EP0894101A1 - Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen und so erhältliche formmassen - Google Patents

Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen und so erhältliche formmassen

Info

Publication number
EP0894101A1
EP0894101A1 EP97920682A EP97920682A EP0894101A1 EP 0894101 A1 EP0894101 A1 EP 0894101A1 EP 97920682 A EP97920682 A EP 97920682A EP 97920682 A EP97920682 A EP 97920682A EP 0894101 A1 EP0894101 A1 EP 0894101A1
Authority
EP
European Patent Office
Prior art keywords
monomers
mixture
acrylic rubber
alm
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97920682A
Other languages
English (en)
French (fr)
Inventor
Graham Edmund Mc Kee
Bernhard Rosenau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0894101A1 publication Critical patent/EP0894101A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/044Polymers of aromatic monomers as defined in group C08F12/00

Definitions

  • the invention relates to a process for the production of a molding compound modified with acrylic rubber by graft polymerization of monomers forming the graft shell in the presence of an acrylic rubber dissolved or swollen in the monomers and containing macromonomers as comonomers.
  • ASA molding compounds modified with acrylic rubber, which have good weather resistance, high impact strength and good flow properties.
  • a disadvantage of this preparation in emulsion is the need to remove auxiliaries when working up the molding materials in order to avoid later disruptions in their processing (discoloration, speck formation, corrosion). In particular, wishes remain regarding the impact strength, tear resistance and the gloss properties of the surfaces of molded parts made from it.
  • DE-B 11 82 811 published over 30 years ago, it is known to polymerize an acrylic ester together with a crosslinking monomer in solution to produce a rubber-modified molding composition, with the monomers to be grafted on after conversion of only 20 to 40% by weight of the monomers Styrene and acrylonitrile are added, the polymerization of which is then carried out in substance (mass) or solution. Due to the non-constant composition during the grafting reaction and due to the fact that rubber units are polymerized into the graft shell, the Vicat softening temperature is reduced and further mechanical properties of the resulting molding composition deteriorate.
  • the object of the invention was to produce molding compositions modified with acrylic rubber, which can be processed to give molded parts with improved impact strength, good flow properties and reduced surface gloss.
  • This object could be achieved if an acrylic rubber modified by copolymerization with a macromonomer is produced, into which the graft shell and partly the the polymer matrix-forming monomers are dissolved or swollen, and this mixture is polymerized in one or more stages, at least the first stage of the graft polymerization up to a conversion of over 15 and preferably from 20 to 40% by weight of the monomers as thermal or radical-initiated polymerization in bulk (in bulk) or as solution polymerization.
  • the present invention thus relates to a process for producing a molding composition (A) modified with acrylic rubber (A2) by (a) copolymerizing a mixture (A2M) of
  • R 1 is a hydrogen atom or a methyl group and R 2 is an alkyl group with 1 to 32 C atoms
  • (a2) at least one macromonomer (A2m2) with a final copolymerizable C C double bond and an average molecular weight M w of about 1500 to 40,000, which contains units of at least one of the monomers (Alm) in copolymerized form and is fully or partially compatible with the polymers or copolymers of the monomers (Alm), (a3) optionally at least one further copolymerizable olefinically unsaturated monomer (A2m3) in an amount of less than 50% by weight of the amount of alkyl acrylate or methacrylate (A2ml), to form an acrylic rubber (A2) with a glass transition temperature below 0 ° C,
  • Alm whose polymers or copolymers have a glass transition temperature of at least + 20 ° C., to a mixture (AM), and
  • the method according to the invention is described as a 3-stage method for reasons of clarity, the method is also used if only the 3rd stage is carried out, i.e. the special acrylic rubber (A2) dissolved or swollen in monomers (Alm) is polymerized as indicated.
  • A2 the special acrylic rubber
  • Alm dissolved or swollen in monomers
  • Acrylic esters with a linear or at most single-branched alkyl alcohol with 4 to 12 carbon atoms are very suitable. Esters of n-butanol and 2-ethylhexyl alcohol are preferred.
  • the glass transition temperature T g of the resulting acrylic rubber (A2) can be set for a given macromonomer content, the glass transition temperature T g being below 0 ° C., in particular below -10 ° C. and should preferably be below -20 ° C.
  • This setting of the glass transition temperature is based on the fact that the glass transition temperature of alkyl acrylate and methacrylate polymers initially decreases with increasing length of the side chains, passes through a minimum for C 7 -alkyl acrylate or Cio-alkyl methacrylate and then again increases.
  • the content of alkyl acrylate or methacrylate (A2ml) in the mixture (A2M) is approximately 50 to 99.9 and preferably 80 to more than 90% by weight, based on the total amount of monomers (including macromonomers) in the mixture (A2M).
  • R 3 represents a hydrogen atom or a methyl group.
  • the macromonomer can be polymerized into the resulting acrylic ester copolymer via this double bond.
  • Suitable macromonomers which are also commercially available, have an average molecular weight M w of 1500 to 40,000, preferably from 2000 to 20,000 g / mol. Since the macromonomers are mostly produced by anionic polymerization and in particular using lithium hydrocarbons as initiators, the initiator concentration largely determines the resulting molecular weight of the macromonomers, which have a very narrow molecular weight distribution (M w / Mn mostly ⁇ 1.1). The molecular weight can be determined, for example, by vapor phase osmosis. The preparation of macromonomers is described in the literature.
  • Macromonomers are preferred which are wholly or partly compatible with the polymers or copolymers to be prepared from the monomers (Alm) and which contain at least some of the monomer units of the monomers (Alm) copolymerized in the macromonomer chain.
  • macromonomers whose chains are at least partially formed from units of such monomers (Alm) are particularly suitable for the production of ASA molding compositions in which predominantly styrene, ⁇ -methylstyrene and acrylonitrile are used as monomers (Alm).
  • the amount of macromonomers (A2m2) in mixture (A2M) is generally about 1 to 50, in particular 2 to 25,% by weight, based on the total amount of monomers (including macromonomers) in the mixture (A2M).
  • further copolymerizable olefinically unsaturated monomers (A2m3) in an amount of generally less than 50% by weight of the amount of alkyl acrylate and / or alkyl methacrylate (A2ml) in the mixture (A2M) can also be used.
