EP0873466A1 - Turbinenwelle einer dampfturbine mit interner kühlung - Google Patents

Turbinenwelle einer dampfturbine mit interner kühlung

Info

Publication number
EP0873466A1
EP0873466A1 EP96946113A EP96946113A EP0873466A1 EP 0873466 A1 EP0873466 A1 EP 0873466A1 EP 96946113 A EP96946113 A EP 96946113A EP 96946113 A EP96946113 A EP 96946113A EP 0873466 A1 EP0873466 A1 EP 0873466A1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine shaft
line
pressure
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96946113A
Other languages
English (en)
French (fr)
Other versions
EP0873466B1 (de
Inventor
Heinrich Oeynhausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0873466A1 publication Critical patent/EP0873466A1/de
Application granted granted Critical
Publication of EP0873466B1 publication Critical patent/EP0873466B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a turbine shaft of a steam turbine, in particular for the combined reception of high-pressure and medium-pressure blading, and a method for cooling the turbine shaft of a steam turbine.
  • a combined high and medium pressure turbine is suitable for a steam turbine with a lower to medium output, for example from 300 MW to 600 MW. Both the high-pressure rotor blades and the medium-pressure rotor blades are taken up by the turbine shaft.
  • the turbine shaft is housed in a single housing which has the associated guide vanes.
  • the common housing can have an inner housing and an outer housing, which are each divided horizontally and screwed together.
  • the fresh steam state characterized by the high pressure steam can currently be around 170 bar and 540 ° C. In the course of increasing the efficiency, a fresh steam state of 270 bar and 600 ° C can be aimed for.
  • High-pressure steam can be supplied to the high-pressure blading in a central region of the turbine shaft and flows through it to an outlet connection.
  • the steam which has been relaxed and cooled in this way, can be fed into a boiler and reheated there.
  • the steam state at the end of the high pressure part is referred to as cold reheating and the Steam condition after leaving the boiler is referred to as hot reheat.
  • the steam emerging from the boiler is fed to the medium-pressure blading.
  • the steam state can be 30 bar to 50 bar and 540 ° C, an increase to a steam state of approximately 50 bar to 60 bar and 600 ° C being sought.
  • the blades in the steam inflow region of both the high-pressure part and the medium-pressure part can be made from a nickel-based alloy.
  • constructive measures can be carried out in the steam inflow area, in which the turbine shaft is protected against direct contact with the steam by means of shaft shields.
  • the object directed to a turbine shaft of a steam turbine is achieved in that a turbine shaft, which extends along a rotation axis and has a jacket surface, has in its interior a cooling line for guiding cooling steam in the direction of the rotation axis, the cooling line on the one hand at least one outflow line leading to the jacket surface for guiding cooling steam to the jacket surface and on the other hand is connected to at least one inflow line for inflowing cooling steam into the cooling line.
  • a cooling line running inside the turbine shaft cooling steam can be guided in the direction of the axis of rotation through the turbine shaft and through the outflow line to the surface of the jacket, so that the turbine shaft in its interior as well as in the area exposed to high temperatures Jacket surface is coolable.
  • the cooling line can be inclined with respect to the axis of rotation or wound in relation thereto, whereby it enables cooling steam to be transported in the direction of the axis of rotation. Furthermore, it is also possible to cool the rotor blades anchored in the turbine shaft, in particular their blade roots. It goes without saying that, depending on the production of the cooling line, the outflow line and the inflow line can form part of the cooling line. Furthermore, it goes without saying that more than one cooling line can be provided, the cooling lines being connected to one another and each being connected to one or more outflow lines or inflow lines. It is also possible to arrange adjacent outflow lines in the direction of the axis of rotation at predeterminable intervals and to connect them to the cooling line.
  • Cooling of heavily temperature-stressed shaft sections can thus take place without considerable expenditure on pipes, housing bushings and integration into the turbine control.
  • This high design effort would be necessary, for example, when cooling a turbine shaft by means of cold steam from the outside through the housing and the guide vanes to the turbine shaft, in order to cool the jacket surface of the turbine shaft directly.
  • the turbine shaft according to the invention is particularly suitable for designing a combined high-pressure and medium-pressure turbine shaft for a steam turbine. This is particularly so since the steam inflow area of the medium-pressure part of a steam turbine is a critical point in turbine design. Since, in comparison to the high-pressure part in the medium-pressure part, lower vapor pressures result in significantly higher volume flows and so that larger shaft diameters and longer blades are required, the thermomechanical stress on the blade roots and the shaft is greater in the medium-pressure part than in the high-pressure part.
  • the material characteristics of the turbine shaft are also similar, which makes the medium-pressure part more critical than the high pressure due to the higher thermomechanical loads Part is to be assessed.
  • the turbine shaft according to the invention in which the turbine shaft in the medium-pressure part can be cooled by cooling steam both in its interior, particularly in the middle of the shaft, and on its jacket surface, in particular in the area of the blade roots.
  • the cooling steam is preferably led from the high-pressure part through the cooling line into the medium-pressure part, the steam already flowing through the pressure difference between the high-pressure part and the medium-pressure part.
  • This pressure difference between the steam outlet area of the high-pressure part and the steam inlet area of the medium-pressure part is between 4 bar and 6 bar, for example.
  • the cooling line is preferably a bore which is largely parallel to the axis of rotation and which is in particular a central bore.
  • a cooling line designed as a bore is particularly simple and can also be produced subsequently in the turbine shaft.
  • the bore is preferably closed downstream of the connection point with the outflow line, in particular by a plug. This ensures that cooling steam flowing in through the inflow line can be completely removed from the turbine shaft through the outflow line.
  • the medium-pressure tubular shaft has the outflow line or the outflow lines in the vicinity of the blades of the steam inflow region of the medium-pressure part, which ensures cooling, in particular of the blade roots, of these particularly thermally stressed blades.
  • the inflow line like the outflow line, preferably connects the jacket surface to the cooling line.
  • cooling steam in particular steam from a steam turbine
  • the inflow line can be guided from the jacket surface at one end of the turbine shaft through the interior of the turbine shaft into the central region of the turbine shaft.
  • the inflow line and / or the outflow line are or are preferably an essentially radial bore. Such a bore can be easily carried out even after the turbine shaft has been produced, such a bore being connectable precisely to a cooling line designed as an axial bore.
  • the diameter of a hole and the number of several holes for the inflow line and the outflow line depend on the amount of steam provided for cooling.
  • the turbine shaft has recesses on the jacket surface for receiving turbine blades, the outflow line preferably opening into one of these recesses.
