EP0879271A1 - Installation de traitement de d chets par injection de gaz chauds dans la charge traiter et recyclage des gaz de thermolyse produits - Google Patents

Installation de traitement de d chets par injection de gaz chauds dans la charge traiter et recyclage des gaz de thermolyse produits

Info

Publication number
EP0879271A1
EP0879271A1 EP97910483A EP97910483A EP0879271A1 EP 0879271 A1 EP0879271 A1 EP 0879271A1 EP 97910483 A EP97910483 A EP 97910483A EP 97910483 A EP97910483 A EP 97910483A EP 0879271 A1 EP0879271 A1 EP 0879271A1
Authority
EP
European Patent Office
Prior art keywords
gases
chamber
carriage
line
thermolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97910483A
Other languages
German (de)
English (en)
Inventor
Jean Roure
Guy Clot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francaise de Thermolyse Ste
Original Assignee
Francaise de Thermolyse Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9612551A external-priority patent/FR2754540B1/fr
Priority claimed from FR9612550A external-priority patent/FR2754539B1/fr
Application filed by Francaise de Thermolyse Ste filed Critical Francaise de Thermolyse Ste
Publication of EP0879271A1 publication Critical patent/EP0879271A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B7/00Coke ovens with mechanical conveying means for the raw material inside the oven
    • C10B7/14Coke ovens with mechanical conveying means for the raw material inside the oven with trucks, containers, or trays
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/18Treating trash or garbage

