EP0877822A1 - Procede de transformation de minerais de fer en fonte brute liquide ou en produits bruts en acier - Google Patents

Procede de transformation de minerais de fer en fonte brute liquide ou en produits bruts en acier

Info

Publication number
EP0877822A1
EP0877822A1 EP97911044A EP97911044A EP0877822A1 EP 0877822 A1 EP0877822 A1 EP 0877822A1 EP 97911044 A EP97911044 A EP 97911044A EP 97911044 A EP97911044 A EP 97911044A EP 0877822 A1 EP0877822 A1 EP 0877822A1
Authority
EP
European Patent Office
Prior art keywords
iron
sponge
sponge iron
cross
gasification zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97911044A
Other languages
German (de)
English (en)
Other versions
EP0877822B1 (fr
Inventor
Leopold Werner Kepplinger
Felix Wallner
Johannes-Leopold Schenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Deutsche Voest Alpine Industrieanlagenbau GmbH
Original Assignee
Voest Alpine Industrienlagenbau GmbH
Deutsche Voest Alpine Industrieanlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT0196396A external-priority patent/AT404021B/de
Priority claimed from AT0196296A external-priority patent/AT404020B/de
Application filed by Voest Alpine Industrienlagenbau GmbH, Deutsche Voest Alpine Industrieanlagenbau GmbH filed Critical Voest Alpine Industrienlagenbau GmbH
Publication of EP0877822A1 publication Critical patent/EP0877822A1/fr
Application granted granted Critical
Publication of EP0877822B1 publication Critical patent/EP0877822B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon

Definitions

  • the invention relates to a process for the production of molten pig iron or steel precursors from ore, which is reduced in at least one reduction zone to partially and / or completely reduced sponge iron, which in a meltdown gasification zone of a meltdown gasifier with the supply of carbon-containing material and oxygen while simultaneously forming a reducing gas in a bed made of solid carbon carriers is melted, if necessary after prior reduction.
  • a method of this type is known, for example, from EP-A-0 576 414.
  • the iron sponge partially or completely reduced from piece ore in a shaft furnace reaches the bed formed in the melter gasifier from solid carbon carriers via discharge screws from the shaft furnace, etc. in an approximately uniform distribution.
  • the reducing gas formed in the melt-down gasification zone flows up through the bed of solid carbon carriers having a certain gap volume and melts the iron sponge introduced into the bed.
  • a certain minimum gap volume of the bed made of solid carbon carriers is required for the effectiveness of this method.
  • a method of the type described at the outset is known, for example from EP-A-0 594 557, according to which fine ore is reduced to sponge iron in the fluidized bed method.
  • the partially or completely reduced sponge iron is forced into the bed made of solid carbon carriers, etc. by means of forced conveyance, which is implemented by injectors. in an approximately uniform distribution.
  • the reducing gas formed in the meltdown gasification zone also flows up through the bed of solid carbon carriers with a certain gap volume and melts the sponge iron introduced into the bed. A certain minimum gap volume of the bed made of solid carbon carriers is required for the effectiveness of this method.
  • the gap volume of the bed which is required for even gas flow, is inherently limited. If sponge iron is introduced evenly distributed in such a bed made of solid carbon carriers and the iron sponge is partly rather fine-grained, ie provided with a fine fraction, the gap volume of the bed made of solid carbon carriers is reduced and proper gas flow through the bed is no longer ensured. It can then lead to the formation of a local pass-through channel in the bed, through which the reducing gas that arises in the bed follows flows above, but wide areas of the bed are no longer or no longer adequately gasified.
  • the invention aims to avoid these disadvantages and difficulties and has as its object to provide a method of the type described in which an effective reduction gas formation is ensured by a perfect gas flow through the entire bed even with a small gap volume of the bed made of solid carbon carriers and at the same time efficient melting of the iron sponge introduced takes place.
  • the sponge iron is introduced into the melting gasification zone with the formation of circular iron sponge layer areas, the iron sponge advantageously being introduced into the melting gasification zone with the formation of a single iron sponge layer area for each cross-sectional plane, and wherein the iron sponge layer area extends centrally over the cross section and forms an annular cross-sectional area free of the sponge iron.
  • the sponge iron is introduced into the melting gasification zone to form a plurality of iron sponge layer regions lying in one plane, each of which is arranged at a distance from one another are and so result in free cross-sectional areas between the sponge iron layer areas of the sponge iron.
  • the sponge iron prefferably be introduced into the melting gasification zone with the formation of a circular iron sponge layer region lying in one plane, the sponge iron advantageously being formed with the formation of cross-sectional areas free of the sponge iron and lying outside and inside the circular iron sponge layer region Melting gasification zone is introduced.
  • the solid carbon carriers are also preferably introduced discontinuously into the meltdown gasification zone, etc. while reducing the amount or interrupting the introduction during the introduction of the sponge iron.
  • the introduction of solid carbon carriers is expediently stopped during the introduction of the sponge iron, then the introduction of the sponge iron is stopped for a certain period of time and only solid carbon carriers are introduced for a certain period of time, whereupon in turn only sponge iron is introduced over a certain period of time, etc.
  • the sponge iron layer regions are advantageously designed to drop gently towards their edges.
  • the sponge iron is expediently formed from fine ore in the fluidized bed process.
  • the sponge iron is formed from piece ore in a shaft furnace.
  • FIGS. 1 and 2 each schematically illustrating a vertical section through a melter gasifier.
  • a reducing gas is generated from solid carbon carriers 2, such as coal, and oxygen-containing gas by gasifying the coal, which is fed via a discharge line 3 to a shaft furnace, not shown, in which lumpy iron ore is reduced to sponge iron 4, for example according to EP -A - 0 576 414.
  • That Reducing gas can also be fed via line 3 to a fluidized bed reactor (not shown in more detail), in which fine ore is reduced to sponge iron in a fluidized bed zone, for example in accordance with EP-A-0 217 331.
  • the melter gasifier 1 has a feed 5 for the solid carbon carriers 2, a feed 6 for oxygen-containing gases, a feed 7 for sponge iron, and optionally feeds for carbon carriers which are liquid or gaseous at room temperature, such as hydrocarbons, and for burnt additives.
  • Molten pig iron 9 and molten slag 10 collect in meltdown gasifier 1 below meltdown gasification zone 8 and are tapped off by tapping 11.
  • the iron ore, reduced to sponge iron 4 in the shaft furnace or in a fluidized bed reactor, is fed to the melter gasifier, possibly together with burned aggregates, via a conveyor device, for example by means of discharge screws, or forced conveyance with the aid of injectors.
  • Both the feed 6 for the solid carbon carrier 2 and the feed 7 for the sponge iron 4 and the discharge 3 for the reducing gas are each arranged in the dome region 12 of the melter gasifier 1 in a plurality and approximately radially symmetrical arrangement.
  • the sponge iron 4 is charged discontinuously, embedded iron sponge layer regions 14 being formed in a bed 13, formed from the solid carbon carriers 2, so that the iron sponge in the bed 13 made of solid carbon carriers 2 is no longer evenly distributed, but instead forms intermediate layers.
  • These iron sponge layer regions 14, which move continuously downward in the bed 13 as the gasification process of the solid carbon carriers 2 progresses, can, as shown in FIG.
  • the sponge iron layer regions 14 form cross-sectional regions 15 free of sponge iron both outside and within these annular regions per cross-sectional plane.
  • the reducing gas formed during coal gasification can thus flow well through the porous bed 13 formed by solid carbon supports 2 and flows at the sponge iron layer regions 14 by melting them, as illustrated by the arrows 16, over.
  • the cross-sectional areas 15 free of sponge iron 4 thus form well gas-permeable windows, so that effective coal gasification and thus sufficient reduction gas formation is ensured. Due to the strong reduction gas formation, the iron sponge 4 is also rapidly heated and melted.
  • the sponge iron layer regions 14 are preferably layered gently sloping towards their edges 17, so that during the downward migration of the layer regions 14 the diameter of the layer regions 14 is reduced by the melting process and also in the lower narrower region of the melting gasifier 1 there is sufficient gasification of the Bed 13 made of solid carbon supports 2 is guaranteed or an optional desired enlargement of the free cross-sectional areas 15 is given for better gas flow.
  • the iron sponge layer regions 14 can also be made circular in plan view, which ensures a greater edge gasification of the bed 13 in the upper part of the melting gasification zone 8. This results in faster heating and degassing of the bed 13 from solid carbon supports 2.
  • annular layer regions 14 are provided in the lower region of the melting gasification zone 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Processing Of Solid Wastes (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
EP97911044A 1996-11-08 1997-11-05 Procede de transformation de minerais de fer en fonte brute liquide ou en produits bruts en acier Expired - Lifetime EP0877822B1 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AT1962/96 1996-11-08
AT0196396A AT404021B (de) 1996-11-08 1996-11-08 Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten aus feinerz
AT196396 1996-11-08
AT196296 1996-11-08
AT0196296A AT404020B (de) 1996-11-08 1996-11-08 Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten aus stückerz
AT1963/96 1996-11-08
PCT/AT1997/000237 WO1998021370A1 (fr) 1996-11-08 1997-11-05 Procede de transformation de minerais de fer en fonte brute liquide ou en produits bruts en acier