  • Such further comonomers (A2m3) are in particular monomers with at least two olefinically unsaturated double bonds such as allyl methacrylate or acrylate, 1,4-butanediol dimethacrylate or acrylate, divinylbenzene, triallyl cyanurate and dihydrodicyclopentadienyl acrylate or methacrylate.
  • Monomers with non-conjugated double bonds and in particular allyl methacrylate and dihydrodicyclopentadienyl acrylate or methacrylate are preferred.
  • the content of the mixture (A2M) in these crosslinking monomers or in the grafting of the monomers (Alm) supports 0 to 20, in particular 0.3 to 15 and particularly preferably 0.3 to 12% by weight, based on the Total amount of monomers (including macromonomers) in the mixture (A2M).
  • Examples of other comonomers (A2m3) for the production of acrylic rubber (A2), which can be present in particular in amounts of 1 to 20% by weight, based on the total amount of monomers (including macromonomers) in the mixture (A2M), are styrene and acrylonitrile , Acrylic acid, methacrylic acid, maleic anhydride, maleimide, glycidyl methacrylate, acrylamide, methacrylamide and derivatives of these amides such as N-methylol methacrylamide, N-methylol acrylamide and ethers and esters of these N-methylol compounds such as their methyl or n-butyl ether or their Acetates.
  • Comonomers which bring about a linkage of acrylic rubber (A2) (graft base) and graft shell from the monomers (Alm) by chemical crosslinking reactions are advantageous. Also by using comonomers with peroxide or diazo groups in the production of the acrylic rubber (A2), such as tert-butyl-3-isopropenylcumyl peroxide or tert-butyl peroxi- crotonate, which radicals in the polymerization of the mixture (AM) by thermal decomposition and thus form graft branches, the graft yield during the polymerization of the mixture (AM) can be increased and the bond between acrylic rubber (A2) and the graft shell from the monomers (Alm) can thus be promoted.
  • comonomers with peroxide or diazo groups such as tert-butyl-3-isopropenylcumyl peroxide or tert-butyl peroxi- crotonate, which radicals in the polymerization of the mixture (
  • the copolymerization of the monomers (A2ml) with (A2m2) and optionally (A2m3) can be carried out in a known manner and is preferably initiated with radical initiators and in particular as solution polymerization or emulsion polymerization.
  • Suitable monomers (Alm), which later also form the graft shell (AI), are styrene, ⁇ -methylstyrene, nuclear-cyclized styrenes, acrylonitrile, methacrylonitrile, alkyl acrylates and alkyl methacrylates such as methyl methacrylate.
  • Monomers and monomer mixtures which give a polymer with a glass transition temperature of above + 20 ° C. and preferably above + 50 ° C. are preferably used. It is particularly preferred to use a mixture of more than 50 and in particular 60 to 80% by weight of styrene and less than 50 and in particular 20 to 40% by weight of acrylonitrile as monomers (Alm).
  • the amount of monomers (Alm) in the mixture (AM) depends in particular on the desired content of acrylic rubber (A2) in the resulting molding composition (A). In general, the amount by weight of the monomers (Alm) in the mixture (AM) is 2/3 times to about 100 times and in particular 3 to 20 times the amount of acrylic rubber (A2) present.
  • the polymerization of the monomers (Alm) in the presence of the acrylic rubber (A2) (mixture AM) dissolved or swollen in the monomers (Alm) takes place in one or more stages, the proportions of the different monomers (Alm) also changing in the stages can be.
  • the graft polymerization is preferably carried out as a thermally or free-radically initiated polymerization at a temperature of from room temperature to 200 ° C. and in particular from 50 to 160 ° C.
  • the single-stage or multi-stage polymerization must take place at least in its initial phase and up to a conversion of more than 15, preferably more than 20 to 40,% by weight of the monomers as bulk polymerization (bulk polymerization) or as solution polymerization. After this initial phase, the polymerization can then be continued and ended with another known polymerization method, advantageously as a suspension. ion polymerization in the presence of known initiators and stabilizers for suspension polymerization.
  • the upper limit of the content of acrylic rubber (A2) results from the fact that the molding compound (A) must have sufficient strength in spite of the embedded domains of the rubber.
  • the lower limit is essentially determined by the fact that sufficient energy is absorbed by the molding compound in the event of deformation.
  • the acrylic rubbers occur in grafted form as particles with a diameter between 0.1 and 20 and preferably between 0.1 and 10 ⁇ m.
  • the molding compositions (A) produced according to the invention have improved impact strength, notched impact strength, notched impact strength and good flow behavior. Moldings made from it also have the advantage that their surface gloss is greatly reduced and the surfaces are often matt.
  • the polyvinyl alcohol used (Moviol® 30-92 from Hoechst AG) had a degree of hydrolysis of 92 mol% and a viscosity of the 4% aqueous solution at 20 ° C. of 30 mPa.s (DIN 53015).
  • the impact strength values in kJ / m 2 were determined in accordance with DIN 53 453-K, edition 5/75.
  • the values for the core impact strength in kJ / m 2 were determined in accordance with DIN 53 753-L-30, edition 4/81. The flow behavior and thus the processability was assessed on the basis of the melt flow rate in g / 10 min, which was measured according to ISO 1133 at 200 ° C. and a load of 21.6 kg.
  • the glass transition temperature was determined using the DSC method (K.H. Illers, Macromolecular Chemistry 127 (1969) 1) and in accordance with ASTM 3416.
  • the average molecular weight of the commercial macromonomers used was given by the manufacturer.
  • SAN macromonomer AN-6 was purchased from Toman. It has a chain of a copolymer of 75% styrene and 25% acrylonitrile irr - a terminal methacrylate group and, according to the figure, has a molecular weight M w of 6000.
  • the rest of feeds 1 and 2 were metered in over 4 hours.
  • the mixture was then polymerized to a conversion of 93%, with 145 mg of AIBN being metered in after 9 and 15 hours of polymerization.
  • the mixture was cooled and stabilized with 0.12% (based on the amount of n-butyl acrylate) of octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate as an antioxidant.
  • the acrylic rubber (A2) has a glass transition temperature of below -25 ° C.
  • Example 2 The procedure was as in Example 1, but the SAN macromonomer in feed 1 was omitted and replaced by a corresponding amount of n-butyl acrylate (A2ml).
  • Notched impact strength (kJ / m 2 ) 2.2 3.1 2.5 1.7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Kautschukmodifizierte Formmassen mit verbesserter Schlagzähigkeit bei gutem Fließverhalten lassen sich durch spezielle Pfropfpolymerisation von harte Pfropfschalen bildenden Monomeren, wie Styrol und Acrylnitril, in Gegenwart eines in diesen Monomeren gelösten oder gequollenen elastomeren Acrylester-Makromonomer-Copolymerisats herstellen, wobei die Pfropfpolymerisation bis zu einem Umsatz von über 15 Gew.-% der Monomere als thermisch oder radikalisch initiierte Polymerisation in Substanz oder Lösung durchgeführt wird.