Definitions

  • Waste treatment plant by injecting hot gases into the load to be treated and recycling of the thermolysis gases produced
  • the present invention relates, in general, to the treatment by thermolysis of solid products or waste the discharge of which is harmful to the environment.
  • an installation for the treatment of solid products whose discharge is detrimental to the environment comprising, in general, a dehydration zone into which the solid products, a thermolysis zone downstream from the dehydration zone, an exit and cooling zone for solid residues and pumping means communicating by an extraction line with the thermolysis zone to maintain it in vacuum and to vacuum it thermolysis gases.
  • thermolytic transformation In order to be able to carry out the thermolytic transformation in the total absence of free oxygen, the dehydration, thermolysis and cooling zones were formed by chambers insulated from one another in a substantially sealed manner.
  • the dehydration and thermolysis chambers were provided with heating means, such as catalytic radiant panels or flame burners using thermolysis gases and / or commercial combustible gases (inexpensive).
  • heating means such as catalytic radiant panels or flame burners using thermolysis gases and / or commercial combustible gases (inexpensive).
  • the heating of the chambers of these chambers was thus ensured, in the case of burners, by the radiation of the interior wall of the chambers heated by the flames of the burners. Heating was then also ensured by convection of gas in the environment of the load of products to be treated, convection ensured by expansion of the gases generated in the corresponding chamber.
  • the catalytic radiant panels were supplied, on the one hand, with pure oxygen or with air and, on the other hand, with thermolysis gas originating from thermolytic decomposition.
  • thermolysis gas originating from thermolytic decomposition.
  • the carbon dioxide and water vapor generated by the oxidation of the thermolysis gases in the catalytic radiant panels could participate in the heating by convection and radiation.
  • thermolysis chamber was kept for example around 600 ° C while that of the dehydration chamber, lower, was kept above 100 ° C, for example around 120 ° C.
  • the solid products to be treated were brought by carriages, moved within the chambers by a mechanical system of the pinion and rack type, for example, or even of the type with electromagnetic drive. These carts were also designed so that solid residues - glass, rubble, metals, for example - remain in the carts while being easily removed at the outlet of the cooling chamber.
  • thermolysis process turns out to be far from perfect, in that there are in particular a certain number of unburnt residues after the thermolysis step.
  • thermolysis step It aims, in general, to improve the thermolysis step.
  • It also relates to an installation for the treatment of solid products, the discharge of which is harmful to the environment, which is self-sufficient from an energy point of view.
  • the present invention aims to provide an installation which is the least polluting possible, which makes it possible to recover easily storable products and requires a minimum of maintenance.
  • an installation for the treatment of solid products comprising a chamber for thermolysis of solid products by the addition of heat, a hot gaseous fluid supply line constituting the heat supply, opening into the chamber, a gas extraction line from the thermolysis zone, a carriage for bringing the solid products within this chamber, connection means fluids adapted to establish a temporary fluid connection between the supply line and a connection zone provided on the carriage and communicating with the zone for receiving the solid products from the carriage, characterized in that it comprises a boiler fluidly connected to the line extraction and adapted to burn at least part of the gases from the thermolysis chamber and a means for recycling the combustion gases from the boiler to produce the hot gaseous fluid.
  • the invention thus teaches to replace the burners or catalytic radiant panels by introducing a hot gaseous fluid directly into the charge of waste to be treated. This avoids any creation of hot spots or a possible explosive reaction between oxygen and hydrogen. In addition, bringing the gas directly to the load reduces the risk of unburnt.
  • thermolysis gases formed in the thermolysis chamber are used in the production of hot gaseous fluid intended to be introduced into this same chamber.
  • the hot gaseous fluid may advantageously include combustion gases from the boiler, thermolysis gases formed in the chamber and extracted beforehand therefrom by the extraction line, gases resulting from the treatment of thermolysis gases formed in the chamber and extracted beforehand by the extraction line or an inert gas (nitrogen, etc.).
  • the installation further comprises a heat exchanger disposed downstream of the extraction line, in which the gases extracted from the thermolysis zone are passed through the extraction line, as hot fluid, a fractionation train disposed downstream of the heat exchanger, in which the gases cooled by the heat exchanger to obtain separate fractions containing, respectively, heavy hydrocarbons, light hydrocarbons, water and uncondensed gases at low temperature, a recycling line connected to the heat exchanger, downstream of the fractionation train , so as to bring a part of the uncondensed gases at low temperature into the heat exchanger, as cold fluid, to raise the temperature, this recycling line being connected to the supply line and passing through the boiler for reheat the gases circulating in this recycling line by combustion of another part of the uncondensed gases at low temperature in the boiler.
  • the carriage comprises a tank with nozzles opening out, in a regularly distributed manner, from the bottom of the tank and fluidly connected by a tubular system to the connection area
  • the fluidic connection means comprise a mobile telescopic device between a position for fluid connection to the connection area of a pipe surmounted by a bellows and the other end of which is connected to the supply line and a position away from the carriage
  • the bellows is mounted on the telescopic device with the possibility of angular movement of the end of the bellows intended to be applied to the connection area
  • the installation also includes pumping means communicating by an extraction line with the chamber
  • the carriage is provided with displacement rails on which the tubular system is mounted and defined rollers ant a raceway for the carriage are mounted in the chamber.
  • the trolley comprises a tank with a grid forming the area for receiving solid products
  • the trolley comprises a tank provided with a gas-permeable bottom forming the area for receiving solid products and the fluid connection means form, with this bottom, a double bottom, in the connection position.
  • FIG. 1 is a schematic view of an installation according to a mode of preferred embodiment of the present invention
  • Figure 2 is a schematic elevational view with cross section of the dehydration and thermolysis chamber of the installation for the treatment of solid products of Figure 1
  • - Figure 3 is a schematic elevational view with longitudinal section of the chamber of Figure 2
  • FIG. 4 is a plan view from above of part of a carriage forming part of the chamber illustrated in FIGS. 2 and 3.
  • FIG. 1 The installation of FIG. 1 comprises an airlock 100 into which the solid products penetrate, then a thermolysis chamber 200 in which the solid products are first partially or completely dehydrated, then brought to their thermal decomposition temperature (known and fixed at advance) for example around 400 ° C (typically between 250 ° C and 750 ° C).
  • the thermolytic transformation is advantageously carried out in the total absence of free oxygen.
  • this thermolysis chamber is followed by a cooling zone 300 where the solid residues from the heat treatment are brought to room temperature, for example by spraying water. Furthermore, an emptying zone 400 of the carriages 2 is provided, after the cooling zone 300. The residues are poured into a swimming pool 500 from which they are then extracted, then sorted.
  • the zones 100, 200 and 300 are chambers insulated from one another in a substantially sealed manner, for example by guillotine doors 101 actuated by jacks; the doors between chambers 100 and 200, 200 and 300 and 300 and 400 being movable transversely in sealed housings (registers).
  • watertight doors are provided at the entrance to the chamber 100 and at the exit from the chamber 400, whereby the airlock 100 and the drainage area 400 are, at will, isolated from the outside. ; they can be movable vertically or horizontally or around a joint according to the dimensions of the installation, the space available and the free choice of the designer.
  • thermolysis chamber 200 The introduction of the products and the extraction of the residues are thus carried out, in order to avoid the entry of air into the chamber 200, by airlocks which alternately isolate the airlock 100 from the thermolysis chamber 200 when necessary. introduces the products into the airlock 100 and the thermolysis chamber 200 of the cooling chamber 300 when the residues from this third chamber are extracted.
  • the thermolysis chamber 200 is insulated to limit heat loss.
  • the chamber 200 is maintained at a constant pressure which can be fixed between 200 mbar and 1.2 bar. The same set pressure can be chosen in the other rooms. This pressure is maintained for example by pumping means communicating with the chamber 200 by an extraction line 102, such as a booster described below.
  • the gases present in the chamber 200 are aspirated by an extraction line 102 at a temperature, which is in the case of this preferred embodiment, of approximately 330 ° C. They are then passed through a tube heat exchanger 103, as hot fluid.
  • This circuit includes a contact cooling means 105, called an oil quench by a person skilled in the art, a pump 106 and a heat exchanger 107.
  • the recycling line 104 opens into the cooler 105 from below. this.
  • the pump 106 and the heat exchanger 107 are placed on a bypass 104 'of the recycling line 104 which exits from the bottom of the cooler 105 and returns to this cooler 105 from the top.
  • a draw-off line 108 for heavy hydrocarbons is connected to this bypass 104 ', between the pump 106 and the exchanger 107.
  • the cold fluid of the exchanger 107 is water supplied by the line 109. This water is transformed into steam which comes out through line 110, connected to a steam recovery unit (not shown).
  • the gases entering the cooler 105 are cooled by spraying heavy hydrocarbons which have been previously recovered from the bottom of the cooler 105, sucked in by the pump 106, cooled in the heat exchanger 107 to a temperature of approximately 120-130 ° C and reinjected into the cooler 105 from the top of it. Heavy hydrocarbons are thus continuously formed which are partly withdrawn by line 108 and partly recirculated in the cooler 105.
  • the uncondensed gases leave the cooler 105 at a temperature of about 150 ° C. and are brought by the recycling line 104 in a condenser 111 intended to cool them down to a temperature of around 45 ° C.
  • This condenser 111 is supplied by a refrigerant circulating in a cooling circuit comprising a pump 112 and a fan 113.
  • the condensed products accumulate at the bottom of the condenser 111, are extracted from it and introduced into a separator 114 (of the lamellar decanter type), to separate the light hydrocarbons from the water and the organic compounds which are dissolved therein.
  • the light hydrocarbons are extracted via line 115 while the aqueous phase is introduced via line 116 into another separator 117, such as a distillation unit, to separate the water from the organic compounds which are dissolved therein.
  • the water leaving the separator 117 is brought by a line 118 to a water treatment installation, while the soluble organic compounds leaving this separator 117, by a line 119, can be brought from this line 119 to the boiler 120, to be burned there.
  • the uncondensed gases leaving the condenser 111 at a temperature of about 45 ° C are, in turn, brought by the recycling line 104 in a water spraying device 121, also called human water quench of career.
  • This device 121 is intended to wash the uncondensed gases in order to rid them in particular of acids, such as hydrochloric acid.
  • water is circulated in the device 121, by means of a circuit 122 incorporating a pump 123.
  • This circuit 122 includes a bypass 124 allowing the wastewater to be brought to a treatment installation. waters, for example that mentioned above.
  • the uncondensed gases leaving the device 121 at a temperature of the order of 45 ° C are, for a first part, reinjected into the heat exchanger 103, via a booster 125 which raises their temperature up to at around 100 ° C.
  • This part of gas passes through the heat exchanger 103, as a cold fluid, and leaves it at a temperature of the order of 300 ° C., to then pass through a coil 126 in which the gases of this part of uncondensed gas are heated to a temperature of the order of 650 ° C. by combustion gases from the boiler 120.
  • the heated gases enter a line for introducing or supplying hot gases 127 into the chamber 200.
  • Another part of the uncondensed gases is brought, via an inlet line 128, to the boiler 120, in which they are burned to heat the part of gas passing through the coil 126.
  • the circulation of the gases over this line 128 is provided by a fan 129.
  • a third part of these uncondensed gases at low temperature is injected, via an injection line 130, to which a booster 131 is connected, into the cooling zone 300.
  • the hot gases recovered from this cooling zone 300 are also recovered on the extraction line 102.
  • the hot gases present in the emptying zone 400 are also recovered and introduced into the cooler 105, from the bottom thereof, via a recovery line 132.
  • the boiler 120 it will be observed that the combustion gases or fumes produced by the latter are brought by a line 133 to a gas / gas heat exchanger 134 intended to heat the combustion air (air or pure oxygen) used by the boiler 120 and arriving by line 135 entering the heat exchanger 134.