  • the recesses can be made somewhat larger than the feet of the respective blade, so that a space is formed between a corresponding base and the turbine shaft, into which steam can flow for cooling the blade root. This space can also be formed by channels which are connected to the outflow line and / or to one another
  • a stub leads to the jacket surface of the turbine shaft.
  • cooling of the casing surface and thus the turbine shaft is also achieved from the outside. This is particularly in the steam inflow area of the medium pressure part of a combined .
  • High-pressure medium-pressure turbine shaft advantageous. This results in cooling of the turbine shaft from the inside in the region of the high-pressure part, in the region of a shaft seal between the high-pressure part and the medium-pressure part, and in the particularly stressed steam inflow region of the medium-pressure part, including the blade roots of the given the first row of blades of the medium-pressure part.
  • the turbine shaft is therefore preferably suitable for a steam turbine in which the high-pressure part and the medium-pressure part are accommodated in a common housing.
  • the outflow line opens into the steam inflow region of the medium-pressure rotor blades, so that in this region both the turbine shaft and the rotor blades, including the rotor blade feet, are cooled.
  • the inflow line preferably connects the steam outlet region of the high-pressure rotor blades to the cooling line, as a result of which steam can be guided from the steam outlet region of the high-pressure part through the interior of the turbine shaft into the medium-pressure part.
  • the object directed to a method for cooling a turbine shaft of a steam turbine is solved for a turbine shaft which carries both the high-pressure rotor blades and the medium-pressure rotor blades in that steam from the steam area of the high-pressure rotor blades, i.e. is led from the high-pressure part through the interior of the turbine shaft to the steam inflow region of the medium-pressure rotor blades.
  • the steam flow in the interior of the turbine shaft can be regulated by suitable dimensioning of a corresponding cooling line, which is in particular designed as a bore, so that it also extends over a wide area
  • Adequate cooling is guaranteed. Since there is also a pressure ⁇ difference between the high-pressure part and the medium-pressure part in the part-load range of the steam turbine, proper functioning of the method is also guaranteed in the part-load range.
  • a cooling line designed as an axial, preferably central, bore the tangential stresses inside the turbine shaft may rise to approximately twice as compared to a turbine shaft without a bore. This possibly higher load on the turbine shaft is compensated for by the significantly improved material properties due to the internal cooling of the turbine shaft.
  • FIG. 1 shows a longitudinal section through a combined high-pressure, medium-pressure turbine in a housing with a turbine shaft and
  • the turbine shaft 1 shows a turbine shaft 1 which extends along an axis of rotation 2 and which is arranged in an outer housing 22 surrounding an inner housing 21.
  • the turbine shaft 1 has a central region 28 which contains a shaft seal 24 with the inner housing 21.
  • the high-pressure part 23 of the steam turbine connects to the middle region 28 on the left.
  • To the right of the central region 28 is the medium-pressure part 25 of the steam turbine.
  • the high-pressure part 23 with the high-pressure blading 13 has a high-pressure steam inflow region 27 directly adjoining the shaft seal 24, from which the inflowing high-pressure steam flows through a steam region 17 of the high-pressure blading 13 and through a steam outlet area 16 leaves the outer housing 22 to a boiler, not shown, in which an intermediate overheating takes place.
  • the reheated steam 6 enters the outer housing 22 and the inner housing 21 again via a steam inflow region 15 of the medium-pressure part 25, which adjoins the shaft seal 24 directly to the right. It flows through a medium-pressure blading 14 adjoining the steam inflow region 15 of the medium-pressure part 25 to the right.
  • the medium-pressure blading 14 is followed by an outflow connection 26, through which the steam 6 can be guided to a low-pressure steam turbine (not shown).
  • the flow of steam 6 described is indicated by flow arrows 29.
  • the turbine shaft 1 has a central bore 5a coinciding with the axis of rotation 2, which extends through the medium-pressure part 25 to through the high-pressure part 23.
  • the central bore 5a is connected in the steam outlet area 16 of the high-pressure part 23 to a jacket surface 3 of the turbine shaft 1 by a plurality of inflow lines 8.
  • the inflow lines 8 are designed as radial bores 8a, as a result of which "cold" steam can flow from the high-pressure part 23 into the central bore 5a.
  • the central bore 5a is also connected to a plurality of outflow lines 7 in a medium-pressure part 25 in the area of the first rows of blades.
  • outflow lines 7 each extend from recesses 10 of the casing surface 3 for receiving rotor blades 11 to the central bore 5a.
  • the outflow lines 7 are also essentially radially running bores 7a. Downstream of the outflow lines 7, the central bore 5a is sealed off by a stopper 9.
  • the part of the bore 5a lying between the outflow lines 7 and the inflow lines 8 thus forms a cooling line 5 through which steam 6 flows from the high-pressure part 23 into the steam inflow region 15 of the medium-pressure part 25.
  • This vapor 6 has a significantly lower one Temperature as the superheated steam flowing into the steam inflow region 15, so that effective cooling of the first rows of blades of the medium-pressure part 25 and the jacket surface 3 is ensured in the area of these rows of blades.
  • FIG. 2 shows the steam inflow region 15 of the medium-pressure part 25 on an enlarged scale.
  • Corresponding rotor blades 11 with their blade roots 18 are arranged in the recesses 10 of the turbine shaft 1.
  • the recesses 10 each have channels 20 around the blade feet 18, the channels 20 being connected on the one hand to the outflow lines 7 running radially to the axis of rotation 2 and on the other hand each to a branch line 12.
  • the stub 12 leads from the recess 10 to the jacket surface 3, so that the
  • Branch line 12 is opposite a guide vane 19 of the steam turbine.
  • the steam 6 flowing from the high-pressure part 23 through the outflow lines 7 reaches the channels 20 of the recesses 10 and thus cools the blade feet 18 arranged in a corresponding recess 10.
  • the steam 6 flows from the channels 20 through a respective branch line 12 to the outer surface 3 of the turbine shaft 1 and thus also cools the outer surface 3 between adjacent blades 11 in the direction of the axis of rotation 2.
  • the invention is characterized by a turbine shaft which carries both the blades of a high-pressure part and the blades of a medium-pressure part of a steam turbine.
  • the turbine shaft has at least one cooling line which is connected to the high-pressure part via at least one inflow line and to the steam inflow region of the medium-pressure part via at least one outflow line.
  • the inflow line, the cooling line and the outflow line form a line system inside the turbine shaft, through which "cold" steam from the high pressure part to the thermomechanically highly stressed steam inflow area of the medium pressure part is feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Turbinenwelle (1), insbesondere für eine kombinierte in einem gemeinsamen Gehäuse (22) untergebrachte Hochdruck-Mitteldruck-Dampfturbine. Die Turbinenwelle (1) weist in ihrem Inneren (4) eine Kühlleitung (5) zur Führung von Kühldampf (6) auf. Die Kühlleitung (5) ist einerseits mit einer Abströmleitung (7) und andererseits mit einer Zuströmleitung (8) verbunden. Hierdurch ist eine Dampfkühlung der Turbinenwelle (1) einer kombinierten Hochdruck-Mitteldruck-Dampfturbine durch Zuführung von Dampf aus dem Hochdruck-Teil über die Zuströmleitung (8) zum Mitteldruck-Teil (23) durch die Abströmleitung (7) erreichbar. Die Erfindung betrifft weiterhin ein Verfahren zur Kühlung einer Turbinenwelle (1) einer Dampfturbine.