Description

Verfahren zur Herstellung von mit Acrylkautschuk modifizierten Formmassen und so erhältliche Formmassen
Die Erfindung betrifft ein Verfahren zur Herstellung einer mit Acrylkautschuk modifizierten Formmasse durch Pfropfpolymerisa- tion von die Pfropfhülle bildenden Monomeren in Gegenwart eines in den Monomeren gelösten oder gequollenen Acrylkautschuks, der Makromonomere als Comonomere enthält.
Die Herstellung von kautschukmodifizierten Formmassen ist seit langem bekannt. Auch die Verwendung von elastomeren Acrylester- polymeren mit Glastemperaturen von unter 0°C und bevorzugt von unter -10°C (Acrylkautschuk) für so modifizierte Formmassen ist seit fast 40 Jahren bekannt. Sie weisen gegenüber den mit Dien- Kautschuken hergestellten Formmassen eine verbesserte Witterungs¬ bestandigkeit auf. In den modifizierten mehrphasigen Formmassen sind Domänen des Kautschuks in eine Matrix aus einem Thermopla¬ sten eingebettet, wobei die Domänenstruktur die mechanischen Ei- genschaften der resultierenden Formmassen stark mitbestimmt. Die Zähigkeit der Formmassen resultiert aus einer erhöhten Ener¬ gieaufnahme bei der Deformation bis zum Bruch, wobei Energie zur Bildung von Mikrohohlräumen oder zur Einleitung von Abgleitvor¬ gängen der Matrixpolymerketten verbraucht wird. Die Mehrphasig- keit ist daher eine notwendige Voraussetzung für das Erreichen hoher Schlagzähigkeiten.
Nach wie vor besteht ein hoher Bedarf an mit Acrylkautschuk modi¬ fizierten Formmassen und insbesondere an mit Acrylkautschuk modi- fizierten Styrol-Acrylnitril-Copolymeren (ASA-Formmassen) , die eine gute Witterungsbeständigkeit, eine hohe Schlagzähigkeit so¬ wie gute Fließeigenschaften aufweisen.
Die Herstellung von ASA-Formmassen in Emulsion ist in der Patent- literatur vielfach beschrieben (vgl.z.B. DE-A 19 11 882,
DE-A 28 26 925, DE-A 31 29 378, DE-A 31 29 472, DE-A 31 49 046, DE-A 31 49 358, DE-A 32 06 136, DE-A 32 27 555) .
Nachteilig bei dieser Herstellung in Emulsion ist das Erfordernis der Entfernung von Hilfsstoffen bei der Aufarbeitung der Formmas¬ sen, um spätere Störungen bei deren Verarbeitung (Verfärbung, Stippenbildung, Korrosion) zu vermeiden. Besonders bleiben aber Wünsche bzgl . der Schlagzähigkeit, Reißfestigkeit und der Glanz- eigenschaften der Oberflächen daraus hergestellter Formteile offen. Aus der vor über 30 Jahren veröffentlichten DE-B 11 82 811 ist bekannt, zur Herstellung einer kautschukmodifizierten Formmasse einen Acrylester zusammen mit einem vernetzenden Monomeren in Lösung zu polymerisieren, wobei nach einem Umsatz von nur 20 bis 40 Gew.% der Monomere die aufzupfropfenden Monomere Styrol und Acrylnitril zugegeben werden, deren Polymerisation dann in Sub¬ stanz (Masse) oder Lösung durchgeführt wird. Aufgrund der nicht¬ konstanten Zusammensetzung bei der Pfropfreaktion und wegen des Einpolymerisierens von Kautschukeinheiten in die Pfropfhülle kommt es zu einer Herabsetzung der Vicat-Erweichungstemperatur und einer Verschlechterung weiterer mechanischer Eigenschaften der resultierenden Formmasse.
Der Erfindung lag die Aufgabe zugrunde, mit Acrylkautschuk modi- fizierte Formmassen herzustellen, die zu Formteilen mit verbes¬ serter Schlagzähigkeit, guten Fließeigenschaften und herabgesetz¬ tem Oberflächenglanz verarbeitet werden können.
Diese Aufgabe konnte gelöst werden, wenn ein durch Copolymerisa- tion mit einem Makromonomeren modifizierter Acrylkautschuk herge¬ stellt wird, dieser in den die Pfropfschale und z.T. die Polymer¬ matrix bildenden Monomere gelöst oder gequollen wird, und diese Mischung ein- oder mehrstufig polymerisiert wird, wobei zumindest die erste Stufe der Pfropfpolymerisation bis zu einem Umsatz von über 15 und bevorzugt von 20 bis 40 Gew.% der Monomere als ther¬ misch oder radikalisch initiierte Polymerisation in Substanz (in Masse) oder als Lösungspolymerisation durchgeführt wird.
Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Herstellung einer mit Acrylkautschuk (A2) modifizierten Formmasse (A) durch (a) Copolymerisation einer Mischung (A2M) von
(al) mindestens einem Monomeren (A2ml) der Formel
CH2 = CR1 - COOR2
worin R1 ein Wasserstoffatom oder eine Methylgruppe und R2 eine Alkylgruppe mit 1 bis 32 C-Atomen bedeuten, (a2) mindestens einem Makromonomeren (A2m2) mit einer endstän- digen copolymerisationsfähigen C=C-Doppelbindung und einem mittleren Molekulargewicht Mw von etwa 1500 bis 40000, das Einheiten mindestens eines der Monomeren (Alm) einpolymerisiert enthält, und voll- oder teilverträglich mit den Polymerisaten bzw. Copolymerisaten der Monomere (Alm) ist, (a3) ggf. mindestens einem weiteren copolymerisierbaren olefi- nisch ungesättigten Monomeren (A2m3) in einer Menge von weniger als 50 Gew.% der Menge an Alkylacrylat bzw. - methacrylat (A2ml) , zu einem Acrylkautschuk (A2) mit einer Glasübergangstempera- tur von unter 0°C,
(b) Lösen oder Quellen des Acrylkautschuks (A2) , ggf. unter Zu¬ gabe eines Lösungsmittels, in einem oder mehreren die harte Pfropfschale bildenden olefinisch ungesättigten Monomeren
(Alm) , deren Polymerisate bzw. Copolymerisate eine Glasüber¬ gangstemperatur von mindestens +20°C aufweisen, zu einer Mi¬ schung (AM) , und