  • the boiler 120 is equipped with multi-fuel burners to be able to burn the uncondensed gases but also the light hydrocarbons, the organic compounds dissolved in the water and which have been separated from it or any other liquid or gaseous fuel.
  • a fuel line 136 is provided, connected to the boiler
  • thermolysis gas storage tank (not shown) can be provided.
  • Compression means (not shown) can also be provided to compress the gases before they are stored in the tank.
  • pressure and temperature control means are mounted on the various chambers 100 to 400, as well as on the boiler 120.
  • means for regulating the gas flow rate by burner at the inlet of boiler 120 are provided at the inlet of this boiler 120.
  • the solid residues leaving the cooling zone 300 are treated by wet process in order to separate the mineral fines from the coal.
  • the coal can be mixed with the tars recovered in the fractionation train to produce a combustible mixture.
  • This combustible mixture could, for example, be burned in the boiler 120 or outside the installation, in particular to produce electrical energy.
  • the hot gases introduced into the chamber 200 are enriched, on contact with the charge of solid products to be treated, hydrogen, hydrocarbons (methane, ethane, ethylene), which increases the PCI of these gas (in practice, we go from 4,000 kJ / kg to 18,000 - 19,000 kJ / kg), but also other gases, in particular carbon dioxide, carbon monoxide ...
  • the cooling of the gases from the ovens of the thermolysis chamber 200 makes it possible to preserve the pumping means.
  • the gases intended to be recycled no longer contain water or tars and the latter can be easily stored or recovered as mentioned above, without fouling the installation.
  • the recycling means defined above is here constituted by the coil 126 forming a gas / gas heat exchanger.
  • This oven 1 rests on the ground by means of four feet, only three of them being visible in FIGS. 2 and 3 and marked 11 to 13.
  • the extraction line 102 opens into the oven 1, through conventional sealing means, from the top of this oven 1 and is extended by a hood 15.
  • the latter extends to the immediate vicinity of a carriage 2 and covers the upper end of a tank 16 for receiving solid products, forming part of the carriage 2, the other constituent elements of which will be described in more detail below.
  • a hot gas supply line 127 also opens into the furnace 1.
  • the sealing of the furnace 1 is here also ensured using conventional sealing means not shown in FIGS. 2 and 3.
  • Fluid connection means 20 adapted to establish a temporary fluid connection between the supply line 127 and a connection zone 21 provided on the carriage 2 will now be described.
  • These fluid connection means 20 comprise a telescopic device 22, movable between a position for fluid connection of one end of a rigid pipe 23 to the connection area 21 and a position away from the carriage 2.
  • the other end of this pipe 23 is, in turn, fluidly connected to the supply line 127.
  • the fluid connection means 20 comprise a bellows 24 mounted on the telescopic device 22.
  • One end of the bellows 24 is fluidly and sealingly connected to the pipe 23, while its other end provides the temporary fluid connection with the connection zone 21, in the fluid connection position.
  • the telescopic device 20 comprises a stirrup 25, the free ends of which are fixed, by screwing, on two opposite sides of a square section frame 26.
  • Two tabs 27 extend the stirrup 25 and are pivotally connected, each to one of the two other opposite sides of the frame 26 using means known per se.
  • the fixing of the stirrup 25 to the frame 26 and the pivoting connection of the tabs 27 on this same frame 26 is carried out in a substantially median zone on each of the sides of the frame 26 which are connected to each other at their end and across their width.
  • each of the legs 27 is integral with a flange or annular part 28 intended to come to be applied on the connection zone 21, by means of a seal 29 made of a material having a certain elasticity and taken in a groove in the annular flange 28.
  • One end of the bellows 24 is taken between this flange 28 of a flange 30 screwed onto the flange 28, only one of the screws 31 having been shown in the figures.
  • the other end of the bellows 24 is taken between flanges 32 and 33 connecting this second end of the bellows 24 fluidly and sealingly to a frustoconical end of the pipe 23.
  • the fixing flanges 32 and 33, one to the other, is carried out using bolt-nut assemblies, only one of which has been shown and identified 34.
  • the supply line 127 is in sealed fluid communication with the connection zone 21, in the position of fluid connection of the telescopic device 20.
  • the temporary fluid connection can be carried out with a certain flexibility thanks to to the travel possibilities offered by the arrangement thus produced.
  • annular seal 28 is also engaged on the first end of the bellows 24.
  • the bracket 25 of the telescopic device 20 is actuated by means of a jack of which only the rod 35 has been shown in FIGS. 2 and 3.
  • One end of this rod 35 is threaded and passes through an opening made in the base 36 of the stirrup 25 connecting the lateral branches of the stirrup 25 which are fixed to the frame 26.
  • the rod 35 abuts by a shoulder against one side of the base 36, while a nut 37 is engaged on the threaded end of the rod 35 and abuts against the other side of the base 36, in order to secure the stirrup 25 to the rod 35.
  • the passage of the rod 35 between the inside and the outside of the oven 1 is done through a stuffing box 38 fixed on the underside of the oven 1, also by screwing.
  • Means for actuating the rod 35 can be of any type known to a person skilled in the art, such as a pneumatic cylinder, etc. These have not been shown in FIGS. 1 and 2.
  • a second bellows 38 ' intended to make the seal, is connected, on the one hand to the base 36 of the stirrup 25 and, on the other hand, to the stuffing box 38, surrounding the rod 35.
  • the latter also comprises two beams 39, 40 parallel and of U-shaped cross section each coming, within the furnace 1, to rest in rotation on a row of rollers 41, 42 mounted on consoles 43 , 44 integral with the walls of the oven 1, each by means of a yoke 45, 46 fixed to the console 43, 44 respectively.
  • rollers 41, 42 and consoles 43, 44 are of course arranged on either side of the telescopic device 20, so as not to interfere with it.
  • the carriage 2 is also guided laterally, on both sides, by means of a plurality of rollers 47, 48 whose mounting is similar to that of the rollers 41, 42, except that they are movable in rotation around of an axis perpendicular to that of the rollers 41, 42.
  • Means for moving the carriage 2 outside the oven 1, similar to those which have just been described, or others, can of course be provided outside this oven.
  • a plurality of nozzles 49 open out from the bottom of the tank 16.
  • the tank 16 is in fact square in shape and consists of four walls of sides 50-53 fixed to each other at their longitudinal ends, here by welding, being walls of sheet metal.
  • a tubular system 70 composed, on the one hand, of a central octagonal distributor
  • the central distributor 71 comprises two octagonal plates 76, 77 superimposed, in parallel, one on the other, the upper plate 76 being of dimensions slightly smaller than those of the lower plate 77.
  • Side walls join the respective parallel sides of the upper 76 and lower 77 octagonal plates and are interconnected by their longitudinal ends.
  • each of these side walls is provided with an opening to which is connected the end of a tube, of the type to those marked
  • each of these tubes 72, 73 is arranged perpendicular to the corresponding side wall.
  • These tube sections 73', 73" have substantially the same length.
  • tubes of the type marked 72 and arranged at right angles, also consist of two sections of tube 72 ′, 72 ", of which the one connected to the opening is longer than the second.
  • This last section 72" always has a circular section, while the other section 72 'is a flattened tube, connected to the second section 72 "by a tubular element 72" “substantially frustoconical.
  • Two sections of tube, of the type marked 74, 75 with circular section are, moreover, fluidly connected to each of the sections of flattened tube 72 ', in the vicinity of the tubular element 72' "and register a right angle.
  • the tubular system 70 rests on the angles and the beams, a branch of each of the angles being flush with the corresponding branch of the beam 39, 40 with a U-shaped cross section.
  • the central distributor 71 is fixed to the two intermediate angles 63, 64 parallels closest to it, as follows.
  • the two parallel side walls of the distributor 71 closest to these angles are provided with a hole for the passage of a nut, while a fixing lug, having a smooth hole aligned with the hole in the side wall, is fixed. , by welding, at the intermediate angle.
  • a bolt is engaged in the two aligned holes and a nut is engaged on the free end of the bolt, in the vicinity of the fixing lug, a washer being interposed between the head of the bolt and the side wall.
  • the octagonal lower plate 77 of the central distributor 71 has a central circular opening 80.
  • the peripheral zone bordering this central opening defines the connection zone 21 mentioned above, the circular opening 80 having substantially the same diameter as the bellows 24 at its free end. It will also be noted that this plate 77 is at the same level as the base of the beams 39, 40 with a U-shaped cross section.
  • a nozzle 49 is placed in the vicinity of the closed end of each of the sections of tube 72 ", 73", 74 , 75 having a closed end, near the middle zone of each section of tube 73 'of circular section, on each section of flattened tube 72', at the intersection of sections of tube 74, 75 forming a right angle as well as in the center of the octagonal upper plate 76 of the distributor 71, so as to produce an arrangement of nozzles 49 regularly spaced from one another and covering the entire bottom of the carriage 2.
  • the nozzles are screwed by force, with the interposition of a circular wedge 81 on sleeves 82, shouldered outwardly at their base, projecting from the sections of tubes, a free sealing washer 83 being received on the outer peripheral shoulder formed by each sleeve 82.
  • nozzles or injectors are provided with calibrated lateral holes (not marked) for the injection of hot gases into the load to be treated and closed at their upper end.
  • calibrated lateral holes typically have a diameter of less than a millimeter.
  • the bottom of the carriage 2 also comprises a bottom plate 84 (not shown in FIG. 4), such as a sheet metal, drilled at the locations of the sleeves 82, coming to rest on the tubular system 70 and disposed, at the level of the free washers 83, between the latter and the tubular system 70.
  • This bottom plate is intended to receive the solid products to be treated.
  • this bottom plate 84 is fixed laterally to the peripheral plates 76-79 mentioned above, by means of screws engaged in tapped holes visible in FIG. 3, only two of them carrying the reference 85.
  • the other tapped holes of the peripheral dishes 76-79 visible in FIG. 4 are of course identical to those identified. If necessary, lateral wedging stops can be interposed between the screw head and the bottom plate 84.
  • the free end of the nozzles 49 is in leaktight fluid connection with the circular opening 80 defined by the connection zone 21 and, consequently, when the telescopic device 20 is in the leaktight fluid connection position, with the hot gas supply line 127.
  • a carriage 2 loaded with waste to be treated can be brought to the inlet of the oven 1 and then introduced into it, in rotation on the rollers 41, 42. Then the telescopic device 20 is actuated to bring the seal
  • the pumping means are put into action to evacuate the oxygen present in the chamber 200, by the extraction line 102.
  • a stream of hot gas is then introduced via the line 127, the pipe 23, the bellows 24, the central distributor 71, the tubular system 70 and the nozzles 49 within the load to be treated, from below, to carry out the dehydration and thermolysis of the solid products.
  • the gases from the furnace 1 are then treated as described above in support of FIG. 1.
  • the telescopic device 20 is then retracted to allow the carriage 2 to be removed from the oven 1, possibly after cooling.
  • a person skilled in the art will also know how to replace the tubular system with a simple pierced grid, for example of calibrated passage holes, constituting an area for receiving solid products to be treated, means of fluid connection being provided to establish a temporary fluid relationship between a hot gas supply line and these through holes.
  • the tubular system can also be replaced by a mesh of elements forming passages calibrated to the desired dimensions for a given application.
  • the nozzles may also have another shape, such as, for example, a "mushroom" shape, the part facing the receiving area of the carriage is provided with calibrated passages.
  • nozzle holes can be replaced by calibrated passages having other shapes, such as slots, for example.
  • calibrated passages having other shapes, such as slots, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'installation concerne une installation de traitement de produits solides dont le rejet est préjudiciable pour l'environnement, comportant une chambre de thermolyse (200) des produits solides par apport de chaleur, une ligne d'alimentation (127) en fluide gazeux chaud constituant l'apport de chaleur, débouchant dans la chambre, une ligne d'extraction (102) des gaz de la zone de thermolyse, un chariot (2) pour amener les produits solides au sein de cette chambre, des moyens de raccordement fluidique (23) adaptés à établir un raccord fluide temporaire entre la ligne d'alimentation (127) et une zone de raccordement prévue sur le chariot et communiquant avec la zone de réception des produits solides du chariot, caractérisée en ce qu'elle comporte une chaudière (120) raccordée fluidiquement à la ligne d'extraction (102) et adaptée à brûler une partie au moins des gaz issus de la chambre de thermolyse (200) et un moyen de recyclage (126) des gaz de combstion de la chaudière pour produire le fluide gazeux chaud. Avantageusement, le fluide gazeux chaud et les gaz brûlés dans la chaudière sont des gaz issus du traitement des gaz extraits de la chambre de thermolyse (200).