Publications (2)

Publication Number Publication Date
EP0877822A1 true EP0877822A1 (fr) 1998-11-18
EP0877822B1 EP0877822B1 (fr) 2001-03-07

Family

ID=25597291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97911044A Expired - Lifetime EP0877822B1 (fr) 1996-11-08 1997-11-05 Procede de transformation de minerais de fer en fonte brute liquide ou en produits bruts en acier

Country Status (20)

Country Link
US (1) US6179896B1 (fr)
EP (1) EP0877822B1 (fr)
JP (1) JP4498470B2 (fr)
KR (1) KR100458552B1 (fr)
CN (1) CN1055503C (fr)
AT (1) ATE199573T1 (fr)
AU (1) AU731008B2 (fr)
BR (1) BR9707114A (fr)
CA (1) CA2242375C (fr)
CZ (1) CZ288112B6 (fr)
DE (1) DE59703104D1 (fr)
ID (1) ID27675A (fr)
MY (1) MY117002A (fr)
PL (1) PL185226B1 (fr)
RU (1) RU2175674C2 (fr)
SK (1) SK283076B6 (fr)
TR (1) TR199801275T1 (fr)
TW (1) TW357194B (fr)
UA (1) UA43905C2 (fr)
WO (1) WO1998021370A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407052B (de) * 1998-08-13 2000-12-27 Voest Alpine Ind Anlagen Verfahren zur herstellung von flüssigem roheisen
CN104278122B (zh) * 2003-01-31 2016-09-14 杰富意钢铁株式会社 海绵铁制造用原料的装入装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE457265B (sv) * 1981-06-10 1988-12-12 Sumitomo Metal Ind Foerfarande och anlaeggning foer framstaellning av tackjaern
AT382390B (de) * 1985-03-21 1987-02-25 Voest Alpine Ind Anlagen Verfahren zur herstellung von fluessigem roheisen oder stahlvorprodukten
DE3535572A1 (de) 1985-10-03 1987-04-16 Korf Engineering Gmbh Verfahren zur herstellung von roheisen aus feinerz
JPS6465212A (en) * 1987-09-03 1989-03-10 Kobe Steel Ltd Method for operating blast furnace
AT401777B (de) 1992-05-21 1996-11-25 Voest Alpine Ind Anlagen Verfahren und anlage zur herstellung von flüssigen roheisen oder flüssigen stahlvorprodukten
AT404735B (de) 1992-10-22 1999-02-25 Voest Alpine Ind Anlagen Verfahren und anlage zur herstellung von flüssigem roheisen oder flüssigen stahlvorprodukten
JPH06271908A (ja) * 1993-03-19 1994-09-27 Kawasaki Steel Corp ベルレス高炉の原料多バッチ装入方法
JPH06279819A (ja) * 1993-03-26 1994-10-04 Kawasaki Steel Corp 高炉における炉内原料装入物の堆積制御方法
JP3511784B2 (ja) * 1996-03-18 2004-03-29 Jfeスチール株式会社 竪型鉄スクラップ溶解炉の原料装入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9821370A1 *

Also Published As

Publication number Publication date
TW357194B (en) 1999-05-01
JP4498470B2 (ja) 2010-07-07
CZ213298A3 (cs) 1999-07-14
AU731008B2 (en) 2001-03-22
CZ288112B6 (cs) 2001-04-11
BR9707114A (pt) 1999-07-20
CA2242375C (fr) 2009-03-17
ATE199573T1 (de) 2001-03-15
PL185226B1 (pl) 2003-04-30
CN1055503C (zh) 2000-08-16
KR100458552B1 (ko) 2005-04-06
DE59703104D1 (de) 2001-04-12
TR199801275T1 (xx) 1998-12-21
SK283076B6 (sk) 2003-02-04
AU4855697A (en) 1998-06-03
WO1998021370A1 (fr) 1998-05-22
RU2175674C2 (ru) 2001-11-10
CA2242375A1 (fr) 1998-05-22
CN1207138A (zh) 1999-02-03
EP0877822B1 (fr) 2001-03-07
US6179896B1 (en) 2001-01-30
PL327830A1 (en) 1999-01-04
ID27675A (id) 2001-04-19
UA43905C2 (uk) 2002-01-15
JP2000503352A (ja) 2000-03-21
MY117002A (en) 2004-04-30
SK93698A3 (en) 1998-12-02
KR19990077106A (ko) 1999-10-25

Similar Documents

Publication Publication Date Title
DE69805321T2 (de) Verfahren und vorrichtung zur herstellung von metallischem eisen
EP0182775B1 (fr) Procédé pour la production de la fonte liquide ou des ébauches en acier ainsi que dispositif pour la mise en oeuvre de ce procédé
EP0368835A1 (fr) Procédé pour la production de la fonte liquide et installation pour la mise en oeuvre de ce procédé
EP0236669B1 (fr) Procédé pour la fabrication de fonte liquide ou de matériau de préparation de l'acier
EP1105541B1 (fr) Procede de fabrication de fonte brute liquide
EP0315825B1 (fr) Prétraitement d'un morceau contenant du charbon
EP0877822B1 (fr) Procede de transformation de minerais de fer en fonte brute liquide ou en produits bruts en acier
EP2734649B1 (fr) Ensemble de réduction par fusion et procédé permettant de faire fonctionner un ensemble de réduction par fusion
AT404020B (de) Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten aus stückerz
AT404021B (de) Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten aus feinerz
EP0922116B1 (fr) Gazeificateur pour la fonte de metaux
DE3608150C1 (de) Verfahren und Vorrichtung zur reduzierenden Schmelzvergasung
AT404138B (de) Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten sowie anlage zur durchführung des verfahrens
EP0897430B1 (fr) Procede de production de fonte brute liquide ou de produits de depart liquides en acier
EP2215418A1 (fr) Procédé de fabrication et de fusion de fonte brute liquide ou de demi-produits d'acier liquide dans un gazéificateur de fusion
EP1090148B1 (fr) Four a arc
DE69700267T2 (de) Verfahren zum Beschicken eines Kupolofens mit Schrott und Koks
EP0865506B1 (fr) Procede de production de metal liquide et installation pour mettre en oeuvre ledit procede
AT404254B (de) Verfahren und anlage zur herstellung von roheisen oder flüssigen stahlvorprodukten aus eisenerzhältigen einsatzstoffen
EP3578909A1 (fr) Dispositif et procédé d'introduction d'un agent réducteur de remplacement à un haut fourneau
AT403381B (de) Verfahren und anlage zum chargieren von metallträgern in eine einschmelzvergasungszone
EP0925375B1 (fr) Procede de production de metal spongieux
DE19950827A1 (de) Verfahren zur Herstellung von flüssigem Roheisen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19981123

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000609

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 199573

Country of ref document: AT

Date of ref document: 20010315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59703104

Country of ref document: DE

Date of ref document: 20010412

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010529

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091110

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091112

Year of fee payment: 13

Ref country code: FR

Payment date: 20091203

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091116

Year of fee payment: 13

BERE Be: lapsed

Owner name: DEUTSCHE *VOEST ALPINE INDUSTRIEANLAGENBAU G.M.B.H

Effective date: 20101130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101105

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20121126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121105

Year of fee payment: 16

Ref country code: AT

Payment date: 20121010

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130118

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 199573

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59703104

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161123

Year of fee payment: 20