Description

Beschreibung
Turbinenwelle einer Dampfturbine mit interner Kühlung
Die Erfindung betrifft eine Turbinenwelle einer Dampfturbine, insbesondere zur kombinierten Aufnahme der Hochdruck- und Mitteldruck-Beschaufelung, sowie ein Verfahren zur Kühlung der Turbinenwelle einer Dampfturbine.
Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei. Die Verwendung von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderung an die entsprechende Dampfturbine. Bei einer Dampfturbine der unteren bis mittleren Leistungs- große, beispielsweise von 300 MW bis 600 MW, eignet sich eine kombinierte Hoch- und Mitteldruck-Turbine. Hierbei werden von der Turbinenwelle sowohl die Hochdruck-Laufschaufeln als auch die Mitteldruck-Laufschaufeln aufgenommen. Die Turbinenwelle ist in einem einzigen Gehäuse untergebracht, welches die zu- geordneten Leitschaufeln aufweist. Ein Vorteil einer Dampf¬ turbine, bei der die Hoch- und Mitteldruck-Beschaufelung in einem gemeinsamen Gehäuse angeordnet sind, liegt beispiels¬ weise trotz einer komplizierten Bauweise in einer kürzeren Gesamtlänge sowie dem Wegfall eines Lagers. Das gemeinsame Gehäuse kann ein Innengehäuse und ein Außengehäuse aufweisen, welche jeweils horizontal geteilt und miteinander verschraubt sind. Der durch den Hochdruck-Dampf gekennzeichnete Frisch¬ dampfzustand kann bei derzeit etwa 170 bar und 540 °C liegen. Im Zuge der Steigerung des Wirkungsgrades kann ein Frisch- dampfzustand von 270 bar und 600 °C angestrebt werden. Der
Hochdruck-Dampf kann in einem Mittelbereich der Turbinenwelle der Hochdruck-Beschaufelung zugeführt werden und durchströmt diese bis zu einem Austrittsstutzen. Der so entspannte und abgekühlte Dampf kann einem Kessel zugeführt und dort erneut aufgeheizt werden. Der Dampfzustand am Ende des Hochdruck- Teils wird im Folgenden als kalte Zwischenüberhitzung und der Dampfzustand nach Verlassen des Kessels als heiße Zwischen- überhitzung bezeichnet. Der aus dem Kessel austretende Dampf wird der Mitteldruck-Beschaufelung zugeführt. Der Dampfzu¬ stand kann bei 30 bar bis 50 bar und 540 °C liegen, wobei ei- ne Steigerung auf einen Dampfzustand von etwa 50 bar bis 60 bar und 600 °C angestrebt wird. Inwieweit die bisher einge¬ setzten Materialien zur Herstellung entsprechender Turbinen¬ wellen und Turbinengehäuse, insbesondere aus einem Chrom¬ strahl mit 9 Gew.-% bis 12 Gew.-% Anteil an Chrom, den Anfor- derungen bei höheren Dampfzuständen gerecht werden können, bedürfte weitere Untersuchungen. Die Laufschaufeln im Dampf- einströmbereich sowohl des Hochdruck-Teils als auch des Mit¬ teldruck-Teils können aus einer Nickelbasislegierung herge¬ stellt sein. Weiterhin können im Dampfeinströmbereich kon- struktive Maßnahmen durchgeführt sein, bei denen über Wellen- abschirmungen die Turbinenwelle vor einem unmittelbaren Kon¬ takt mit dem Dampf geschützt ist.
Aufgabe der Erfindung ist es, eine Turbinenwelle einer Dampf- turbine anzugeben, die insbesondere lokal auftretenden hohen betrieblichen Temperaturbelastungen langzeitstabil standhält. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Kühlung einer Turbinenwelle einer Dampfturbinenwelle anzuge¬ ben.
Erfindungsgemäß wird die auf einer Turbinenwelle einer Dampf¬ turbine gerichtete Aufgabe dadurch gelöst, daß eine sich ent¬ lang einer Rotationsachse erstreckende eine Manteloberfläche habende Turbinenwelle in ihrem Inneren eine Kühlleitung zur Führung von Kühldampf in Richtung der Rotationsachse auf¬ weist, wobei die Kühlleitung einerseits mit zumindest einer an die Manteloberfläche führende Abströmleitung zur Führung von Kühldampf an die Manteloberfläche und andererseits mit zumindest einer Zuströmleitung zur Zuströmung von Kühldampf in die Kühlleitung hinein verbunden ist. Durch eine im Inneren der Turbinenwelle verlaufende Kühllei¬ tung ist Kühldampf in Richtung der Rotationsachse durch die Turbinenwelle hindurch führbar und durch die Abströmleitung an die Manteloberfläche leitbar, so daß sowohl in stark tem- peraturbelasteten Bereichen die Turbinenwelle in ihrem Inne¬ ren als auch an der Manteloberfläche kühlbar ist. Die Kühl¬ leitung kann gegenüber der Rotationsachse geneigt oder gegen¬ über dieser gewunden verlaufen, wobei sie einen Transport von Kühldampf in Richtung der Rotationsachse ermöglicht. Weiter- hin ist auch eine Kühlung der in der Turbinenwelle veranker¬ baren Laufschaufeln, insbesondere deren Schaufelfüße, durch¬ führbar. Es versteht sich, daß je nach Herstellung der Kühl¬ leitung die Abströmleitung und die Zuströmleitung einen Teil