Description

Installation de traitement de déchets par injection de gaz chauds dans la charge à traiter et recyclage des gaz de thermolyse produits
La présente invention concerne, d'une manière générale, le traitement par thermolyse de produits solides ou déchets dont le rejet est préjudiciable pour l'environnement. On connaît déjà, d'après le document EP-A-0.610.120, une installation pour le traitement de produits solides dont le rejet est préjudiciable à l'environnement, comportant, d'une manière générale, une zone de déshydratation où pénètrent les produits solides, une zone de thermolyse en aval de la zone de déshydratation, une zone de sortie et de refroidissement des résidus solides et des moyens de pompage communiquant par une ligne d'extraction avec la zone de thermolyse pour la maintenir en dépression et en aspirer des gaz de thermolyse.
Afin de pouvoir effectuer la transformation thermolytique en l'absence totale d'oxygène libre, les zones de déshydratation, de thermolyse et de refroidissement étaient constituées par des chambres isolées les unes des autres de façon sensiblement étanche.
Les chambres de déshydratation et de thermolyse étaient munies de moyens de chauffage, tels que des panneaux radiants catalytiques ou des brûleurs à flamme utilisant les gaz de thermolyse et/ou des gaz combustibles du commerce (bon marché). Le chauffage des enceintes de ces chambres était ainsi assuré, dans le cas des brûleurs, par le rayonnement de la paroi intérieure des chambres chauffée par les flammes des brûleurs. Le chauffage était alors également assuré par convection de gaz dans l'environnement de la charge de produits à traiter, convection assurée par détente des gaz générés dans la chambre correspondante.
Les panneaux radiants catalytiques étaient alimentés, d'une part, en oxygène pur ou en air et, d'autre part, en gaz de thermolyse provenant de la décomposition thermolytique. Dans ce cas, le gaz carbonique et la vapeur d'eau générés par l'oxydation des gaz de thermolyse dans les panneaux radiants catalytiques pouvaient participer à la mise en température par convection et rayonnement.
Ainsi, la température de la chambre de thermolyse était par exemple maintenue aux alentours de 600°C tandis que celle de la chambre de déshydratation, inférieure, était maintenue au-dessus de 100°C, par exemple aux environs de 120°C.
Les produits solides à traiter étaient amenés par des chariots, déplacés au sein des chambres par un système mécanique du genre pignon et crémaillère, par exemple, ou encore du genre à entraînement électromagnétique. Ces chariots étaient d'ailleurs également conçus pour que les résidus solides - verres, gravats, métaux, par exemple - restent dans les chariots tout en étant enlevés facilement à la sortie de la chambre de refroidissement.
La solution décrite dans ce document EP-A-0.610.120 donne globalement satisfaction. Toutefois, la mise en oeuvre de brûleurs dans les chambres de déshydratation et de thermolyse génère des points chauds soumettant ces chambres à des contraintes mécaniques non négligeables. Ces contraintes mécaniques peuvent être source de problèmes d'étanchéité, ce qui peut s'avérer particulièrement gênant, car la pénétration d'oxygène au sein de la chambre de thermolyse peut provoquer une explosion en présence d'hydrogène présent dans la chambre de thermolyse. Ce risque d'explosion existe également dans le cas de la mise en oeuvre de panneaux radiants catalytiques, du fait que ceux-ci utilisent de l'oxygène en tant que comburant.
Par ailleurs, le chauffage de ces chambres est consommateur d'énergie externe lorsqu'il est fait appel à des gaz combustibles du commerce.
Enfin, le processus de thermolyse s'avère loin d'être parfait, en ce qu'il subsiste notamment un certain nombre d'imbrûlés après l'étape de thermolyse.
Du document GB-A-327 717, il est connu d'injecter des gaz chauds dans la charge du matériau grâce à un chariot ayant un double fond perméable aux gaz et destiné à porter le matériau. Le double fond est pourvu d'un raccord définissant une ouverture d'admission de gaz de traitement. Le four recevant le chariot est pourvu de rails à encoches sur lesquels circule le chariot ainsi que d'un conduit d'amenée de gaz. Lorsque les roues du chariot pénètrent dans les encoches, le raccord se retrouve dans le prolongement du conduit permettant une communication fluidique entre ces deux éléments.
De telles dispositions ne garantissent pas une étanchéité optimale entre le raccord et le conduit et demandent une grande précision à la chute du chariot dans les encoches. La présente invention vise à pallier ces inconvénients.
Elle vise, d'une manière générale, à améliorer l'étape de thermolyse.
Elle a également pour objet une installation de traitement de produits solides dont le rejet est préjudiciable pour l'environnement, qui soit autosuffisante du point de vue énergétique.
A titre subsidiaire, la présente invention vise à réaliser une installation qui soit la moins polluante possible, qui permette de récupérer des produits aisément stockables et demande un minimum d'entretien.
Elle propose pour ce faire une installation de traitement de produits solides dont le rejet est préjudiciable pour l'environnement, comportant une chambre de thermolyse des produits solides par apport de chaleur, une ligne d'alimentation en fluide gazeux chaud constituant l'apport de chaleur, débouchant dans la chambre, une ligne d'extraction des gaz de la zone de thermolyse, un chariot pour amener les produits solides au sein de cette chambre, des moyens de raccordement fluidique adaptés à établir un raccord fluide temporaire entre la ligne d'alimentation et une zone de raccordement prévue sur le chariot et communiquant avec la zone de réception des produits solides du chariot, caractérisée en ce qu'elle comporte une chaudière raccordée fluidiquement à la ligne d'extraction et adaptée à brûler une partie au moins des gaz issus de la chambre de thermolyse et un moyen de recyclage des gaz de combustion de la chaudière pour produire le fluide gazeux chaud.
L'invention enseigne ainsi de remplacer les brûleurs ou panneaux radiants catalytiques par une introduction d'un fluide gazeux chaud directement dans la charge de déchets à traiter. On évite ainsi toute création de points chauds ou une éventuelle réaction explosive entre de l'oxygène et de l'hydrogène. De plus, en amenant le gaz directement à la charge, on réduit le risque d'imbrûlés.
De telles dispositions concourent, par ailleurs, à l'autosuffisance du procédé de traitement de la présente invention. En effet, on utilise les gaz de thermolyse formés dans la chambre de thermolyse dans la production de fluide gazeux chaud destiné à être introduit dans cette même chambre.
Selon le cas, le fluide gazeux chaud pourra avantageusement comporter des gaz de combustion de la chaudière, des gaz de thermolyse formés dans la chambre et extraits préalablement de celle-ci par la ligne d'extraction, des gaz issus du traitement des gaz de thermolyse formés dans la chambre et extraits préalablement par la ligne d'extraction ou encore un gaz inerte (azote ...).
De telles dispositions concourent bien sûr, elles aussi, à l'autosuffisance du procédé de traitement mis en oeuvre dans l'installation de la présente invention. Suivant un mode de réalisation préféré, l'installation comporte en outre un échangeur de chaleur disposé en aval de la ligne d'extraction, dans lequel on fait passer les gaz extraits de la zone de thermolyse par la ligne d'extraction, en tant que fluide chaud, un train de fractionnement disposé en aval de l'échangeur de chaleur, dans lequel on fait passer les gaz refroidis par l'échangeur de chaleur pour obtenir des fractions séparées contenant, respectivement, des hydrocarbures lourds, des hydrocarbures légers, de l'eau et des gaz incondensés à faible température, une ligne de recyclage raccordée à l'échangeur de chaleur, en aval du train de fractionnement, de manière à amener une partie des gaz incondensés à faible température dans l'échangeur de chaleur, en tant que fluide froid, pour en élever la température, cette ligne de recyclage étant raccordée à la ligne d'alimentation et passant par la chaudière pour réchauffer les gaz circulant dans cette ligne de recyclage par combustion d'une autre partie des gaz incondensés à faible température dans la chaudière.
Selon des caractéristiques préférées de cette installation, éventuellement combinées : le chariot comporte un bac avec des buses débouchant, de manière régulièrement répartie, du fond du bac et raccordées fluidiquement par un système tubulaire à la zone de raccordement, les moyens de raccordement fluidique comportent un dispositif télescopique mobile entre une position de raccordement fluidique à la zone de raccordement d'un tuyau surmonté d'un soufflet et dont l'autre extrémité est raccordée à la ligne d'alimentation et une position à l'écart du chariot, le soufflet est monté sur le dispositif télescopique avec possibilité de débattement angulaire de l'extrémité du soufflet destinée à être appliquée sur la zone de raccordement, l'installation comporte en outre des moyens de pompage communiquant par une ligne d'extraction avec la chambre, le chariot est pourvu de rails de déplacement sur lesquels est monté le système tubulaire et des galets définissant un chemin de roulement pour le chariot sont montés dans la chambre. le chariot comporte un bac avec une grille formant la zone de réception des produits solides, le chariot comporte un bac muni d'un fond perméable aux gaz formant la zone de réception des produits solides et les moyens de raccordement fluidique forment, avec ce fond, un double fond, en position de raccordement.
Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple non limitatif, en regard des dessins annexés sur lesquels : - la figure 1 est une vue schématique d'une installation conforme à un mode de réalisation préféré de la présente invention ; la figure 2 est une vue schématique en élévation avec coupe transversale de la chambre de déshydratation et de thermolyse de l'installation pour le traitement de produits solides de la figure 1 ; - la figure 3 est une vue schématique en élévation avec coupe longitudinale de la chambre de la figure 2 ; et la figure 4 est une vue en plan du dessus d'une partie d'un chariot faisant partie de la chambre illustrée sur les figures 2 et 3.
L'installation de la figure 1 comporte un sas 100 où pénètrent les produits solides, puis une chambre de thermolyse 200 dans laquelle les produits solides sont d'abord partiellement ou totalement déshydratés, puis portés à leur température de décomposition thermique (connue et fixée à l'avance) par exemple aux environs de 400°C (typiquement entre 250°C et 750°C). La transformation thermolytique est avantageusement effectuée en l'absence totale d'oxygène libre.
De manière préférée, cette chambre de thermolyse est suivie d'une zone de refroidissement 300 où les résidus solides du traitement thermique sont amenés à la température ambiante, par exemple par aspersion d'eau. Par ailleurs, il est prévu une zone de vidange 400 des chariots 2, après la zone de refroidissement 300. Les résidus sont déversés dans une piscine 500 d'où ils sont ensuite extraits, puis triés.
