568609B2 (en) 2000-12-29 2003-05-27 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and o-ring retainer assembly
US6811091B2 (en) 2000-12-29 2004-11-02 Siemens Automotive Corporation Modular fuel injector having an integral filter and dynamic adjustment assembly
US6523760B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523756B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a lift set sleeve
US6708906B2 (en) 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6547154B2 (en) 2000-12-29 2003-04-15 Siemens Automotive Corporation Modular fuel injector having a terminal connector interconnecting an electromagnetic actuator with a pre-bent electrical terminal
US6533188B1 (en) 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6607143B2 (en) 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6769636B2 (en) 2000-12-29 2004-08-03 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and O-ring retainer assembly
US6655609B2 (en) 2000-12-29 2003-12-02 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and o-ring retainer assembly
US6698664B2 (en) 2000-12-29 2004-03-02 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and dynamic adjustment assembly
US6550690B2 (en) 2000-12-29 2003-04-22 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and dynamic adjustment assembly
US6565019B2 (en) 2000-12-29 2003-05-20 Seimens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and O-ring retainer assembly
ITTO20001229A1 (it) * 2000-12-29 2002-06-29 Fiat Ricerche Sistema di montaggio di un iniettore di combustibile per un motore a combustione interna.
US6536681B2 (en) 2000-12-29 2003-03-25 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6520421B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
US6499677B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6502770B2 (en) 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6695232B2 (en) 2000-12-29 2004-02-24 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a lift set sleeve
JP2002266721A (ja) * 2001-03-09 2002-09-18 Denso Corp 燃料噴射弁の製造方法
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
US7093362B2 (en) 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector
US6687997B2 (en) 2001-03-30 2004-02-10 Siemens Automotive Corporation Method of fabricating and testing a modular fuel injector
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
US7458530B2 (en) * 2001-10-05 2008-12-02 Continental Automotive Systems Us, Inc. Fuel injector sleeve armature
US7066199B1 (en) 2002-04-03 2006-06-27 Hydro-Gear Limited Partnership Valve assembly
US6761182B1 (en) * 2002-04-03 2004-07-13 Hydro-Gear Limited Partnership Method for configuration of a valve
US6964280B1 (en) 2002-04-03 2005-11-15 Hydro-Gear Limited Partnership Valve assembly for use in a hydraulic component
US6691512B1 (en) 2002-04-03 2004-02-17 Hydro-Gear Limited Partnership Hydraulic transmission with combination check valve and pressure release valve
US6719005B1 (en) 2002-04-03 2004-04-13 Hydro-Gear, Limited Partnership Combination check valve and pressure release valve
US6986363B1 (en) 2002-04-03 2006-01-17 Hydro-Gear Limited Partnership Valve assembly for use in a hydraulic component
US7320334B1 (en) 2002-04-03 2008-01-22 Hydro-Gear Limited Partnership Valve Assembly
US6938839B2 (en) * 2002-08-15 2005-09-06 Visteon Global Technologies, Inc. Needle alignment fuel injector
US6688578B1 (en) 2003-01-08 2004-02-10 Robert Bosch Gmbh Electromagnetic actuator for a fuel injector having an integral magnetic core and injector valve body
US7028708B1 (en) 2003-05-09 2006-04-18 Hydro-Gear Limited Partnership Combined check valve and pressure relief valve
US20050045750A1 (en) * 2003-08-26 2005-03-03 Zeljko Prebeg Monodisperse nozzle
US6935454B1 (en) 2003-09-18 2005-08-30 Hydro-Gear Limited Partnership Valve for a hydraulic drive apparatus
US7316114B1 (en) 2003-09-18 2008-01-08 Hydro-Gear Limited Partnership Valve for a hydraulic drive apparatus
JP4058026B2 (ja) * 2004-06-16 2008-03-05 株式会社ケーヒン 電磁式燃料噴射弁
JP2006233887A (ja) * 2005-02-25 2006-09-07 Denso Corp 燃料噴射弁
US7296594B1 (en) 2005-03-22 2007-11-20 Hydro-Gear Limited Partnership Combination check valve and neutral valve assembly for use in a hydraulic component
GB2425820A (en) * 2005-05-02 2006-11-08 Valco Cincinnati Inc Solenoid operated fluid valve
US7178787B2 (en) * 2005-05-05 2007-02-20 Trw Automotive U.S. Llc Valve assembly
US7451780B1 (en) 2005-05-16 2008-11-18 Hydro-Gear Limited Partnership Multifunction valve for use in a hydraulic component
DE102005025147B4 (de) * 2005-06-01 2014-11-06 Continental Automotive Gmbh Kraftstoffinjektor mit Gehäuse, sowie Verfahren zum Fertigstellen und Beschriften des Gehäuses
DE102005061424A1 (de) * 2005-12-22 2007-07-05 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102005061409A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil
DE102006020689A1 (de) * 2006-05-04 2007-11-08 Robert Bosch Gmbh Magnetventil mit stoffschlüssiger Ankerverbindung
US20100018503A1 (en) * 2008-07-22 2010-01-28 Perry Robert B Upper guide system for solenoid actuated fuel injectors
DE102009055045A1 (de) 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Einspritzventil
DE102010008773A1 (de) * 2010-02-22 2011-08-25 Schaeffler Technologies GmbH & Co. KG, 91074 Betätigungselement einer elektromagnetischen Stelleinheit eines Hydraulikventils
FR2973092B1 (fr) * 2011-03-25 2016-09-02 Bosch Gmbh Robert Dispositif d'obturation, regulateur de pression comportant un tel dispositif, dispositif d'injection diesel comportant un tel regulateur, moteur diesel et vehicule comportant un tel moteur
FR2991743A1 (fr) * 2012-06-08 2013-12-13 Bosch Gmbh Robert Procede de realisation d'une soupape electromagnetique et soupape obtenue
US8998116B2 (en) * 2012-09-07 2015-04-07 Tenneco Automotive Operating Company Inc. Reagent injector with crimped pintle
DE102015212467A1 (de) * 2015-07-03 2017-01-05 Robert Bosch Gmbh Einspritzdüse für ein Kraftstoffeinspritzsystem
US10920727B2 (en) 2016-05-16 2021-02-16 Cummins Inc. Swirl injector plunger
DE102017113017A1 (de) * 2017-06-13 2018-12-13 Thyssenkrupp Ag Elektromagnetisch betätigbares Ventil und Baugruppe für ein derartiges Ventil
JP2019210901A (ja) * 2018-06-07 2019-12-12 愛三工業株式会社 燃料噴射弁