(c) Pfropfpolymerisation der Mischung (AM) in einer oder mehreren Stufen, wobei die Polymerisation der Mischung (AM) zumindest in der ersten Stufe und bis zu einem Umsatz von über 15 Gew.% als thermisch oder radikalisch initiierte Polymerisation in Substanz oder Lösung durchgeführt wird.
Weitere Gegenstände der vorliegenden Erfindung sind nach dem erfindungsgemäßen Verfahren hergestellte Formmassen sowie daraus hergestellte Formkörper oder Formteile.
Obwohl das erfindungsgemässe Verfahren aus Gründen der Anschau- lichkeit als 3-Stufenverfahren beschrieben wird, so wird von dem Verfahren jedoch auch Gebrauch gemacht, wenn nur die 3. Stufe durchgeführt wird, d.h. der in Monomeren (Alm) gelöste oder gequollene spezielle Acrylkautschuk (A2) wie angegeben polymeri- siert wird.
Für die Herstellung des Acrylkautschuks (A2) geeignete Monomere (A2ml) sind Ester der Acrylsaure und/oder Methacrylsaure der For¬ mel CH2 = CR1 - COOR2 , worin R1 ein Wasserstoffatom oder eine Methylgruppe und R2 eine Alkylgruppe mit 1 bis 32 und insbesondere 1 bis 12 C-Atomen bedeuten. Sehr geeignet sind Acrylester mit einem linearen oder höchstens einfach verzweigten Alkylalkohol mit 4 bis 12 C-Atomen. Bevorzugt sind Ester des n-Butanols und des 2-Ethylhexylalkohols . Durch die Auswahl von Acrylaten, Meth- acrylaten oder Mischungen davon, kann bei gegebenem Gehalt von bestimmten Makromonomeren die Glasübergangstemperatur Tg des resultierenden Acrylkautschuks (A2) eingestellt werden, wobei die Glasübergangstemperatur Tg bei unter 0°C, insbesondere unter -10°C und bevorzugt unter -20°C liegen soll. Diese Einstellung der Glas¬ übergangstemperatur beruht darauf, daß die Glasübergangstempera- tur von Alkylacrylat- und -methacrylat-Polymeren mit zunehmender Länge der Seitenketten zunächst abnimmt, bei C7-Alkylacrylat bzw. Cio-Alkylmethacrylat ein Minimum durchläuft und dann wieder steigt. Im allgemeinen beträgt der Gehalt an Alkylacrylat bzw. -methacrylat (A2ml) in der Mischung (A2M) ca. 50 bis 99,9 und be¬ vorzugt 80 bis über 90 Gew.%, bezogen auf die Gesamtmenge an Monomeren (einschließlich Makromonomeren) in der Mischung (A2M) .
Die Mischung (A2M) enthält ferner mindestens ein Makromonomeres (A2m2) mit einer endständigen copolymerisationsfähigen C=C-Dop- pelbindung, bevorzugt einer Acrylat- und/oder einer Methacrylat- gruppe der Formel
- O - CO - CR3 = CH2
worin R3 ein Wasserstoffatom oder eine Methylgruppe bedeutet.
Über diese Doppelbindung kann das Makromonomere in das entste¬ hende Acrylestercopolymerisat einpolymerisiert werden. Geeignete Makromonomere, die auch im Handel erhältlich sind, haben ein mittleres Molekulargewicht Mw von 1500 bis 40 000, bevorzugt von 2000 bis 20 000 g/mol . Da die Makromonomeren meist durch anioni- sehe Polymerisation und insbesondere mit Lithiumkohlenwasserstof¬ fen als Initiatoren hergestellt werden, bestimmt die Initiator¬ konzentration weitgehend das resultierende Molekulargewicht der Makromonomeren, die eine sehr enge Molekulargewichtsverteilung (Mw/Mn meist < 1,1) aufweisen. Das Molekulargewicht kann z.B. durch Dampfphasenosmose bestimmt werden. Die Herstellung von Makromonomeren ist in der Literatur beschrieben. Bevorzugt sind Makromonomere, die mit den aus den Monomeren (Alm) herzustellen¬ den Polymeren oder Copolymeren ganz oder teilweise verträglich sind und zumindest zum Teil Monomereinheiten der Monomere (Alm) in der Makromonomerkette einpolymerisiert enthalten. So eignen sich zur Herstellung von ASA-Formmassen, bei der überwiegend Styrol, α-Methylstyrol und Acrylnitril als Monomere (Alm) verwen¬ det werden, auch besonders Makromonomere, deren Ketten zumindest teilweise aus Einheiten solcher Monomeren (Alm) gebildet sind. Die Menge an Makromonomeren (A2m2) in Mischung (A2M) beträgt all¬ gemein etwa 1 bis 50, insbesondere 2 bis 25 Gew.%, bezogen auf die Gesamtmenge an Monomeren (einschließlich Makromonomeren) in der Mischung (A2M) .
Für die Herstellung des Acrylkautschuks (A2) können weitere co- polymerisierbare olefinisch ungesättigte Monomere (A2m3) in einer Menge von im allgemeinen weniger als 50 Gew.% der Menge an Alkyl¬ acrylat und/oder Alkylmethacrylat (A2ml) in der Mischung (A2M) mitverwendet werden. Solche weiteren Comonomeren (A2m3) sind insbesondere Monomere mit mindestens zwei olefinisch ungesättigten Doppelbindungen wie Allylmethacrylat oder -acrylat, 1, 4-Butandioldimethacrylat oder -acrylat, Divinylbenzol , Triallylcyanurat und Dihydrodicyclopen- tadienylacrylat oder -methacrylat . Bevorzugt werden Monomere mit nicht-konjugierten Doppelbindungen und insbesondere Allylmetha¬ crylat und Dihydrodicyclopentadienylacrylat oder -methacrylat. Der Gehalt der Mischung (A2M) an diesen vernetzenden bzw. die Pfropfung der Monomeren (Alm) unterstützenden Monomeren liegt bei 0 bis 20, insbesondere bei 0,3 bis 15 und besonders bevorzugt bei 0,3 bis 12 Gew.%, bezogen auf die Gesamtmenge an Monomeren (ein¬ schließlich Makromonomeren) im Gemisch (A2M) . Der Gehalt der Mi¬ schung (A2M) an diesen Monomeren hängt dabei stark von der Reak¬ tivität der beiden C=C-Doppelbindungen der Monomere ab. Sind beide sehr reaktiv und werden beide während der Polymerisation der Mischung (A2M) in die Polymerisatkette eingebaut, dann findet mit höheren Konzentrationen von Monomeren mit mindestens 2 C=C- Doppelbindungen eine steigende Vernetzung des Acrylkautschuk- Copolymerisats (A2) statt. Ist dagegen nur eine C=C-Doppelbindung leicht zu polymerisieren, wie bei Verwendung von Dihydrodicyclo- pentadienylacrylat oder -methacrylat, dann kann das Monomere in größerer Menge eingesetzt werden und bewirkt eine erhöhte Pfropfung der Monomeren (Alm) auf den Acrylkautschuk (A2) bei der Polymerisation in der dritten Stufe des Verfahrens.