De manière préférée, les zones 100, 200 et 300 sont des chambres isolées les unes des autres de façon sensiblement étanche, par exemple par des portes guillotine 101 actionnées par des vérins ; les portes entre les chambres 100 et 200, 200 et 300 et 300 et 400 étant mobiles transversalement dans des logements étanches (registres). En outre, des portes étanches sont prévues à l'entrée de la chambre 100 et à la sortie de la chambre 400, grâce à quoi le sas 100 et la zone de vidange 400 sont, à volonté, isolés vis à vis de l'extérieur ; elles peuvent être mobiles verticalement ou horizontalement ou encore autour d'une articulation selon les dimensions de l'installation, l'espace disponible et le libre choix du concepteur.
L'introduction des produits et l'extraction des résidus sont ainsi réalisés, pour éviter l'entrée d'air dans la chambre 200, par des sas qui isolent alternativement, selon les besoins, le sas 100 de la chambre de thermolyse 200 quand on introduit les produits dans le sas 100 et la chambre de thermolyse 200 de la chambre de refroidissement 300 quand on extrait les résidus de cette troisième chambre. La chambre de thermolyse 200 est calorifugée pour limiter les déperditions calorifiques.
La chambre 200 est maintenue à une pression constante qui peut être fixée entre 200 mbars et 1 ,2 bar. Une même pression de consigne peut être choisie dans les autres chambres. Cette pression est maintenue par exemple par des moyens de pompage communiquant avec la chambre 200 par une ligne d'extraction 102, tels qu'un surpresseur décrit ci-dessous.
Lors de l'étape de thermolyse, les gaz présents dans la chambre 200 sont aspirés par une ligne d'extraction 102 à une température, qui est dans le cas de ce mode de réalisation préféré, d'environ 330°C. On leur fait alors traverser un échangeur de chaleur à tubes 103, en tant que fluide chaud.
Ils en ressortent à une température de l'ordre de 200°C et sont alors amenés, par une ligne de recyclage 104, dans diverses unités d'un train de fractionnement.
Tout d'abord, les gaz sont mis en circulation dans un circuit de refroidissement destiné à en séparer les hydrocarbures lourds. Ce circuit comporte un moyen de refroidissement par contact 105, appelé quench à l'huile par l'homme du métier, une pompe 106 et un échangeur de chaleur 107. La ligne de recyclage 104 débouche dans le refroidisseur 105 par le bas de celui-ci.
La pompe 106 et l'échangeur de chaleur 107 sont placés sur une dérivation 104' de la ligne de recyclage 104 qui sort par le bas du refroidisseur 105 et revient dans ce refroidisseur 105 par le haut. Une ligne de soutirage 108 des hydrocarbures lourds est branchée sur cette dérivation 104', entre la pompe 106 et l'échangeur 107. Le fluide froid de l'échangeur 107 est de l'eau amenée par la ligne 109. Cette eau est transformée en vapeur qui ressort par la ligne 110, raccordée à une unité de valorisation de la vapeur (non représentée). Ainsi, les gaz pénétrant dans le refroidisseur 105 sont refroidis par aspersion d'hydrocarbures lourds qui ont été préalablement récupérés au fond du refroidisseur 105, aspirés par la pompe 106, refroidis dans l'échangeur de chaleur 107 jusqu'à une température d'environ 120-130°C et réinjectés dans le refroidisseur 105 par le haut de celui-ci. On forme ainsi continuellement des hydrocarbures lourds qui sont, en partie, soutirés par la ligne 108 et en partie, remis en circulation dans le refroidisseur 105. Les gaz incondensés sortent du refroidisseur 105 à une température d'environ 150°C et sont amenés par la ligne de recyclage 104 dans un condenseur 111 destiné à les refroidir jusqu'à une température d'environ 45°C. Ce condenseur 111 est alimenté par un réfrigérant circulant dans un circuit de refroidissement comportant une pompe 112 et un ventilateur 113. Les produits condensés s'accumulent au bas du condenseur 111 , sont extrait de celui-ci et introduits dans un séparateur 114 (du type décanteur lamellaire), pour séparer les hydrocarbures légers de l'eau et des composés organiques qui y sont dissous. Les hydrocarbures légers sont extraits par la ligne 115 tandis que la phase aqueuse est introduite par la ligne 116 dans un autre séparateur 117, tel qu'une unité de distillation, pour séparer l'eau des composés organiques qui y sont dissous.
L'eau sortant du séparateur 117 est amenée par une ligne 118 vers une installation de traitement des eaux, tandis que les composés organiques solubles sortant de ce séparateur 117, par une ligne 119, peuvent être amenés, à partir de cette ligne 119, vers la chaudière 120, pour y être brûlés.
D'une manière similaire, les hydrocarbures légers peuvent également être amenés, à partir de la ligne 115, vers cette même chaudière 120.
Les gaz incondensés sortant du condenseur 111 à une température d'environ 45°C sont, quant à eux, amenés par la ligne de recyclage 104 dans un dispositif de pulvérisation d'eau 121 , également appelé quench à l'eau par l'homme du métier. Ce dispositif 121 est destiné à laver les gaz incondensés pour les débarrasser notamment des acides, tel que l'acide chlorhydrique.
Pour ce faire, de l'eau est mise en circulation dans le dispositif 121 , par l'intermédiaire d'un circuit 122 incorporant une pompe 123. Ce circuit 122 comporte une dérivation 124 permettant d'amener les eaux usées vers une installation de traitement des eaux, par exemple celle mentionnée supra.
Les gaz incondensés sortant du dispositif 121 à une température de l'ordre de 45°C, sont, pour une première partie, réinjectés dans l'échangeur de chaleur 103, par l'intermédiaire d'un surpresseur 125 qui élève leur température jusqu'à environ 100°C. Cette partie de gaz traverse l'échangeur de chaleur 103, en tant que fluide froid, et en ressort à une température de l'ordre de 300°C, pour ensuite passer par un serpentin 126 dans lequel les gaz de cette partie de gaz incondensés sont réchauffés jusqu'à une température de l'ordre de 650°C par des gaz de combustion de la chaudière 120.
En sortie du serpentin 126, les gaz réchauffés pénètrent dans une ligne d'introduction ou d'alimentation 127 de gaz chauds dans la chambre 200.
Une autre partie des gaz incondensés est amenée, par l'intermédiaire d'une ligne d'arrivée 128, à la chaudière 120, dans laquelle ils sont brûlés pour réchauffer la partie de gaz traversant le serpentin 126. La mise en circulation des gaz sur cette ligne 128 est assurée par un ventilateur 129.
Une troisième partie de ces gaz incondensés à faible température (environ 45°C) est injectée, par l'intermédiaire d'une ligne d'injection 130, sur laquelle est branché un surpresseur 131 , dans la zone de refroidissement 300. Les gaz chauds récupérés de cette zone de refroidissement 300 sont également récupérés sur la ligne d'extraction 102.
Par ailleurs, les gaz chauds présents dans la zone de vidange 400 sont, eux aussi, récupérés et introduits dans le refroidisseur 105, par le bas de celui-ci, par l'intermédiaire d'une ligne de récupération 132. Pour ce qui concerne la chaudière 120, on observera que les gaz de combustion ou fumées produits par celle-ci sont amenés par une ligne 133 à un échangeur de chaleur gaz / gaz 134 destiné à réchauffer l'air comburant (air ou oxygène pur) utilisé par la chaudière 120 et arrivant par la ligne 135 pénétrant dans l'échangeur de chaleur 134. Pour effectuer la combustion, la chaudière 120 est équipée de brûleurs multi-combustibles pour pouvoir brûler les gaz incondensés mais également les hydrocarbures légers, les composés organiques dissous dans l'eau et qui en ont été séparés ou tout autre combustible liquide ou gazeux.
Pour le cas où le pouvoir calorifique inférieur (PCI) des gaz de thermolyse s'avéreraient trop faible pour permettre une combustion correcte, il est prévu une ligne d'arrivée 136 de fuel, raccordée à la chaudière
120 de gaz de thermolyse.
Afin que la combustion dans la chaudière 120 ne dépende pas de la richesse momentanée des gaz de thermolyse provenant de la chambre 200 ou de la production de ces gaz à un PCI (Pouvoir Calorifique Inférieur) acceptable sur le plan des performances de la combustion, un réservoir de stockage de gaz de thermolyse (non représenté) peut être prévu. Des moyens de compression (non représentés) peuvent également être prévus pour comprimer les gaz avant leur stockage dans le réservoir. L'homme du métier saura choisir les vannes appropriées pour une mise en oeuvre aux emplacements respectifs de l'installation décrite à l'appui de la figure 1.
On notera encore que des moyens de contrôle de pression et de température, non représentés, sont montés sur les différentes chambres 100 à 400, ainsi que sur la chaudière 120. En outre, des moyens de régulation du débit de gaz par brûleur en entrée de chaudière 120, également non représentés sur la figure 1 , sont prévus en entrée de cette chaudière 120.
L'homme du métier saura choisir et mettre en oeuvre ces moyens de contrôle et de régulation ainsi que des moyens de surveillance de la quantité d'oxygène présent dans la chaudière 120 ou de la quantité d'hydrogène au sein de l'installation.
Les résidus solides sortant de la zone de refroidissement 300 sont traités par voie humide afin de séparer les fines minérales du charbon. Le charbon peut être mélangé aux goudrons récupérés dans le train de fractionnement pour réaliser un mélange combustible. Ce mélange combustible pourra être, par exemple, brûlé dans la chaudière 120 ou hors de l'installation, notamment pour produire de l'énergie électrique.
Grâce à cette installation, les gaz chauds introduits dans la chambre 200 s'enrichissent, au contact de la charge de produits solides à traiter, d'hydrogène, d'hydrocarbures (méthane, éthane, éthylène), ce qui augmente le PCI de ces gaz (en pratique, on passe de 4 000 kJ/kg à 18 000 - 19 000 kJ/kg), mais également d'autres gaz, notamment du dioxyde de carbone, du monoxyde de carbone ...
On observera notamment à cet égard que l'installation permet une augmentation du PCI et de la richesse des gaz à chaque passage au travers de la charge.
Dans cette installation, la déshydratation et la thermolyse sont effectuées simultanément et on lance le processus de traitement par chauffage d'un gaz inerte (azote ...) ou de gaz incondensés préalablement stockés.
Par ailleurs, le refroidissement des gaz issus des fours de la chambre de thermolyse 200 permet de préserver les moyens de pompage. De plus, les gaz destinés à être recyclés ne contiennent plus d'eau ni de goudrons et ces derniers peuvent être aisément stockés ou valorisés comme mentionné supra, sans venir encrasser l'installation.
On observera encore que le moyen de recyclage défini ci-dessus est ici constitué par le serpentin 126 formant un échangeur de chaleur gaz/gaz.
On va maintenant décrire, à l'appui des figures 2 à 4, la structure interne de l'un des fours de déshydratation et de thermolyse de la chambre 200 ainsi que la structure de chaque chariot destiné à y pénétrer.
Ce four 1 repose sur le sol par l'intermédiaire de quatre pieds, seuls trois d'entre eux étant visibles sur les figures 2 et 3 et repérés 11 à 13.