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483485A (en) * 1981-12-11 1984-11-20 Aisan Kogyo kabuskiki Kaisha Electromagnetic fuel injector
US4564145A (en) * 1982-08-04 1986-01-14 Aisan Kogyo Kabushiki Kaisha Electromagnetic fuel injector
US4643359A (en) * 1985-03-19 1987-02-17 Allied Corporation Mini injector valve
JPS6287661A (ja) * 1985-10-15 1987-04-22 Diesel Kiki Co Ltd 電磁式燃料噴射弁
DE3825135A1 (de) * 1988-07-23 1990-01-25 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3831196A1 (de) 1988-09-14 1990-03-22 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE4008675A1 (de) 1990-03-17 1991-09-19 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE4420176A1 (de) * 1994-06-09 1995-12-14 Bosch Gmbh Robert Ventilnadel für ein elektromagnetisch betätigbares Ventil
DE19503224A1 (de) 1995-02-02 1996-08-08 Bosch Gmbh Robert Elektromagnetisch betätigbares Einspritzventil für Kraftstoffeinspritzanlagen von Verbrennungsmotoren
US5823446A (en) * 1997-02-18 1998-10-20 Awalbro Corporation Fuel injector valve for liquified fuel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9842976A1 *

Also Published As

Publication number Publication date
US6045116A (en) 2000-04-04
CN1220722A (zh) 1999-06-23
ES2199419T3 (es) 2004-02-16
JP2000511616A (ja) 2000-09-05
BR9804798A (pt) 1999-08-17
DE19712590A1 (de) 1998-10-01
EP0900333B1 (de) 2003-05-07
KR20000015943A (ko) 2000-03-15
DE59808230D1 (de) 2003-06-12
CN1089856C (zh) 2002-08-28
WO1998042976A1 (de) 1998-10-01

Similar Documents

Publication Publication Date Title
EP0900333B1 (de) Elektromagnetisch betätigbares ventil
EP0904488B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung einer ventilnadel eines brennstoffeinspritzventils
EP0720691B1 (de) Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung
EP0937201B1 (de) Elektromagnetisch betätigbares ventil
EP0934459A1 (de) Brennstoffeinspritzventil
DE19744739A1 (de) Brennstoffeinspritzventil
DE19907899A1 (de) Brennstoffeinspritzventil
EP1062421B1 (de) Brennstoffeinspritzventil
DE19736684A1 (de) Brennstoffeinspritzventil
EP0717816B1 (de) Elektromagnetisch betätigbares ventil
EP1068442B1 (de) Brennstoffeinspritzventil
DE10116186A1 (de) Brennstoffeinspritzventil
EP0917623A1 (de) Brennstoffeinspritzventil
WO1999004158A1 (de) Elektromagnetisch betätigbares ventil
EP1034369B1 (de) Brennstoffeinspritzventil
EP0954696B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung einer ventilnadel eines brennstoffeinspritzventils
DE19729304A1 (de) Elektromagnetisch betätigbares Ventil
DE4424463A1 (de) Brennstoffeinspritzventil
WO2002031351A2 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19990401

17Q First examination report despatched

Effective date: 20020129

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59808230

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040110

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2199419

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120327

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59808230

Country of ref document: DE

Effective date: 20130801