Beispiele weiterer Comonomerer (A2m3) für die Herstellung des Acrylkautschuks (A2), die insbesondere in Mengen von 1 bis 20 Gew.%, bezogen auf die Gesamtmenge an Monomeren (einschließlich Makromonomeren) im Gemisch (A2M) enthalten sein können, sind Styrol, Acrylnitril, Acrylsaure, Methacrylsaure, Maleinsäure- anhdrid, Maleinsäureimid, Glycidylmethacrylat, Acrylamid, Meth¬ acrylamid und Derivate dieser Amide wie N-Methylolmethacrylamid, N-Methylolacrylamid sowie Ether und Ester dieser N-Methylolver- bindungen wie deren Methyl- oder n-Butylether oder deren Acetate. Vorteilhaft sind solche Comonomere, die durch chemische Vernet¬ zungsreaktionen eine Verknüpfung von Acrylkautschuk (A2) (Pfropfgrundlage) und Pfropfschale aus den Monomeren (Alm) bewir¬ ken. Auch durch Mitverwendung von Comonomeren mit Peroxid- oder Diazogruppen bei der Herstellung des Acrylkautschuks (A2), wie von tert.-Butyl-3-isopropenylcumylperoxid oder tert.-Butylperoxi- crotonat, die bei der Polymerisation der Mischung (AM) durch thermische Zersetzung Radikale und somit Pfropfäste bilden, kann die Pfropfausbeute bei der Polymerisation der Mischung (AM) er¬ höht und damit die Bindung zwischen Acrylkautschuk (A2) und der Pfropfschale aus den Monomeren (Alm) gefördert werden. Die Copolymerisation der Monomeren (A2ml) mit (A2m2) und ggf. (A2m3) kann in bekannter Weise durchgeführt werden und wird bevorzugt mit Radikalinitiatoren ausgelöst und insbesondere als Lösungspolymerisation oder Emulsionspolymerisation durchgeführt.
Nach der fertigen Polymerisation und ggf. erforderlichen Entfer¬ nung von Restmonomeren bzw. Isolierung des Acrylkautschuks (A2 ) wird dieser erfindungsgemäß in den später die harte Pfropfschale bildenden Monomeren (Alm) gelöst oder zumindest gut gequollen, ggf. unter Zusatz erforderlicher Mengen eines geeigneten inerten Lösungsmittels, Rühren und/oder Erwärmen der Mischung. Ist der Zusatz von Lösungsmittel dafür erforderlich, liegt dessen Menge insbesondere bei nicht mehr als 50 Gew.% der Menge an Monomeren (Alm) und Acrylkautschuk (A2) .
Beispiele von geeigneten Monomeren (Alm) , die später auch die Pfropfschale (AI) bilden, sind Styrol, α-Methylstyrol, kernal-ky- lierte Styrole, Acrylnitril, Methacrylnitril, Alkylacrylate und Alkylmethacrylate wie Methylmethacrylat. Bevorzugt werden Mono- mere und Monomerengemische verwendet, die ein Polymeres mit einer Glastemperatur von über +20°C und bevorzugt von über +50°C geben. Besonders bevorzugt ist, als Monomere (Alm) eine Mischung aus mehr als 50 und insbesondere 60 bis 80 Gew.% Styrol und weniger als 50 und insbesondere 20 bis 40 Gew.% Acrylnitril zu verwenden.
Die Menge an Monomeren (Alm) in der Mischung (AM) richtet sich insbesondere nach dem gewünschten Gehalt der resultierenden Form¬ masse (A) an Acrylkautschuk (A2) . Im allgemeinen beträgt die Gewichtsmenge der Monomeren (Alm) in der Mischung (AM) das 2/3 fache bis etwa 100 fache und insbesondere das 3 bis 20 fache der vorhandenen Menge an Acrylkautschuk (A2) .
Die Polymerisation der Monomeren (Alm) in Gegenwart des in den Monomeren (Alm) gelösten oder gequollenen Acrylkautschuks (A2) (Mischung AM) erfolgt in ein oder mehreren Stufen, wobei auch die Anteile der unterschiedlichen Monomeren (Alm) in den Stufen ge¬ ändert werden können. Die Pfropfpolymerisation erfolgt bevorzugt als thermisch oder radikalisch initiierte Polymerisation bei einer Temperatur von Raumtemperatur bis zu 200°C und insbesondere von 50 bis 160°C. Dabei hat die ein- oder mehrstufige Polymerisa¬ tion zumindest in ihrer Anfangsphase und bis zu einem Umsatz von über 15, bevorzugt über 20 bis 40 Gew.% der Monomeren als Polyme¬ risation in Substanz (Massenpolymerisation) oder als Lösungspoly¬ merisation zu erfolgen. Die Polymerisation kann nach dieser An- fangsphase dann mit einer anderen bekannten Polymerisationsme¬ thode fortgeführt und beendet werden, vorteilhaft als Suspen- sionspolymerisation in Gegenwart bekannter Initiatoren und Stabi¬ lisatoren für die Suspensionspolymerisation.
Die nach der Polymerisation der Mischung (AM) , die eine Pfropf- polymerisation von Monomeren (Alm) auf den Acrylkautschuk (A2) darstellt bzw. einschließt, erhaltene Formmasse (A) enthält im allgemeinen 1 bis 60 und insbesondere 5 bis 40 Gew.% des Acryl¬ kautschuks (A2). Die Obergrenze des Gehalts an Acrylkautschuk (A2) ergibt sich daraus, daß die Formmasse (A) trotz der ein- gebetteten Domänen des Kautschuks eine ausreichende Festigkeit aufweisen muß. Die Untergrenze ist im wesentlichen dadurch be¬ stimmt, daß bei einer Deformation von der Formmasse ausreichend Energie aufgenommen wird. In der Formmasse (A) kommen die Acryl- kautschuke in gepfropfter Form als Teilchen mit einem Durchmesser zwischen 0,1 und 20 und bevorzugt zwischen 0,1 und 10 μm vor.
Die erfindungsgemäß hergestellten Formmassen (A) weisen eine ver¬ besserte Schlagzähigkeit, Kerbschlagzähigkeit, Lochkerbschlag¬ zähigkeit sowie ein gutes Fließverhalten auf. Formteile daraus haben zudem den Vorteil, daß ihr Oberflächenglanz stark herab¬ gesetzt ist und die Oberflächen oft matt sind.
Die Erfindung wird durch die nachfolgenden Beispiele von bevor¬ zugten Ausführungsformen und den Vergleichsversuch näher erlau- tert.
Prozentangaben beziehen sich, soweit nicht anders angegeben, auf das Gewicht.
Das verwendete Polyvinylpyrrolidon der BASF AG hatte einen K-Wert von 90 (nach Fikentscher, Cellulosechemie 13 (1932)58) .
Der verwendete Polyvinylalkohol (Moviol® 30-92 der Fa. Hoechst AG) hatte einen Hydrolysegrad von 92 Mol-% und eine Viskosität der 4 %igen wässrigen Lösung bei 20°C von 30 mPa.s (DIN 53015) .
Die Werte für die Schlagzähigkeit in kJ/m2 wurden bestimmt gemäß DIN 53 453-K, Ausgabe 5/75.
Die Werte für die Kerbschlagzähigkeit in kJ/m2 wurden bestimmt gemäß DIN 53 4534-K, Ausgabe 5/75.
Die Werte für die Lochkernschlagzähigkeit in kJ/m2 wurden bestimmt gemäß DIN 53 753-L-30, Ausgabe 4/81. Das Fliessverhalten und damit die Verarbeitbarkeit wurde anhand des Schmelzindex (Melt Flow Rate) in g/10 min beurteilt, der nach ISO 1133 bei 200°C und 21,6 kg Belastung gemessen wurde.
Die Bestimmung der Glasübergangstemperatur erfolgte mittels der DSC-Methode (K.H. Illers, Makromolekulare Chemie 127 (1969)1) und nach ASTM 3416.
Das Durchschnittsmolekulargewicht der verwendeten handelsüblichen Makromonomeren wurde vom Hersteller angegeben.
Beispiel 1
(a) Herstellung des Acrylkautschuks (A2)
924 g Toluol wurden in einen Kolben eingefüllt, unter Stickstoff auf 75°C erhitztund anschließend 5% vom nachstehend angegebenen Zulauf 1 und Zulauf 2 vorgelegt.
Zulauf 1 Zulauf 2
225 g n-Butylacrylat (A2ml) 30 ml Aceton 25 g SAN-Makromonomeres 54 ml Toluol AN-6 (A2m2)
6 g Allylmethacrylat (A2m3) 273 g Azobisisobutyro- nitril (AIBN)
SAN-Makromonomeres AN-6 wurde von der Fa. Toman bezogen. Es hat eine Kette eines Copolymerisats aus 75 % Styrol und 25 % Acryl¬ nitril irr - einer endständigen Methacrylat-Gruppierung und hat nach Fi: nangabe ein Molekulargewicht Mw von 6000.
Während 4 Stunden wurde der Rest der Zuläufe 1 und 2 zudosiert . Danach wurde bis zu einem Umsatz von 93 % auspolymerisiert, wobei nach 9 und 15 Stunden Polymerisationszeit zusätzlich 145 mg AIBN zudosiert wurden. Am Ende der Polymerisationsreaktion wurde gekühlt und mit 0,12 % (bezogen auf die Menge an n-Butylacrylat) 3- (3 , 5-Di-tert.butyl-4-hydroxyphenyl)propionsäureoctadecylester als Antioxydans stabilisiert. Der Acrylkautschuk (A2) hat eine Glasübergangstemperatur von unter -25°C.
b)+c)
Herstellung der Formmasse (A) mit dem Acrylkautschuk (A2) In einem Rotationsverdampfer wurde unter Vakuum das Toluol, Aceton und Restmonomeres von der Stufe (a) entfernt und gegen bestimmte Mengen Styrol ausgetauscht und dann so viel Acrylnitril zugegeben, daß eine Mischung (AM) aus 69,2 % Styrol (Alml), 23 % Acrylnitril (Alm2) und 7,8 % Acrylkautschuk (A2) resultierte. Der Acrylkautschuk (A2) lag in der Mischung (AM) gelöst vor. 1923 g dieser Lösung wurden dann zusammen mit 1,93 g einer 75 %igen Lö¬ sung von Benzoylperoxid, 1,92 g tert. Dodecylmercaptan und 2,31 g 3- (3 , 5-Di-tert.butyl-4-hydroxyphenyl)propionsäureoctadecylester als Antioxydans in einen 5-Liter-Stahlkessel eingefüllt und auf 86°C erhitzt. Bei einem Umsatz von 40 % der Monomeren erfolgte eine Zugabe von 1,7 g Dicumylperoxid, 2000 g Wasser, 20 g Polyvi- nylpyrrolidon, 2,0 g Tetranatriumdiphosphat und 60 g einer 10 %igen wässrigen Lösung von Polyvinylalkohol . Der Polymerisations- ansatz wurde 3 Stunden bei 110°C, 3 Stunden bei 130°C und 6 Stun- den bei 140°C auspolymerisiert. Danach wurde der Ansatz abgekühlt, das Polymere abfiltriert und getrocknet. Bestimmte Eigenschaften der resultierenden Formmasse (A) sind zum Vergleich in Tabelle 1 angegeben.
Beispiel 2
Es wurde gemäß Beispiel 1 verfahren, jedoch wurde bei der Her¬ stellung des Acrylkautschuks (A2) das Makromonomere nicht mit dem Zulauf 1 allmählich zudosiert, sondern die gesamte Menge am Anfang der Acrylkautschukcopolymerisation vorgelegt. Bestimmte Eigenschaften der resultierenden Formmasse (A) sind in Tabelle 1 angegeben.
Beispiel 3
Es wurde gemäß Beispiel 1 verfahren, jedoch wurde bei der Her¬ stellung des Acrylkautschuks (A2) der Anteil des Makromonomeren im Zulauf 1 verringert.
Zulauf 1
231,25 g n-Butylacrylat (A2ml)
18,75 g SAN-Makromonomeres AN-6 (A2m2)
6,00 g Allylmethacrylat (A2m3)
Bestimmte Eigenschaften der resultierenden Formmasse (A) sind in Tabelle 1 angegeben.
Vergleichsversuch
Es wurde gemäß Beispiel 1 verfahren, jedoch wurde im Zulauf 1 das SAN-Makromonomere weggelassen und durch eine entsprechende Menge an n-Butylacrylat (A2ml) ersetzt.
Zulauf 1 250 g n-Butylacrylat (A2ml) 6 g Allylmethacrylat (A2m3) Bestimmte Eigenschaften der resultierenden Formmasse sind in Tabelle 1 angegeben.
Tabelle 1
Beispiel 1 2 3 Vergleichsversuch
% Makromonomeres im Acrylkautschuk 10 10 7,5 0 Schlagzähigkeit
(kJ/m2) 39 48 35 16
Kerbschlagzähig- keit (kJ/m2) 2,2 3,1 2,5 1,7
Lochkerbschlag- Zähigkeit (kJ/m2) 9 9,2 8,6 5
Schmelzindex
(g/10 min) 7 18 12 7

Claims

Patentansprüche
1. Verfahren zur Herstellung einer mit Acrylkautschuk (A2) modi- fizierten Formmasse (A) durch
(a) Copolymerisation einer Mischung (A2M) von
(al) mindestens einem Monomeren (A2ml) der Formel
CH? = CR1 - COOR2
worin R1 ein Wasserstoffatom oder eine Methylgruppe und R2 eine Alkylgruppe mit 1 bis 32 C-Atomen bedeu¬ ten, (a2) mindestens einem Makromonomeren (A2m2) mit einer endständigen copolymerisationsfähigen C=C-Doppel- bindung und einem mittleren Molekulargewicht M„ von etwa 1500 bis 40 000, das Einheiten mindestens eines der Monomeren (Alm) einpolymerisiert enthält, und voll- oder teilverträglich mit den Polymerisaten bzw. Copolymerisaten der Monomere (Alm) ist,
(a3)ggf. mindestens einem weiteren copolymerisierbaren olefinisch ungesättigten Monomeren (A2m3) in einer Menge von weniger als 50 Gew.% der Menge an Alkyl¬ acrylat bzw. -methacrylat (A2ml) , zu einem Acrylkautschuk (A2) mit einer Glasübergangstem¬ peratur von unter 0°C,
(b) Lösen oder Quellen des Acrylkautschuks (A2), ggf. unter Zugabe eines Lösungsmittels, in einem oder mehreren die harte Pfropfschale bildenden olefinisch ungesättigten Mo¬ nomeren (Alm) , deren Polymerisate bzw. Copolymerisate eine Glasübergangstemperatur von mindestens +20°C aufwei¬ sen, zu einer Mischung (AM) , und
(c) Pfropfpolymerisation der Mischung (AM) in einer oder meh- reren Stufen, wobei die Polymerisation der Mischung (AM) zumindest in der ersten Stufe und bis zu einem Umsatz von über 15 Gew.% als thermisch oder radikalisch initiierte Polymerisation in Substanz oder Lösung durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Menge des Makromonomeren (A2m2) 1 bis 25 Gew.% der Gesamt¬ menge an Monomeren (A2m) (einschließlich Makromonomeren) der Mischung (A2M) beträgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Makromonomere (A2m2) eine endständige Gruppe der Formel - 0 - CO - CR3 = CH2
enthält, worin R3 ein Wasserstoffatom oder eine Methyl¬ gruppe bedeutet.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, daß als Monomere (Alm) eine Mischung aus mehr als 50 Gew.% Styrol und weniger als 50 Gew.% Acrylnitril verwen¬ det wird, wobei sich die Prozentzahlen auf die Gesamtmenge der Monomeren der Mischung (AM) beziehen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß das Makromonomere (A2m2) überwiegend aus Styrol- und Acrylnitril-Einheiten besteht.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet,daß das Acrylester-Copolymerisat (A2) aus einer Mischung (A2M) hergestellt ist, die als weiteres Monomeres
(A2m3) ein Monomer mit zwei nicht-konjugierten olefinisch un- gesättigten Doppelbindungen in einer Menge von 0,5 bis 15 Gew.% der Mischung (A2M) enthält.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekenn¬ zeichnet, daß die Polymerisation der Mischung (AM) als ther- misch oder radikalisch initiierte Polymerisation in Substanz oder Lösung begonnen und nach einem Umsatz von über 20 Gew.% der Monomeren als radikalische Suspensionspolymerisation fortgeführt wird.
8. Formmassen, die nach einem der Verfahren der Ansprüche 1 bis 7 erhältlich sind.
9. Mit Acrylkautschuk modifizierte Formmasse (A) , erhältlich durch ein- oder mehrstufige Pfropfpolymerisation von einer Mischung (AM) von
(i) ein- oder mehreren, die harte Pfropfschale (AI) bildenden olefinisch ungesättigten Monomeren (Alm) , deren Polymeri¬ sate bzw. Copolymerisate eine Glasübergangstemperatur von mindestens + 20°C aufweisen, und (ii) einem Acrylkautschuk (A2), der eine Glasübergangstempera¬ tur von unter 0°C aufweist und ein Copolymerisat (A2) ist, hergestellt aus (al) mindestens einem Monomeren (A2ml) der Formel
CH2 = CR1 - COOR2 worin R1 ein Wasserstoffatom oder eine Methylgruppe, und R2 eine Alkylgruppe mit 1 bis 32 C-Atomen bedeu¬ ten, (a2) mindestens einem Makromonomeren (A2m2) mit einer end- ständigen copolymerisationsfähigen C=C-Doppelbindung und einem mittleren Molekulargewicht Mw von etwa 1500 bis 40 000, das Einheiten mindestens eines der Mono¬ meren (Alm) einpolymerisiert enthält und voll- oder teilverträglich mit den Polymerisaten bzw. Copolyme- risaten aus den Monomeren (Alm) ist, und (a3) ggf. mindestens einem weiteren olefinisch ungesättig¬ ten Monomeren in einer Menge von weniger als 50 Gew.% der Menge an Monomerem (A2ml) ,
wobei die Pfropfpolymerisation der Mischung (AM) , nach Lösen oder Quellen des Acrylkautschuks (A2) in den Mono¬ meren (Alm) , zumindest in der ersten Stufe und bis zu einem Umsatz von über 15 Gew.% der Monomeren als ther- misch oder radikalisch initiierte Polymerisation in Sub¬ stanz oder Lösung durchgeführt wird.
10. Formteile mit verbesserter Schlagzähigkeit und verminder¬ tem Oberflächenglanz, die aus Formmassen gemäß Anspruch 8 oder 9 erhältlich sind.
EP97920682A 1996-04-15 1997-04-14 Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen und so erhältliche formmassen Ceased EP0894101A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19614845 1996-04-15
DE19614845A DE19614845A1 (de) 1996-04-15 1996-04-15 Verfahren zur Herstellung von mit Acrylkautschuk modifizierten Formmassen und so erhältliche Formmassen
PCT/EP1997/001869 WO1997039038A1 (de) 1996-04-15 1997-04-14 Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen und so erhältliche formmassen

Publications (1)

Publication Number Publication Date
EP0894101A1 true EP0894101A1 (de) 1999-02-03

Family

ID=7791322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97920682A Ceased EP0894101A1 (de) 1996-04-15 1997-04-14 Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen und so erhältliche formmassen

Country Status (5)

Country Link
US (1) US6111024A (de)
EP (1) EP0894101A1 (de)
KR (1) KR20000005460A (de)
DE (1) DE19614845A1 (de)
WO (1) WO1997039038A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003262A1 (de) * 2004-01-21 2005-08-11 Basf Ag Thermisch polymerisierbare Mischungen aus multifunktionellen Makromonomeren und Polymerisationsinitiatoren und ihre Verwendung als Bindemittel für Substrate
JP2010526945A (ja) * 2007-05-09 2010-08-05 バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッド 紙及び板紙用のasaサイジングエマルジョン
KR100885819B1 (ko) 2007-12-18 2009-02-26 제일모직주식회사 굴절률이 우수한 분지형 아크릴계 공중합체 및 그 제조방법
KR100902352B1 (ko) 2008-03-13 2009-06-12 제일모직주식회사 상용성이 향상된 열가소성 수지 조성물
KR100886348B1 (ko) 2008-04-14 2009-03-03 제일모직주식회사 상용성이 개선된 난연 내스크래치 열가소성 수지 조성물
KR100998875B1 (ko) * 2008-10-29 2010-12-08 제일모직주식회사 저광 특성이 우수한 내후성 열가소성 수지 및 그 제조 방법
KR101188349B1 (ko) 2008-12-17 2012-10-05 제일모직주식회사 투명성 및 내스크래치성이 향상된 폴리카보네이트계 수지 조성물
US8735490B2 (en) 2009-12-30 2014-05-27 Cheil Industries Inc. Thermoplastic resin composition having improved impact strength and melt flow properties
KR101286503B1 (ko) * 2009-12-31 2013-07-16 제일모직주식회사 저광 특성이 우수한 내후성 열가소성 수지 조성물 및 그 제조 방법
EP2341090B1 (de) 2009-12-31 2012-09-12 Cheil Industries Inc. Wetterfester thermoplastischer Harz mit ausgezeichneten geringen Glanzeigenschaften und Herstellungsverfahren dafür
KR101332432B1 (ko) * 2010-07-13 2013-11-22 제일모직주식회사 스티렌계 열가소성 수지 조성물
KR20120076301A (ko) 2010-12-29 2012-07-09 제일모직주식회사 내열성과 내후성이 우수한 저광 열가소성 수지 조성물
KR101469263B1 (ko) 2011-12-22 2014-12-05 제일모직주식회사 열가소성 수지 조성물 및 그 성형품
EP2881408B1 (de) 2013-12-04 2017-09-20 Lotte Advanced Materials Co., Ltd. Styrolbasierte Copolymere und thermoplastische Harzzusammensetzung damit
US9902850B2 (en) 2014-06-26 2018-02-27 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition
US9850333B2 (en) 2014-06-27 2017-12-26 Lotte Advanced Materials Co., Ltd. Copolymers and thermoplastic resin composition including the same
US9790362B2 (en) 2014-06-27 2017-10-17 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article made using the same
US9856371B2 (en) 2014-06-27 2018-01-02 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and low-gloss molded article made therefrom
KR101822697B1 (ko) 2014-11-18 2018-01-30 롯데첨단소재(주) 외관 특성이 우수한 열가소성 수지 조성물 및 이를 이용한 성형품

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1182811B (de) * 1962-02-01 1964-12-03 Basf Ag Thermoplastische Formmassen auf der Basis von Styrol und Acrylnitril
DE1911882B2 (de) * 1969-03-08 1975-04-17 Basf Ag, 6700 Ludwigshafen Schlagfeste thermoplastische Massen
DE2826925A1 (de) * 1978-06-20 1980-01-17 Basf Ag Witterungsbestaendige, schlagzaehe thermoplastische massen mit guter einfaerbbarkeit
DE3104101A1 (de) * 1981-02-06 1982-09-09 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von pfropfpolymerisaten
DE3129378A1 (de) * 1981-07-25 1983-02-10 Basf Ag, 6700 Ludwigshafen Thermoplastische formmasse
DE3129472A1 (de) * 1981-07-25 1983-02-10 Basf Ag, 6700 Ludwigshafen Thermoplastische formmasse
DE3149046A1 (de) * 1981-12-11 1983-06-16 Basf Ag, 6700 Ludwigshafen Witterungsbestaendige thermoplastische formmassen
DE3149358A1 (de) * 1981-12-12 1983-06-16 Basf Ag, 6700 Ludwigshafen Thermoplastische formmasse
DE3227555A1 (de) * 1982-07-23 1984-01-26 Basf Ag, 6700 Ludwigshafen Thermoplastische formmasse
DE3206136A1 (de) * 1982-02-20 1983-09-01 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung thermoplastischer formmassen
US4931495A (en) * 1987-09-15 1990-06-05 Air Products And Chemicals, Inc. Non-aqueous dispersion polymerization
US4870131A (en) * 1988-02-22 1989-09-26 Monsanto Company Low gloss molding composition
DE3902653A1 (de) * 1989-01-30 1990-08-02 Roehm Gmbh Elastomere acrylharze
US5008330A (en) * 1989-03-08 1991-04-16 The Dow Chemical Company Molding compositions with acrylonitrile-EPDM-styrene copolymers
US5026777A (en) * 1989-11-17 1991-06-25 General Electric Company Low gloss thermoplastic molding compositions
JPH04248839A (ja) * 1991-01-08 1992-09-04 Toagosei Chem Ind Co Ltd 高分子微粒子およびその製造方法
TW222660B (de) * 1992-02-25 1994-04-21 Gen Electric
US5223573A (en) * 1992-02-28 1993-06-29 General Electric Company PC/ABS blends exhibiting reduced gloss
US5270386A (en) * 1992-03-10 1993-12-14 The Dow Chemical Company Styrenic copolymers modified with poly (phenylene ether)
US5262476A (en) * 1992-03-10 1993-11-16 The Dow Chemical Company Polycarbonate/polyester blends modified with poly(phenylene ether)
US5539030A (en) * 1992-03-10 1996-07-23 The Dow Chemical Company Polycarbonate compositions modified with poly(phenylene ether)
US5286790A (en) * 1992-03-10 1994-02-15 The Dow Chemical Company Acrylate polymers modified with poly(phenylene ether)
US5354796A (en) * 1992-10-01 1994-10-11 General Electric Company Low gloss thermoplastic molding compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9739038A1 *

Also Published As

Publication number Publication date
WO1997039038A1 (de) 1997-10-23
DE19614845A1 (de) 1997-10-16
US6111024A (en) 2000-08-29
KR20000005460A (ko) 2000-01-25

Similar Documents

Publication Publication Date Title
WO1997039038A1 (de) Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen und so erhältliche formmassen
EP0522351B1 (de) Schlagzäh-Modifizierungsmittel
EP1332166B8 (de) Pmma formmassen mit verbesserter schlagzähigkeit
DE68922354T2 (de) Verfahren zur Herstellung eines Kamm-Copolymers, Acryl-Kammcopolymere und schlagfeste Harzzusammensetzung.
DE3300526A1 (de) Schlagzaehmodifizierungsmittel
WO2004056893A1 (de) Verfahren zur herstellung von wässrigen dispersionen
DE2815201C2 (de) Pfropf-Polymeres und seine Verwendung
DE2253689A1 (de) Thermoplastische kunststoffmasse
DE4006643A1 (de) Teilchenfoermiges pfropfpolymerisat mit verbesserter haftung zwischen pfropfgrundlage und pfropfhuelle
DE69212068T2 (de) Thermoplastische Harzzusammensetzung
EP0526813B1 (de) Ethylenpolymerisate enthaltende Polymerlegierungen für flexible Folien
EP0337187A2 (de) Polymerisatmischung für flexible Folien
EP2882806B1 (de) Polymermischungen mit optimiertem zähigkeits-/steifigkeits-verhältnis und optischen eigenschaften
EP0894100A1 (de) Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen und so erhältliche formmassen
DE3688502T2 (de) Durchsichtiges schlagfestes Polymer.
US5910553A (en) Preparation of rubber-modified molding materials by means of groups which are incorporated in the rubber and form free radicals on thermal decomposition
DE4136993A1 (de) Transparente, schlagzaehmodifizierte pmma-formmassen mit verbesserter tieftemperatur-schlagzaehigkeit und hoher bewitterungsstabilitaet
EP0894115B1 (de) Formmassen zur herstellung von formteilen mit vermindertem oberflächenglanz
EP0636652A1 (de) Thermoplastische Formmassen aus einem Copolymerisat auf der Basis von Alkylestern der Methacrylsäure und einem fünfstufigen Emulsionspfropfcopolymerisat
EP0904306B1 (de) Verfahren zur herstellung von mit acrylkautschuk modifizierten formmassen mittels in den acrylkautschuk eingebauten gruppen, die mit einer redoxkomponente zu radikalen zersetzt werden
EP1397453A1 (de) Klebverbunde mit einer klebschicht aus polymethylmethacrylat
US5039749A (en) Thermoplastic acrylic resin composition
EP0792301B1 (de) Verfahren zur herstellung von kautschukmodifizierten formmassen aus derivate von acrylamiden oder -methacrylamiden enthaltenden reaktionsgemischen
DE2326934A1 (de) Vinylchloridharzmassen
EP0675164A1 (de) Thermoplastische Formmassen aus einem Pfropfcopolymerisat und einem Olefin-Copolymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20000221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020202