La ligne d'extraction 102 débouche dans le four 1 , au travers de moyens d'étanchéité classiques, par le haut de ce four 1 et est prolongée par une hotte 15. Cette dernière se prolonge jusqu'à proximité immédiate d'un chariot 2 et recouvre l'extrémité supérieure d'un bac 16 de réception des produits solides, faisant partie du chariot 2, dont les autres éléments constitutifs seront décrits plus en détail ci-après.
Une ligne d'alimentation 127 en gaz chauds, débouche également dans le four 1. L'étanchéité du four 1 est ici également assurée à l'aide de moyens d'étanchéité classiques non représentés sur les figures 2 et 3. Des moyens de raccordement fluidique 20 adaptés à établir un raccord fluidique temporaire entre la ligne d'alimentation 127 et une zone de raccordement 21 prévue sur le chariot 2 vont maintenant être décrits.
Ces moyens de raccordement fluidique 20 comportent un dispositif télescopique 22, mobile entre une position de raccordement fluidique d'une extrémité d'un tuyau rigide 23 à la zone de raccordement 21 et une position à l'écart du chariot 2. L'autre extrémité de ce tuyau 23 est, quant à elle, raccordée fluidiquement à la ligne d'alimentation 127.
Plus précisément, les moyens de raccordement fluidique 20 comportent un soufflet 24 monté sur le dispositif télescopique 22. L'une des extrémités du soufflet 24 est raccordée fluidiquement et de manière étanche au tuyau 23, tandis que son autre extrémité réalise le raccord fluidique temporaire avec la zone de raccordement 21 , dans la position de raccordement fluidique.
En fait, le dispositif télescopique 20 comporte un étrier 25 dont les extrémités libres sont fixées, par vissage, sur deux côtés opposés d'un cadre à section carrée 26. Deux pattes 27 prolongent l'étrier 25 et sont reliées en basculement, chacune à l'un des deux autres côtés opposés du cadre 26 à l'aide de moyens connus en soi. La fixation de l'étrier 25 au cadre 26 et la liaison en pivotement des pattes 27 sur ce même cadre 26, est effectuée dans une zone sensiblement médiane de chacun des côtés du cadre 26 qui sont reliés l'un à l'autre à leur extrémité et sur leur largeur.
L'autre extrémité de chacune des pattes 27 est solidaire d'une bride ou pièce annulaire 28 destinée à venir s'appliquer sur la zone de raccordement 21 , par l'intermédiaire d'un joint d'étanchéité 29 en un matériau présentant une certaine élasticité et pris dans une rainure ménagée dans la bride annulaire 28.
Une extrémité du soufflet 24 est prise entre cette bride 28 d'une bride 30 vissée sur la bride 28, une seule des vis 31 ayant été représentée sur les figures. Similairement, l'autre extrémité du soufflet 24 est prise entre des brides 32 et 33 reliant cette seconde extrémité du soufflet 24 fluidiquement et de manière étanche à une extrémité tronconique du tuyau 23. La fixation des brides 32 et 33, l'une à l'autre, est effectuée à l'aide d'ensembles boulons- écrous, dont un seul a été représenté et repéré 34.
Grâce à ces dispositions, d'une part, la ligne d'alimentation 127 est en communication fluidique étanche avec la zone de raccordement 21 , dans la position de raccordement fluidique du dispositif télescopique 20.
D'autre part, grâce à l'agencement du genre cardan au moyen de la liaison en basculement limité des pattes 27 sur le cadre 26 et à la mise en oeuvre du soufflet 24, le raccordement fluidique temporaire peut être effectué avec une certaine souplesse grâce aux possibilités de débattement offertes par l'agencement ainsi réalisé.
On notera encore que le joint annulaire 28 est également engagé sur la première extrémité du soufflet 24.
On observera, à cet égard, qu'une possibilité de débattement angulaire limité peut également être conférée au cadre 26 par rapport à l'étrier 25, autour d'un axe perpendiculaire à celui de la liaison en basculement des pattes 27 sur le cadre 26.
L'étrier 25 du dispositif télescopique 20 est actionné à l'aide d'un vérin dont seule la tige 35 a été représentée sur les figures 2 et 3. Une extrémité de cette tige 35 est filetée et passe au travers d'une ouverture pratiquée dans la base 36 de l'étrier 25 raccordant les branches latérales de l'étrier 25 qui sont fixées au cadre 26. La tige 35 vient buter par un épaulement contre un côté de la base 36, tandis qu'un écrou 37 est engagé sur l'extrémité filetée de la tige 35 et vient buter contre l'autre côté de la base 36, afin de solidariser l'étrier 25 à la tige 35. Le passage de la tige 35 entre l'intérieur et l'extérieur du four 1 se fait au travers d'un presse-garniture 38 fixé sur le dessous du four 1 , également par vissage.
Des moyens d'actionnement de la tige 35 peuvent être de tout type connu de l'homme du métier, tel que vérin pneumatique ... Ceux-ci n'ont pas été représentés sur les figures 1 et 2. En outre, un second soufflet 38', destiné réaliser l'étanchéité, est raccordé, d'une part à la base 36 de l'étrier 25 et, d'autre part, au presse- garniture 38, en entourant la tige 35.
Pour en revenir au chariot 2, celui-ci comporte par ailleurs deux poutrelles 39, 40 parallèles et à section transversale en U venant chacune, au sein du four 1 , reposer en roulement sur une rangée de galets 41 , 42 montés sur des consoles 43, 44 solidaires des parois du four 1 , chacun par l'intermédiaire d'une chape 45, 46 fixée à la console 43, 44 respective.
Ces galets 41 , 42 et consoles 43, 44 sont bien sûr disposés de part et d'autre du dispositif télescopique 20, d'une façon à ne pas gêner celui- ci.
Le chariot 2 est également guidé latéralement, de part et d'autre, au moyen d'une pluralité de galets 47, 48 dont le montage est similaire à celui des galets 41 , 42, excepté le fait qu'ils sont mobiles en rotation autour d'un axe perpendiculaire à celui des galets 41 , 42.
Des moyens de déplacement du chariot 2 à l'extérieur du four 1 , similaires à ceux qui viennent d'être décrits, ou autres, peuvent bien sûr être prévus à l'extérieur de ce four.
Comme on peut encore le voir sur les figures 2 et 3, une pluralité de buses 49 débouche du fond du bac 16.
Pour détailler leur montage sur le chariot 2, référence sera maintenant également faite à la figure 4.
Le bac 16 est en fait de forme carrée et constitué de quatre parois de côtés 50-53 fixées les unes aux autres à leurs extrémités longitudinales, ici par soudage, s'agissant de parois en tôle métallique.
Leurs extrémités inférieures sont recourbées, à angle droit, vers l'intérieur de façon à pouvoir, pour deux d'entre elles, opposées, être fixées aux poutrelles 39, 40, ici également par soudage. Les deux autres extrémités inférieures, opposées, sont, quant à elles, fixées, également par soudage, sur un certain nombre de cornières 54-60 et 54'-60' disposées parallèlement les unes aux autres et perpendiculairement aux poutrelles 39, 40. L'autre extrémité longitudinale de chacune de ces cornières 54-60 et 54'-60' est fixée à une branche de la poutrelle correspondante. Ces cornières d'extrémité 54-60 et 54'- 60', fixées à une paroi de côté 51, 53 et à une poutrelle 39, 40 respective sont alignées deux par deux, tandis que des cornières 61-66 intermédiaires sont prévues entre les poutrelles 39, 40. Ces cornières intermédiaires 61-66 sont, chacune, alignées avec deux cornières d'extrémité 54-60, 54'-60' et fixées par chacune de leurs extrémités à une branche de la poutrelle 39, 40 opposée à celle à laquelle est fixée la cornière d'extrémité 54-60, 54'-60'.
On notera encore que les bords repliés des parois de côté 50-53 du bac sont jointifs et que la cornière intermédiaire centrale n'est pas visible sur la figure 4.
Sur cet arrangement de poutrelles et de cornières est disposé un système tubulaire 70 composé, d'une part, d'un distributeur octogonal central
71 et, d'autre part, d'une pluralité de tubes 72-75 raccordés à ce distributeur 71. Par souci de clarté, seul un tube de chaque type a été repéré sur la figure 4, alors qu'il y en a quatre de chaque type, comme cela est visible sur cette figure
4.
En l'espèce, le distributeur central 71 comporte deux plaques octogonales 76, 77 superposées, parallèlement, l'une sur l'autre, la plaque supérieure 76 étant de dimensions légèrement inférieures à celles de la plaque inférieure 77. Des parois latérales joignent les côtés parallèles respectifs des plaques octogonales supérieure 76 et inférieure 77 et sont reliées entre elles par leurs extrémités longitudinales.
En outre, chacune de ces parois latérales est pourvue d'une ouverture à laquelle est raccordée l'extrémité d'un tube, du type à ceux repérés
72 et 73, dont l'autre extrémité est close. Chacun de ces tubes 72, 73 est disposé perpendiculairement à la paroi latérale correspondante. Quatre de ces tubes, du type repéré 73 et disposés à angle droit, se composent d'un premier tronçon de tube 73' raccordé fluidiquement à l'ouverture de la paroi et présentant un premier diamètre et d'un second tronçon de tube 73" de diamètre inférieur au premier diamètre et prolongeant le premier tronçon 73' par l'intermédiaire d'une section tronconique 73'" de tube. Ces tronçons de tube 73', 73" ont sensiblement la même longueur.
Quatre autres tubes, du type repéré 72 et disposés à angle droit, sont également constitués de deux tronçons de tube 72', 72", dont celui raccordé à l'ouverture est plus long que le second. Ce dernier tronçon 72" présente toujours une section circulaire, tandis que l'autre tronçon 72' est un tube aplati, raccordé au second tronçon 72" par un élément tubulaire 72'" sensiblement tronconique. Deux tronçons de tube, du type repéré 74, 75 à section circulaire sont, par ailleurs, raccordés fluidiquement à chacun des tronçons de tube aplati 72', au voisinage de l'élément tubulaire 72'" et inscrivent un angle droit.
Les extrémités les plus éloignées des parois latérales de ces différents tronçons tubulaires sont closes et situées à proximité immédiate d'un plat périphérique 76-79, fixé, par soudage à la paroi de côté 50-53 correspondante du bac 16, perpendiculairement à celle-ci. Ces plats 76-79 sont également jointifs à leurs extrémités longitudinales.
Le système tubulaire 70 repose sur les cornières et les poutrelles, une branche de chacune des cornières étant à fleur avec la branche correspondante de la poutrelle 39, 40 à section transversale en U. Le distributeur central 71 est fixé aux deux cornières intermédiaires 63, 64 parallèles les plus proches de lui, de la façon suivante. Les deux parois latérales parallèles du distributeur 71 les plus proches de ces cornières, sont pourvues d'un trou de passage d'un écrou, tandis qu'une patte de fixation, présentant un trou lisse aligné avec le trou de la paroi latérale est fixée, par soudage, à la cornière intermédiaire. Un boulon est engagé dans les deux trous en alignement et un écrou est engagé sur l'extrémité libre du boulon ,au voisinage de la patte de fixation, une rondelle étant interposée entre la tête du boulon et la paroi latérale.