der Kühlleitung darstellen können. Weiterhin versteht es sich, daß mehr als eine Kühlleitung vorgesehen sein kann, wo¬ bei die Kühlleitungen untereinander in Verbindung stehen und jeweils mit einer oder mehreren Abströmleitungen bzw. Zu¬ strömleitungen verbunden sein können. Es ist ebenfalls mög¬ lich, in Richtung der Rotationsachse benachbarte Abströmlei- tungen in vorgebbaren Abständen anzuordnen und mit der Kühl- leitung zu verbinden. Eine Kühlung stark temperaturbelasteter Wellenabschnitte kann somit ohne erheblichen Aufwand an Rohr¬ leitungen, Gehäuse-Durchführungen und Einbindung in die Tur¬ binenregelung erfolgen. Dieser hohe konstruktive Aufwand wäre beispielsweise bei einer Kühlung einer Turbinenwelle mittels kaltem Dampf von außen durch das Gehäuse und die Leitschau¬ feln hindurch bis zur Turbinenwelle erforderlich, um die Man¬ teloberfläche der Turbinenwelle direkt zu kühlen.
Die erfindungsgemäße Turbinenwelle eignet sich besonders zur Ausgestaltung einer kombinierten Hochdruck- und Mitteldruck- Turbinenwelle für eine Dampfturbine. Dies insbesondere, da der Dampfeinströmbereich des Mitteldruck-Teiles einer Dampf¬ turbine eine kritische Stelle bei der Turbinenauslegung ist. Da im Vergleich zum Hochdruck-Teil im Mitteldruck-Teil in¬ folge niedrigerer Dampfdrücke deutlich höhere Volumenströme und damit größere Wellendurchmesser und längere Schaufeln er¬ forderlich sind, ist die thermomechanische Beanspruchung der Laufschaufelfüße und der Welle im Mitteldruck-Teil größer als im Hochdruck-Teil. Da zudem im Hochdruck- und Mitteldruck- Teil jeweils ähnliche Temperaturen herrschen sind die Werk¬ stoffkennwerte der Turbinenwelle, wie beispielsweise Zeit- standfestigkeit und Kerbschlagzähigkeit, ebenfalls ähnlich, wodurch aufgrund der höheren thermomechanischen Belastungen des Mitteldruck-Teiles dieser als kritischer als der Hoch- druck-Teil zu bewerten ist. Diese Problematik wird durch die erfindungsgemäße Turbinenwelle gelöst, in dem die Turbinen¬ welle im Mitteldruck-Teil sowohl in ihrem Inneren, besonders in der Wellenmitte, als auch an ihrer Manteloberfläche, ins¬ besondere im Bereich der Laufschaufelfüße, durch Kühldampf kühlbar ist. Vorzugsweise wird der Kühldampf aus dem Hoch¬ druck-Teil durch die Kühlleitung in den Mitteldruck-Teil ge¬ führt, wobei eine Strömung des Dampfes bereits durch den Druckunterschied zwischen Hochdruck-Teil und Mitteldruck-Teil erfolgt. Dieser Druckunterschied beträgt beispielsweise zwi- sehen dem Dampfaustrittsbereich des Hochdruck-Teils und dem Dampfeintrittsbereich des Mitteldruck-Teils zwischen 4 bar und 6 bar. Durch entsprechende Bemessung des Querschnittes der Kühlleitung ist die DampfStrömung so regulierbar, daß auch über einen weiten Leistungsbereich der Dampfturbine eine ausreichende Kühlleistung gewährleistet ist.
Die Kühlleitung ist vorzugsweise eine weitgehend zur Rotati¬ onsachse parallele Bohrung, die insbesondere eine zentrale Bohrung ist. Eine als Bohrung ausgebildete Kühlleitung ist besonders einfach und exakt auch nachträglich in der Turbi¬ nenwelle herstellbar. Die Bohrung ist vorzugsweise stromab der Verbindungsstelle mit der Abströmleitung, insbesondere durch einen Stopfen, verschlossen. Hierdurch ist gewährlei¬ stet, daß durch die Zuströmleitung einströmendes Kühldampf vollständig durch die Abströmleitung aus der Turbinenwelle wieder herausführbar ist. Bei einer kombinierten Hochdruck- Mitteldruck-Tubinenwelle liegt die Abströmleitung bzw. liegen die Abströmleitungen in der Nähe der Laufschaufeln des Dampf- einströmbereiches des Mitteldruck-Teils, wodurch eine Küh¬ lung, insbesondere der Schaufelfüße, dieser besonders ther- misch belasteten Laufschaufeln gewährleistet ist.
Die Zuströmleitung verbindet vorzugsweise wie die Abströmlei¬ tung die Manteloberfläche mit der Kühlleitung. Hierdurch ist Kühldampf, insbesondere Dampf einer Dampfturbine, von der Manteloberfläche an einem Ende der Turbinenwelle durch das Innere der Turbinenwelle hindurch in den Mittelbereich der Turbinenwelle führbar. Dies ist besonders bei einer kombi¬ nierten Hochdruck- und Mitteldruck-Turbinenwelle vorteilhaft, da somit Dampf aus dem Dampfaustrittsbereich des Hochdruck- Teils in den Dampfeinströmbereich des Mitteldruck-Teils führ¬ bar ist.
Die Zuströmleitung und/oder die Abströmleitung sind bzw. ist vorzugsweise eine im wesentlichen radiale Bohrung. Eine sol- ehe Bohrung ist einfach auch nach Herstellung der Turbinen¬ welle ausführbar, wobei eine solche Bohrung präzise mit einer als axiale Bohrung ausgebildeten Kühlleitung verbindbar ist. Durchmesser einer Bohrung und Anzahl mehrerer Bohrungen für die Zuströmleitung sowie die Abströmleitung richten sich nach der zur Kühlung vorgesehenen Dampfmenge.