La plaque inférieure octogonale 77 du distributeur central 71 présente une ouverture circulaire centrale 80. La zone périphérique bordant cette ouverture centrale définit la zone de raccordement 21 mentionnée supra, l'ouverture circulaire 80 présentant sensiblement le même diamètre que le soufflet 24 à son extrémité libre. On notera encore que cette plaque 77 est à un même niveau que la base des poutrelles 39, 40 à section transversale en U.
Comme on le voit sur la figure 4, une buse 49, seules cinq d'entre elles ayant été repérées, par souci de clarté, est disposée au voisinage de l'extrémité close de chacun des tronçons de tube 72", 73", 74, 75 ayant une extrémité close, à proximité de la zone médiane de chaque tronçon de tube 73' à section circulaire, sur chaque tronçon du tube aplati 72', à l'entrecroisement de tronçons de tube 74, 75 formant un angle droit ainsi qu'au centre de la plaque supérieure 76 octogonale du distributeur 71, de manière à réaliser un arrangement de buses 49 régulièrement espacées les unes par rapport aux autres et couvrant tout le fond du chariot 2.
Comme on le voit mieux sur l'arrachement partiel de la figure 2 ou 3 de la buse 49, les buses sont vissées à force, avec interposition d'une cale circulaire 81 sur des manchons 82, épaulés extérieurement à leur base, faisant saillie des tronçons de tubes, une rondelle libre d'étanchéification 83 étant reçue sur l'épaulement périphérique extérieur formé par chaque manchon 82.
Ces buses ou injecteurs sont pourvus de trous calibrés latéraux (non repérés) pour l'injection de gaz chauds dans la charge à traiter et fermés à leur extrémité supérieure. Typiquement, ces trous calibrés ont un diamètre inférieur au millimètre.
Le fond du chariot 2 comporte par ailleurs une plaque de fond 84 (non représentée sur la figure 4), telle qu'une tôle, percée aux emplacements des manchons 82, venant reposer sur le système tubulaire 70 et disposée, au niveau des rondelles libres 83, entre ces dernières et le système tubulaire 70. Cette plaque de fond est destinée à recevoir les produits solides à traiter.
En outre, cette plaque de fond 84 est fixée latéralement aux plats périphériques 76-79 susmentionnés, au moyen de vis engagées dans des trous taraudés visibles sur la figure 3, seuls deux d'entre eux portant le repère 85. Les autres trous taraudés des plats périphériques 76-79 visibles sur la figure 4 sont bien sûr identiques à ceux repérés. Si nécessaire, des butées de calage latéral peuvent être interposées entre la tête de vis et la plaque de fond 84.
Grâce à ces dispositions, l'extrémité libre des buses 49 est en raccordement fluidique étanche avec l'ouverture circulaire 80 définie par la zone de raccordement 21 et, par voie de conséquence, lorsque le dispositif télescopique 20 est en position de raccordement fluidique étanche, avec la ligne d'arrivée de gaz chauds 127.
Ainsi un chariot 2 chargé de déchets à traiter peut être amené à l'entrée du four 1 puis introduit dans celui-ci, en roulement sur les galets 41 , 42. Puis le dispositif télescopique 20 est actionné pour amener le joint
28 en contact d'étanchéité avec la zone de raccordement 21.
Une fois le chariot disposé sous la hotte 15, les moyens de pompage sont mis en action pour évacuer l'oxygène présent dans la chambre 200, par la ligne d'extraction 102. Un courant de gaz chaud est ensuite introduit via la ligne 127, le tuyau 23, le soufflet 24, le distributeur central 71 , le système tubulaire 70 et les buses 49 au sein de la charge à traiter, par le dessous de celle-ci, pour réaliser la déshydratation et la thermolyse des produits solides.
Les gaz issus du four 1 sont alors traités comme décrit ci-dessus à l'appui de la figure 1.
Le dispositif télescopique 20 est ensuite rétracté pour permettre l'extraction du chariot 2 du four 1 , éventuellement après refroidissement.
Dans d'autres modes de réalisation, on pourra prévoir des moyens de guidage en translation de l'étrier 25. Alternativement, l'homme du métier saura également réaliser une installation dans laquelle le chariot serait amené par un dispositif télescopique en raccordement fluidique avec une ligne d'alimentation en gaz chaud fixe ; réaliser un chariot et des moyens de raccordement fluidique permettant une injection de gaz chaud dans la charge à traiter, par le côté ou par le dessus, voire une combinaison de ces types d'injection, éventuellement même avec une injection par le dessous, telle que décrite ci-dessus. L'homme du métier saura également remplacer le système tubulaire par une simple grille percée, par exemple de trous de passage calibrés, constituant une zone de réception de produits solides à traiter, des moyens de raccordement fluidique étant prévus pour établir un rapport fluidique temporaire entre une ligne d'alimentation en gaz chaud et ces trous de passage.
Le système tubulaire pourra encore être remplacé par un maillage d'éléments formant des passages calibrés aux dimensions souhaitées pour une application donnée. Les buses pourront, elles aussi, présenter une autre forme, telle que, par exemple, une forme en "champignon" dont la partie en regard de la zone de réception du chariot est pourvue des passages calibrés.
De plus, les trous des buses pourront être remplacés par des passages calibrés ayant d'autres formes, telles que des fentes, par exemple. L'homme du métier saura bien sûr également choisir les dimensions appropriées des éléments constitutifs de l'installation conforme à la présente invention, selon l'application envisagée.
Il va de soi que la description qui précède n'a été proposée qu'à titre d'exemple non limitatif et que de nombreuses variantes peuvent être proposées par l'homme de l'art sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Installation de traitement de produits solides dont le rejet est préjudiciable pour l'environnement, comportant une chambre de thermolyse (1 , 200) des produits solides par apport de chaleur, une ligne d'alimentation en fluide gazeux chaud (127) constituant l'apport de chaleur, débouchant dans la chambre, une ligne d'extraction (102) des gaz de la chambre de thermolyse, un chariot (2) pour amener les produits solides au sein de cette chambre, des moyens de raccordement fluidique (20, 23, 24) adaptés à établir un raccord fluide temporaire entre la ligne d'alimentation et une zone de raccordement (21) prévue sur le chariot et communiquant avec la zone de réception (84) des produits solides du chariot, caractérisée en ce qu'elle comporte une chaudière (120)raccordée fluidiquement à la ligne d'extraction et adaptée à brûler une partie au moins des gaz issus de la chambre de thermolyse et un moyen de recyclage des gaz de combustion de la chaudière pour produire le fluide gazeux chaud.
2. Installation selon la revendication 1 , caractérisée en ce que le fluide gazeux chaud comporte des gaz de thermolyse formés dans la chambre de thermolyse et extraits préalablement de celle-ci par la ligne d'extraction.
3. Installation selon la revendication 1 , caractérisée en ce que le fluide gazeux chaud comporte des gaz de combustion de la chaudière.
4. Installation selon la revendication 1, caractérisée en ce que le fluide gazeux chaud comporte des gaz issus du traitement des gaz de thermolyse formés dans la chambre et extraits préalablement par la ligne d'extraction.
5. Installation selon la revendication 1 , caractérisée en ce qu'elle comporte en outre un échangeur de chaleur (103) disposé en aval de la ligne d'extraction, dans lequel on fait passer les gaz extraits de la chambre de thermolyse par la ligne d'extraction, en tant que fluide chaud, un train de fractionnement disposé en aval de l'échangeur de chaleur, dans lequel on fait passer les gaz refroidis par l'échangeur de chaleur pour obtenir des fractions séparées contenant, respectivement, des hydrocarbures lourds, des hydrocarbures légers, de l'eau et des gaz incondensés à faible température, une ligne de recyclage (104) raccordée à l'échangeur de chaleur, en aval du train de fractionnement, de manière à amener une partie des gaz incondensés à faible température dans l'échangeur de chaleur, en tant que fluide froid, pour en élever la température, cette ligne de recyclage étant raccordée à la ligne d'alimentation et passant par la chaudière pour réchauffer les gaz circulant dans cette ligne de recyclage par combustion d'une autre partie des gaz incondensés à faible température dans la chaudière.
6. Installation selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le chariot (2) comporte un bac (16) avec des buses (49) débouchant, de manière régulièrement répartie, du fond (84) du bac (16) et raccordées fluidiquement par un système tubulaire (70) à la zone de raccordement (21).
7. Installation selon l'une quelconque des revendications 1 à 6, caractérisée en ce que les moyens de raccordement fluidique (20, 23, 24) comportent un dispositif télescopique (20) mobile entre une position de raccordement fluidique à la zone de raccordement (21) d'un tuyau (23) surmonté d'un soufflet (24) et dont l'autre extrémité est raccordée à la ligne d'alimentation (17) et une position à l'écart du chariot (2).
8. Installation selon la revendication 7, caractérisée en ce que le soufflet est monté sur le dispositif télescopique (20) avec possibilité de débattement angulaire de l'extrémité du soufflet (24) destinée à être appliquée sur la zone de raccordement (21).
9. Installation selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle comporte en outre des moyens de pompage communiquant par la ligne d'extraction avec la chambre.
10. Installation selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le chariot (2) est pourvu de rails de déplacement (39, 40) sur lesquels est monté le système tubulaire (70) et en ce que des galets (41 , 42) définissant un chemin de roulement pour le chariot (2) sont montés dans la chambre.
11. Installation selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le chariot comporte un bac avec une grille formant la zone de réception des produits solides.
12. Installation selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le chariot comporte un bac muni d'un fond perméable aux gaz formant la zone de réception des produits solides et en ce que les moyens de raccordement fluidique forment, avec ce fond, un double fond en position de raccordement.
13. Installation selon l'une quelconque des revendications 1 et 5 à 12, caractérisée en ce que le fluide gazeux chaud comporte un gaz inerte, tel que de l'azote.
EP97910483A 1996-10-15 1997-10-15 Installation de traitement de d chets par injection de gaz chauds dans la charge traiter et recyclage des gaz de thermolyse produits Withdrawn EP0879271A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9612551A FR2754540B1 (fr) 1996-10-15 1996-10-15 Procede et installation pour le traitement de dechets solides par thermolyse
FR9612550A FR2754539B1 (fr) 1996-10-15 1996-10-15 Procede de traitement de dechets par injection de gaz chauds directement dans la charge a traiter, installation et chariot pour la mise en oeuvre de ce procede
FR9612551 1996-10-15
FR9612550 1996-10-15
PCT/FR1997/001838 WO1998016594A1 (fr) 1996-10-15 1997-10-15 Installation de traitement de déchets par injection de gaz chauds dans la charge à traiter et recyclage des gaz de thermolyse produits