Die Turbinenwelle weist an der Manteloberfläche Ausnehmungen zur Aufnahme von Turbinenlaufschaufeln auf, wobei die Ab¬ strömleitung vorzugsweise in eine dieser Ausnehmungen mündet. Die Ausnehmungen können dabei etwas größer als die Füße der jeweiligen Laufschaufei ausgeführt sein, so daß sich zwischen einem entsprechenden Fuß und der Turbinenwelle ein Raum aus¬ bildet, in den Dampf zur Kühlung des Laufschaufelfusses ein¬ strömen kann. Dieser Raum kann auch durch Kanäle gebildet sein, die mit der Abströmleitung und/oder untereinander in
Verbindung stehen. Von einer Ausnehmung, in die eine Abström- leitung mündet, führt vorzugsweise eine Stichleitung zur Man¬ teloberfläche der Turbinenwelle. Hierdurch wird neben der Kühlung der Schaufelfüße zusätzlich eine Kühlung der Mantel- Oberfläche und damit der Turbinenwelle von außen erreicht. Dies ist besonders im Dampfeinströmbereich des Mitteldruck- Teils einer kombinierten.Hochdruck-Mitteldruck-Turbinenwelle vorteilhaft. Hierdurch ist eine Kühlung der Turbinenwelle von Innen im Bereich des Hochdruck-Teils, im Bereich einer zwi¬ schen dem Hochdruck-Teil und dem Mitteldruck-Teil liegenden Wellendichtung sowie in dem besonders beanspruchten Dampfein¬ strömbereich des Mitteldruck-Teils einschließlich der Schau¬ felfüße der ersten Laufschaufelreihe des Mitteldruck-Teils gegeben. Die Turbinenwelle eignet sich somit vorzugsweise für eine Dampfturbine, bei der der Hochdruck-Teil und der Mittel- druck-Teil in einem gemeinsamen Gehäuse untergebracht sind. Die Abströmleitung mündet im Dampfeinströmbereich der Mittel¬ druck-Laufschaufeln, so daß in diesem Bereich sowohl eine Kühlung der Turbinenwelle als auch der Laufschaufeln inklusi¬ ve der Laufschaufelfüße erfolgt. Die Zuströmleitung verbindet vorzugsweise den Dampfaustrittsbereich der Hochdruck-Lauf- schaufeln mit der Kühlleitung, wodurch Dampf aus dem Damp¬ faustrittsbereich des Hochdruck-Teils durch das Innere der Turbinenwelle in den Mitteldruck-Teil führbar ist.
Die auf ein Verfahren zur Kühlung einer Turbinenwelle einer Dampfturbine gerichtete Aufgabe wird für eine Turbinenwelle, welche sowohl die Hochdruck-Laufschaufeln als auch die Mit¬ teldruck-Laufschaufeln trägt, dadurch gelöst, daß Dampf aus dem Dampfbereich der Hochdruck-Laufschaufeln, d.h. aus dem Hochdruck-Teil, durch das Innere der Turbinenwelle hindurch zum Dampfeinströmbereich der Mitteldruck-Laufschaufeln ge¬ führt wird. Die DampfStrömung im Inneren der Turbinenwelle kann hierbei durch geeignete Dimensionierung einer entspre¬ chenden Kühlleitung, welche insbesondere als Bohrung ausge- führt ist, so reguliert werden, daß auch über einen weiten
Leistungsbereich eine ausreichende Kühlung gewährleistet ist. Da auch im Teillastbereich der Dampfturbine eine Druck¬ differenz zwischen dem Hochdruck-Teil und dem Mitteldruck- Teil gegeben ist, ist eine einwandfreie Funktionsfähigkeit des Verfahrens auch im Teillastbereich gewährleistet. Durch eine als axiale, vorzugsweise zentrale, Bohrung ausgeführte Kühlleitung steigen die tangentialen Spannungen im Inneren der Turbinenwelle gegebenenfalls auf etwa das Doppelte im Vergleich zu einer Turbinenwelle ohne Bohrung an. Diese gege¬ benenfalls vorhandene höhere Beanspruchung der Turbinenwelle wird allerdings durch die deutlich verbesserten Materi¬ aleigenschaften aufgrund der Innenkühlung der Turbinenwelle wieder kompensiert.
Anhand der Ausführungsbeispiele der Zeichnung werden die Tur- binenwelle sowie das Verfahren zur Kühlung der Turbinenwelle näher beschrieben. Es zeigen:
FIG l einen Längsschnitt durch eine kombinierte Hochdruck- Mitteldruck-Turbine in einem Gehäuse mit einer Turbi- nenwelle und
FIG 2 einen Ausschnitt der Turbinenwelle im Dampfeinström¬ bereich des Mitteldruck-Teils
In FIG l ist eine sich entlang einer Rotationsachse 2 er- streckende Turbinenwelle 1 dargestellt, welche in einem ein Innengehäuse 21 umschließenden Außengehäuse 22 angeordnet ist. Die Turbinenwelle 1 weist einen Mittelbereich 28 auf, der mit dem Innengehäuse 21 eine Wellendichtung 24 beinhal¬ tet. Gemäß der FIG 1 schließt sich links an den Mittelbereich 28 der Hochdruck-Teil 23 der Dampfturbine an. Rechts des Mit¬ telbereiches 28 liegt der Mitteldruck-Teil 25 der Dampftur¬ bine. Der Hochdruck-Teil 23 mit der Hochdruck-Beschaufelung 13 hat einen unmittelbar an die Wellendichtung 24 anschlie¬ ßenden Hochdruck-Dampfeinströmbereich 27 von dem einströmen- der Hochdruck-Dampf durch einen Dampfbereich 17 der Hoch¬ druck-Beschaufelung 13 strömt und durch einen Dampfaustritts- bereich 16 das Außengehäuse 22 zu einem nichtdargestellten Kessel, in dem eine Zwischenüberhitzung stattfindet, verläßt. Über einen Dampfeinströmbereich 15 des Mitteldruck-Teils 25, welcher sich unmittelbar rechts der Wellendichtung 24 an die- se anschließt, gelangt der zwischenüberhitzte Dampf 6 wieder in das Außengehäuse 22 und das Innengehäuse 21 hinein. Er durchströmt eine sich rechts an den Dampfeinströmbereich 15 des Mitteldruck-Teils 25 anschließende Mitteldruck-Beschaufe¬ lung 14. An die Mitteldruck-Beschaufelung 14 schließt sich ein Abströmstutzen 26 an, durch welchen der Dampf 6 zu einer nicht dargestellten Niederdruck-Dampfturbine führbar ist. Die beschriebene Strömung des Dampfes 6 ist durch Strömungspfeile 29 gekennzeichnet.
Die Turbinenwelle 1 weist eine zentrale mit der Rotationsach¬ se 2 zusammenfallende Bohrung 5a auf, die durch den Mittel- druck-Teil 25 bis durch den Hochdruck-Teil 23 hindurch reicht. Die zentrale Bohrung 5a ist im Dampfaustrittsbereich 16 des Hochdruck-Teils 23 mit einer Manteloberfläche 3 der Turbinenwelle 1 durch eine Mehrzahl von Zuströmleitungen 8 verbunden. Die Zuströmleitungen 8 sind als radiale Bohrungen 8a ausgeführt, wodurch "kalter" Dampf aus dem Hochdruck-Teil 23 in die zentrale Bohrung 5a einströmen kann. Die zentrale Bohrung 5a ist weiterhin in einem Mitteldruck-Teil 25 im Be- reich der ersten Laufschaufelreihen mit einer Mehrzahl von Abströmleitungen 7 verbunden. Diese Abströmleitungen 7 er¬ strecken sich jeweils von Ausnehmungen 10 der Manteloberflä¬ che 3 zur Aufnahme von Laufschaufeln 11 zu der zentralen Boh¬ rung 5a. Die Abströmleitungen 7 sind ebenfalls im wesentli- chen radial verlaufende Bohrungen 7a. Stromab der Abströmlei¬ tungen 7 ist die zentrale Bohrung 5a durch einen Stopfen 9 dicht verschlossen. Der zwischen den Abströmleitungen 7 und den Zuströmleitungen 8 liegende Teil der Bohrung 5a bildet somit eine Kühlleitung 5, durch die Dampf 6 von dem Hoch- druck-Teil 23 in den Dampfeinströmbereich 15 des Mitteldruck- Teils 25 strömt. Dieser Dampf 6 hat eine deutlich niedrigere Temperatur als der in den Dampfeinströmbereich 15 einströmen¬ de zwischenüberhitzte Dampf, so daß eine wirksame Kühlung der ersten Laufschaufelreihen des Mitteldruck-Teils 25 sowie der Manteloberfläche 3 im Bereich dieser Laufschaufelreihen ge- währleistet ist.
FIG 2 zeigt im vergrößerten Maßstab den Dampfeinströmbereich 15 des Mitteldruck-Teils 25. In die Ausnehmungen 10 der Tur¬ binenwelle 1 sind jeweils entsprechende Laufschaufeln 11 mit ihren Schaufelfüßen 18 angeordnet. Die Ausnehmungen 10 weisen jeweils um die Schaufelfüße 18 herum Kanäle 20 auf, wobei die Kanäle 20 einerseits mit den radial zur Rotationsachse 2 ver¬ laufenden Abströmleitungen 7 und andererseits mit jeweils ei¬ ner Stichleitung 12 verbunden sind. Die Stichleitung 12 führt von der Ausnehmung 10 zur Manteloberfläche 3, so daß der
Stichleitung 12 eine Leitschaufel 19 der Dampfturbine gegen¬ überliegt. Der aus dem Hochdruck-Teil 23 durch die Abström¬ leitungen 7 strömende Dampf 6 gelangt in die Kanäle 20 der Ausnehmungen 10 und kühlt somit die jeweils in einer entspre- chenden Ausnehmung 10 angeordneten Schaufelfüße 18. Der Dampf 6 strömt von den Kanälen 20 durch eine jeweilige Stichleitung 12 an die Manteloberfläche 3 der Turbinenwelle 1 und kühlt somit auch die Manteloberfläche 3 zwischen einander in Rich¬ tung der Rotationsachse 2 benachbarten Laufschaufeln 11.
Die Erfindung zeichnet sich durch eine Turbinenwelle aus, welche sowohl die Laufschaufeln eines Hochdruck-Teils als auch die Laufschaufeln eines Mitteldruck-Teils einer Dampf¬ turbine trägt. Die Turbinenwelle weist zumindest eine Kühl- leitung auf, welche über zumindest eine Zuströmleitung mit dem Hochdruck-Teil und zumindest über eine Abströmleitung mit dem Dampfeinströmungsbereich des Mitteldruck-Teils verbunden ist. Die Zuströmleitung, die Kühlleitung sowie die Abström¬ leitung bilden ein Leitungssystem im Inneren der Turbinenwel- le, durch welches "kalter" Dampf aus dem Hochdruck-Teil zu dem thermomechanisch hochbeanspruchten Dampfeinströmbereich des Mitteldruck-Teils führbar ist. Hierdurch erfolgt ohne ho¬ hen konstruktiven Aufwand eine Kühlung sowohl der Laufschau¬ feln, insbesondere der Laufschaufelfüße, als auch der Ober¬ fläche der Turbinenwelle in dem besonders stark beanspruchten Dampfeinströmbereich des Mitteldruck-Teils.

Claims

Patentansprüche
1. Turbinenwelle (l) für eine Dampfturbine, welche entlang einer Rotationsachse (2) gerichtet ist, eine Manteloberfläche (3) hat und in ihrem Inneren (4) eine Kühlleitung (5) zur Führung von Kühldampf (6) in Richtung der Rotationsachse (2) aufweist, wobei die Kühlleitung (5) einerseits mit zumindest einer an die Manteloberfläche (3) führenden Abströmleitung (7) zur Führung von Kühldampf (6) an die Manteloberfläche (3) und andererseits mit zumindest einer Zuströmleitung (8) zur Zuströmung von Kühldampf (6) in die Kühlleitung (5) hinein verbunden ist.
2. Turbinenwelle (1) nach Anspruch 1, bei der die Kühlleitung (5) eine weitgehend zur Rotationsachse (2) parallele Bohrung
(5a) ist.
3. Turbinenwelle (1) nach Anspruch 2, bei der die Kühlleitung (5) eine zentrale Bohrung (5a) ist.
4. Turbinenwelle (l) nach Anspruch 2 oder 3, wobei die Boh¬ rung (5a) stromab der Abströmleitung (7) , insbesondere durch einen Stopfen (9), verschlossen ist.
5. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der sich die Zuströmleitung (8) von der Manteloberfläche (3) zur Kühlleitung (5) erstreckt.
6. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der die Zuströmleitung (8) und/oder die Abströmleitung
(7) eine im wesentlichen radiale Bohrung (8a, 7a) sind bzw. ist.
7. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, die an der Manteloberfläche (3) Ausnehmungen (10) zur Aufnah- me von Turbinenlaufschaufeln (1) aufweist, wobei die Abströmleitung (8) in einer Ausnehmung (10) mündet.
8. Turbinenwelle (1) nach Anspruch (7), bei der die eine Ab- Stromleitung (8) aufweisende Ausnehmung (10) zusätzlich über eine Stichleitung (12) mit der Manteloberfläche (3) verbunden ist.
9. Turbinenwelle (l) nach einem der vorhergehenden Ansprüche, welche der Aufnahme von Hochdruck-Laufschaufeln (13) sowie von Mitteldruck-Laufschaufeln (14) einer kombinierten Hochdruck-Mitteldruck-Dampfturbine dient, wobei die Abströmleitung (7) in einem Dampfeinströmbereich (15) der Mitteldruck-Laufschaufeln (14) mündet.
10. Turbinenwelle (1) nach Anspruch 9, wobei die Zuströmlei¬ tung (8) in einem Dampfaustrittsbereich (15) der Hochdruck- Laufschaufeln (14) mündet.
11. Verfahren zur Kühlung einer Turbinenwelle (l) einer
Dampfturbine, wobei die Turbinenwelle (1) sowohl die Hoch¬ druck-Laufschaufeln (13) als auch die Mitteldruck-Laufschau¬ feln (14) trägt und Dampf (6) aus dem Dampfbereich (17) der Hochdruck-Laufschaufeln (14) durch das Innere (4) der Turbi- nenwelle (l) hindurch zum Dampfeinströmbereich (15) der Mitteldruck-Laufschaufeln (14) geführt wird.
EP96946113A 1996-01-11 1996-12-20 Turbinenwelle einer dampfturbine mit interner kühlung Expired - Lifetime EP0873466B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19600821 1996-01-11
DE19600821 1996-01-11
PCT/DE1996/002490 WO1997025521A1 (de) 1996-01-11 1996-12-20 Turbinenwelle einer dampfturbine mit interner kühlung

Publications (2)

Publication Number Publication Date
EP0873466A1 true EP0873466A1 (de) 1998-10-28
EP0873466B1 EP0873466B1 (de) 2002-11-20

Family

ID=7782539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96946113A Expired - Lifetime EP0873466B1 (de) 1996-01-11 1996-12-20 Turbinenwelle einer dampfturbine mit interner kühlung

Country Status (8)

Country Link
US (1) US6010302A (de)
EP (1) EP0873466B1 (de)
JP (1) JP2000502775A (de)
KR (1) KR19990077142A (de)
AT (1) ATE228202T1 (de)
DE (1) DE59609893D1 (de)
ES (1) ES2187687T3 (de)
WO (1) WO1997025521A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT991850E (pt) * 1997-06-27 2002-07-31 Siemens Ag Eixo de uma turbina a vapor com refrigeracao interna bem como um processo para a refrigeracao de um eixo de turbina
JP4217001B2 (ja) * 1997-09-26 2009-01-28 シーメンス アクチエンゲゼルシヤフト 流体機械のハウジング
EP0926316B1 (de) * 1997-12-24 2003-12-03 ALSTOM (Switzerland) Ltd Kombinierte Mehrdruck-Dampfturbine
US7488153B2 (en) * 2002-07-01 2009-02-10 Alstom Technology Ltd. Steam turbine
EP1378630A1 (de) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Dampfturbine
US8156757B2 (en) * 2006-10-06 2012-04-17 Aff-Mcquay Inc. High capacity chiller compressor
US8105032B2 (en) * 2008-02-04 2012-01-31 General Electric Company Systems and methods for internally cooling a wheel of a steam turbine
EP2257710B1 (de) * 2008-03-13 2020-05-20 Daikin Applied Americas Inc. Kühlkompressor mit hoher kapazität
JP5433183B2 (ja) 2008-08-07 2014-03-05 株式会社東芝 蒸気タービンおよび蒸気タービンプラントシステム
US8251643B2 (en) * 2009-09-23 2012-08-28 General Electric Company Steam turbine having rotor with cavities
CH701914A1 (de) * 2009-09-30 2011-03-31 Alstom Technology Ltd Dampfturbine mit Entlastungsnut am Rotor im Bereich des Schubausgleichskolbens.
US8591180B2 (en) * 2010-10-12 2013-11-26 General Electric Company Steam turbine nozzle assembly having flush apertures
US9297277B2 (en) 2011-09-30 2016-03-29 General Electric Company Power plant
US9151163B2 (en) * 2012-11-29 2015-10-06 Mtu Aero Engines Gmbh Turbomachine rotor disk
US9702261B2 (en) 2013-12-06 2017-07-11 General Electric Company Steam turbine and methods of assembling the same
EP3130767A1 (de) * 2015-08-14 2017-02-15 Siemens Aktiengesellschaft Kombinierte hoch- und mitteldruck-dampfturbine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE527127C (de) * 1929-04-18 1931-06-16 E H Hans Holzwarth Dr Ing Laufrad fuer Brennkraftturbinen
DE959868C (de) * 1953-07-17 1957-03-14 Schilling Estate Company Laufradanordnung fuer Verpuffungsbrennkraftturbinen hoher Drehzahl
FR1143040A (fr) * 1954-09-10 1957-09-25 Henschel & Sohn Gmbh Rotor de turbine refroidi pour températures élevées des gaz
GB809268A (en) * 1955-12-31 1959-02-18 Oerlikon Maschf Improvements in or relating to turbines
US3189320A (en) * 1963-04-29 1965-06-15 Westinghouse Electric Corp Method of cooling turbine rotors and discs
US4571935A (en) * 1978-10-26 1986-02-25 Rice Ivan G Process for steam cooling a power turbine
JPS5934402A (ja) * 1982-08-20 1984-02-24 Hitachi Ltd 蒸気タ−ビンのロ−タ装置
DE3310396A1 (de) * 1983-03-18 1984-09-20 Kraftwerk Union AG, 4330 Mülheim Md-dampfturbine in einflutiger bauweise fuer eine hochtemperaturdampfturbinenanlage mit zwischenueberhitzung
DE4324034A1 (de) * 1993-07-17 1995-01-19 Abb Management Ag Gasturbine mit gekühltem Rotor
DE4411616C2 (de) * 1994-04-02 2003-04-17 Alstom Verfahren zum Betreiben einer Strömungsmaschine
US5498131A (en) * 1995-03-02 1996-03-12 General Electric Company Steam turbine with thermal stress reduction system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9725521A1 *

Also Published As

Publication number Publication date
WO1997025521A1 (de) 1997-07-17
ATE228202T1 (de) 2002-12-15
DE59609893D1 (de) 2003-01-02
KR19990077142A (ko) 1999-10-25
ES2187687T3 (es) 2003-06-16
US6010302A (en) 2000-01-04
JP2000502775A (ja) 2000-03-07
EP0873466B1 (de) 2002-11-20

Similar Documents

Publication Publication Date Title
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP0873466A1 (de) Turbinenwelle einer dampfturbine mit interner kühlung
EP1945911B1 (de) Dampfturbine
DE19620828C1 (de) Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
EP1389690A1 (de) Innenkühlbare Schraube
EP2596213B1 (de) Dampfturbine mit einer internen kühlung
EP2078137B1 (de) Rotor für eine strömungsmaschine
WO1998031923A1 (de) Dampfturbine
CH694257A5 (de) Dampfturbine.
EP0914543B1 (de) Turbinenanlage mit schubelement sowie schubelement
WO2001016467A1 (de) Turbine sowie verfahren zur abführung von leckfluid
EP1577494A1 (de) Geschweisste Turbinenwelle und Verfahren zur deren Herstellung
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP3155226B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
DE2358160A1 (de) Dampfturbinengehaeuse
WO1997038209A1 (de) Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
DE4336143C2 (de) Kühlverfahren für Turbomaschinen
EP1788191B1 (de) Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter
EP1895094B1 (de) Drallgekühlte Rotor-Schweissnaht
EP2211017A1 (de) Rotor mit Hohlraum für eine Strömungsmaschine
EP1389668A1 (de) Gasturbine
DE102016215770A1 (de) Ausströmgehäuse und Dampfturbine mit Ausströmgehäuse
EP2119878A1 (de) Dampfturbine mit geteiltem Innengehäuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 20010104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021120

REF Corresponds to:

Ref document number: 228202

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021205

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021220

Year of fee payment: 7

Ref country code: ES

Payment date: 20021220

Year of fee payment: 7

REF Corresponds to:

Ref document number: 59609893

Country of ref document: DE

Date of ref document: 20030102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030217

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030307

Year of fee payment: 7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030226

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2187687

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231