Publications (1)

Publication Number Publication Date
EP0879271A1 true EP0879271A1 (fr) 1998-11-25

Family

ID=26233042

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97910484A Withdrawn EP0888416A1 (fr) 1996-10-15 1997-10-15 Procede et installation pour le traitement de dechets solides par thermolyse
EP97910483A Withdrawn EP0879271A1 (fr) 1996-10-15 1997-10-15 Installation de traitement de d chets par injection de gaz chauds dans la charge traiter et recyclage des gaz de thermolyse produits

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97910484A Withdrawn EP0888416A1 (fr) 1996-10-15 1997-10-15 Procede et installation pour le traitement de dechets solides par thermolyse

Country Status (9)

Country Link
US (1) US6168688B1 (fr)
EP (2) EP0888416A1 (fr)
JP (3) JPH11504984A (fr)
KR (2) KR100281312B1 (fr)
BR (2) BR9706864A (fr)
CA (2) CA2240530A1 (fr)
DE (2) DE888416T1 (fr)
ES (2) ES2127170T1 (fr)
WO (2) WO1998016593A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834470C2 (de) * 1998-07-30 2000-05-25 Thermoselect Ag Vaduz Vorrichtung zur Durchführung von Hochtemperatur-Recycling von heterogen anfallenden Abfällen und Verfahren zu deren Beschickung
BR9909884A (pt) * 1999-02-25 2000-12-26 Nexus Technologies Instalação de tratamento termolìtico de dejetos
KR100375819B1 (ko) * 2000-09-06 2003-03-15 (주)이앤비코리아 함수율 조절식 슬러지 건조장치
US6883444B2 (en) * 2001-04-23 2005-04-26 N-Viro International Corporation Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
KR100526017B1 (ko) * 2002-11-25 2005-11-08 한국에너지기술연구원 열분해 비응축성 가스를 회수하는 고분자 폐기물열분해장치 및 그 방법
US10163676B2 (en) 2013-06-27 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and system for preventing backside peeling defects on semiconductor wafers
US20160001196A1 (en) * 2014-07-03 2016-01-07 Richard Lyle Shown System for the separation of gases from solids and fluids
CN108384583B (zh) * 2018-03-14 2024-04-02 深圳市水务(集团)有限公司 一种固体废物热解气净化与利用系统
KR102411128B1 (ko) * 2020-08-19 2022-06-22 보국에너텍주식회사 질소산화물 저감형 열분해 가스화 시스템

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB327717A (en) * 1928-11-07 1930-04-07 Eesti Patendi Aktsiaselts Improvements in the construction of wagons and rails, applied in ovens for dry distillation, driers, kilns and similar ovens working by means of gas and vapour injections or circulations
US2208705A (en) * 1935-06-03 1940-07-23 Soubbotin Igor Tunnel oven used for the carbonization at low temperatures of oil shale, lignite, coal, and similar materials
US3525673A (en) * 1969-03-24 1970-08-25 Eric C Cameron Closed,controlled system for carbonizing organic refuse
DE2621392C3 (de) 1976-05-14 1981-07-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren und Anlage zur Aufarbeitung von Abfallstoffen
DE3509275A1 (de) 1984-03-23 1985-12-19 Carl Still Gmbh & Co Kg, 4350 Recklinghausen Verfahren zur thermischen behandlung von waschbergen
FR2674149B1 (fr) * 1991-03-20 1994-04-15 Pierre Chaussonnet Systeme pour le traitement par thermolyse, en absence totale d'oxygene des produits solides dont le rejet est prejudiciable pour l'environnement.
FR2679009B1 (fr) * 1991-07-09 1997-12-12 Inst Francais Du Petrole Procede et dispositif de traitement de dechets par contact direct
DE4202321A1 (de) 1992-01-29 1993-08-05 Adolf Gorski Anlage zum verschwelen von abfallstoffen
FR2701035B1 (fr) * 1993-02-01 1995-04-21 Thermolyse Ste Francaise Procédé et installation pour le traitement par thermolyse de déchets solides, sans condensation d'hydrocarbures.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9816594A1 *

Also Published As

Publication number Publication date
KR100282759B1 (ko) 2001-05-02
ES2127171T1 (es) 1999-04-16
US6168688B1 (en) 2001-01-02
JP3081850U (ja) 2001-11-22
CA2240530A1 (fr) 1998-04-23
JPH11504984A (ja) 1999-05-11
DE888416T1 (de) 1999-06-10
EP0888416A1 (fr) 1999-01-07
BR9706864A (pt) 1999-12-28
JP2999558B2 (ja) 2000-01-17
WO1998016594A1 (fr) 1998-04-23
ES2127170T1 (es) 1999-04-16
BR9706834A (pt) 1999-12-28
KR19990072140A (ko) 1999-09-27
CA2240532A1 (fr) 1998-04-23
KR100281312B1 (ko) 2001-03-02
DE879271T1 (de) 1999-06-10
JPH11504983A (ja) 1999-05-11
WO1998016593A1 (fr) 1998-04-23
KR19990072139A (ko) 1999-09-27

Similar Documents

Publication Publication Date Title
EP0879271A1 (fr) Installation de traitement de d chets par injection de gaz chauds dans la charge traiter et recyclage des gaz de thermolyse produits
EP1753999B1 (fr) Dispositif a lit fluidise a agent comburant enrichi en oxygene
CA2114196C (fr) Four a vapeur a chauffage direct au gaz
FR2731506A1 (fr) Appareil et procede de chauffage de liquide par contact direct et indirect
WO2006016042A1 (fr) Procede et dispositif de generation de vapeur d'eau adapte a l'oxy-combustion
FR2754539A1 (fr) Procede de traitement de dechets par injection de gaz chauds directement dans la charge a traiter, installation et chariot pour la mise en oeuvre de ce procede
FR2802616A1 (fr) Methode et dispositif d'auto-combustion de dechets organiques graisseux comportant un foyer a chauffe tangentielle
CA1155640A (fr) Dispositif d'echange thermique entre des particules solides et un courant gazeux
EP0970326A1 (fr) Incinerateur et procede d'incineration de dechets liquides, pateux et solides
FR2468070A1 (fr) Generateur de gaz de combustion a haute temperature
EP0026150B1 (fr) Appareil de chauffage à combustibles solides, pouvant également brûler des combustibles liquides
WO1987003669A1 (fr) Procede pour activer la combustion dans un appareil de chauffage a combustible solide, et cheminee pour la mise en oeuvre de ce procede
FR2884902A1 (fr) Four compact pour l'oxydation de produits par un lit fluidise
FR2599124A1 (fr) Installation perfectionnee pour la destruction par incineration des ordures menageres ou autres matieres
KR20090002785U (ko) 목재연탄보일러장치
FR2685449A1 (fr) Four de pyrolyse sous basse pression pour la destruction de dechets organiques industriels.
FR2823555A1 (fr) Systeme et procede d'incineration de matieres organiques, notamment de farines et graisses d'origine animale
FR3065721A1 (fr) Installation compacte pour l'incineration de boues
FR2572952A1 (fr) Procede et installation de purification des fumees
FR2586031A1 (fr) Groupe de carbonisation autosecheur et refroidisseur
FR2505350A1 (fr) Gazeificateurs de combustibles solides a lit fixe et a tirage inverse
FR2461893A1 (fr) Generateur d'eau chaude, notamment chaudiere de chauffage central
FR2567535A1 (fr) Dispositif de gazeification de produits ou dechets solides, concrets, pateux ou plastiques
FR2617181A1 (fr) Fabrication de charbon de bois a partir de fours de carbonisation en beton arme, demontables, non polluants, a marche alternative pour le presechage et la carbonisation de produits ligneux
FR2727751A1 (fr) Ensemble monobloc pour installation de chauffage d'un fluide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB GR IT LI NL PT

GBC Gb: translation of claims filed (gb section 78(7)/1977)
ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2127170

Country of ref document: ES

Kind code of ref document: T1

TCNL Nl: translation of patent claims filed
DET De: translation of patent claims
APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020501

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE