WO1997038209A1 - Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine - Google Patents

Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine Download PDF

Info

Publication number
WO1997038209A1
WO1997038209A1 PCT/DE1997/000674 DE9700674W WO9738209A1 WO 1997038209 A1 WO1997038209 A1 WO 1997038209A1 DE 9700674 W DE9700674 W DE 9700674W WO 9738209 A1 WO9738209 A1 WO 9738209A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
inner housing
axial
turbo machine
housing
Prior art date
Application number
PCT/DE1997/000674
Other languages
English (en)
French (fr)
Inventor
Axel Remberg
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AT97918065T priority Critical patent/ATE219816T1/de
Priority to EP97918065A priority patent/EP0891471B1/de
Priority to DE59707599T priority patent/DE59707599D1/de
Priority to JP9535741A priority patent/JP2000508040A/ja
Priority to PL97329236A priority patent/PL183594B1/pl
Publication of WO1997038209A1 publication Critical patent/WO1997038209A1/de
Priority to US09/170,183 priority patent/US6213710B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • F01D25/265Vertically split casings; Clamping arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like

Definitions

  • the present invention relates to a method and a device in a turbomachine with an outer and an inner housing or guide vane carrier for thrust compensation.
  • the field of application of the invention is in pot-type turbo-engines, the pressure of a fluid flowing through the turbo-machine causing an axial force in the longitudinal direction of the shaft at least on the inner housing.
  • DE 22 18 500 describes a multi-shell casing of a steam turbine for high steam pressures and steam temperatures.
  • the live steam enters the inner housing at high pressure. After an expansion of approximately 20% of the total gradient of the partial turbine, the steam is led through bores into the outer casing and thus compresses the inner casing in the area of the parting joints in the area of the further expansion course.
  • the design with a guide vane carrier is selected. The full live steam pressure is present in the space between the inner and outer housing and thus presses the two carrier halves together.
  • the term “inner housing” always also includes the constructive solution with guide vane carrier.
  • the pressures acting on various surfaces continue to provide a resulting thrust on the components in their superposition, which must be absorbed by corresponding devices on the inner housing and / or outer housing and / or on the shaft.
  • the space between the inner and outer housing against the exit side of the through Fluid flowing through the turbomachine is sealed, so that the differential pressure between the inlet and outlet has to be taken up by the inner housing, while the outer housing has to withstand the outlet pressure on the downstream side and the pressure between the outer and inner housing against the atmospheric pressure.
  • the pressures prevailing in the various rooms of a turbo machine ensure high axial forces, which are transmitted through appropriate devices, such as. B. bayonet rings, threaded rings, Uhde board cutter closures or screw connections must be transferred to the outer housing or other suitable devices. In addition to possible large deformations, these forces also cause high surface pressures on corresponding supports.
  • the object of the present invention is therefore to create a method for thrust compensation in a turbomachine and a corresponding embodiment of the same.
  • the invention is intended to compensate for axial forces occurring in the longitudinal direction of the shaft.
  • the invention provides that at least a first surface of the exterior of a part of the inner housing for axial thrust compensation is subdivided into two partial surfaces for axial thrust compensation, which are each subjected to different pressures, with a delimitation between the two pressures by at least one Means, in particular a seal, is caused.
  • the outside of a part of the inner housing is preferably subjected to a pressure for axial thrust compensation, which is at least as large as the outlet pressure of the fluid, and preferably approximately as large as the inlet pressure.
  • the pressure for axial thrust compensation counteracts the axial force of the outlet pressure on the inner housing.
  • the result of the overlapping of both pressures is a reduced resulting pressure, which therefore also causes less thrust.
  • This axial thrust compensation can be carried out in particular on the inner housing of the turbomachine. It is thereby achieved that the previous high construction costs for fixing the inner housing can be reduced. The surface pressures occurring on the fixing elements are therefore lower and therefore lead also to smaller deformations.
  • the pressure on the outer part of the inner housing is set according to the operating conditions, such as full or partial load. The axial thrust occurring on the inner housing can then be adjusted by suitable control of the pressure.
  • the dimensions of this outer part are further limited by the suitable means, preferably a seal.
  • the axial thrust compensation of the inner housing can thus be influenced not only by the pressure, but also by the effective surface available for the pressure to form an axial force.
  • This acting surface as the first surface is now divided into the two partial surfaces by the mean.
  • the active surface preferably comprises at least part of the outer end face of the inner housing.
  • the axial thrust can also be adjusted by varying the areas, determined by means of the diameter of one or two I-ring seals.
  • the seal itself is thus pressurized and in particular loaded. Because of the seal, the pressure acting on both partial surfaces can also be applied between the inner and outer housing.
  • FIG. 1 shows a stationary high-pressure turbine according to the invention in pot design and Figure 2 shows a schematic arrangement of a turbine train.
  • FIG. 1 shows, as an exemplary embodiment of a turbomachine 1 according to the invention, a high-pressure turbine 1 in pot design, which has an inner housing 2 and an outer housing 3.
  • the fluid 4 flowing through the turbomachine 1 enters with the inlet pressure P1 and leaves the high-pressure turbine 1 again with the outlet pressure P2.
  • the pressure difference between the inlet and the outlet pressure leads to an axial thrust not only on the inner housing 2 but also on the shaft 5.
  • the inner housing 2 has on its outside a surface AI which is subjected to the inlet pressure Pl.
  • a pressure on the surface AI is preferably at least as large as the outlet pressure P2 of the fluid 4 from the turbomachine 1.
  • the pressure on the surface AI can also be as large as the inlet pressure of the fluid and / or a pressure in the interior of the inner housing Be 2.
  • the surface AI preferably comprises a part of the end face of the inner housing 2.
  • the axial thrust which arises on this surface AI superimposes the axial force on the inner housing 2 which arises on the surface A2 ', as a result of which axial thrust compensation takes place on the latter.
  • the fixation 6 of the inner housing 2 relative to the outer housing 3 is subject to lower surface pressures due to this axial thrust compensation. This allows a variety of construction options for introducing an axial thrust force into the outer housing 3, e.g. B. can in the previous state of
  • the axial pressure-transmitting surface AI of the outer part of the inner housing 2 limited by a arranged around the shaft 5 means 7.
  • This means 7 advantageously a seal, limits the pressure P1 to the axial pressure-transmitting surface AI so that a precisely defined axial thrust compensation can take place by using the means 7.
  • the use of such a means 7 offers the possibility of applying a further pressure P3 to a further surface A3 on the outer part of the inner housing 2.
  • the pressure P3 in connection with the surface A3 then also makes a contribution to the axial thrust compensation.
  • the surfaces AI and A3 together therefore form a first surface of the outer part of the inner housing 2 in the sense of the invention.
  • the areas AI and A3 individually are the partial areas.
  • the pressure P3 which is advantageously lower than the pressure Pl, serves as a barrier pressure. Pressure and flow losses over the seal or seals as means 7 can be reduced by means of this advantageous pressure step. As a result, the seal, in particular an I-ring seal, can not only be pressurized, but also with the
  • seal 7 is advantageously attached between the inner part of the outer housing 3 and the outer part of the inner housing 2, in particular in such a way that it has direct contact with the inner housing 2 and the outer housing 3.
  • a seal 7 is an I-ring seal, whose
  • Diameter D depends on the area A1 or A3 which transmits the desired axial force.
  • An advantageous embodiment of the invention provides that axial thrust compensation takes place not only on the inner housing 2 but also on the shaft 5.
  • the turbomachine is designed in such a way that the outlet pressure P2 is applied to an area A2 ′′ transmitting axial pressure. So, because of the Pressure difference between the inlet pressure Pl and the outlet pressure P2 above the blades, axial thrust occurring on the shaft 5 can be at least partially compensated for.
  • FIG. 2 shows a schematic illustration of the arrangement of a high-pressure part HD, a medium-pressure part MD and a low-pressure part ND of a turbine on a shaft.
  • This illustration shows that the forces from the pressure Pl on the surface AI and from the pressure P3 on the surface A3 act in the negative X direction.
  • the force from the pressure P2 on the surface A2 ′′ counteracts these forces in the positive X direction.
  • the invention can thus be used not only on a partial turbine, but rather also on a line of turbomachines connected in series for axial thrust compensation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Basic Packing Technique (AREA)

Abstract

Die Erfindung schafft ein Verfahren zum Schubausgleich und eine entsprechende Turbomaschine (1) mit einem Außen- (3) und einem Innengehäuse (2) beziehungsweise Leitschaufelträger, insbesondere eine Turbokraftmaschine in Topfbauweise, wobei mindestens eine erste Fläche des Äußeren eines Teiles des Innengehäuses (2) zu einem Axialschubausgleich in zwei Teilflächen zum Axialschubausgleich unterteilt wird, die jeweils mit unterschiedlichem Druck beaufschlagt werden, wobei eine Abgrenzung zwischen beiden Drücken durch mindestens ein Mittel (7), insbesonders eine Dichtung, verursacht wird.

Description

Beschreibung
Verfahren und Vorrichtung zum Schubausgleich bei einer Turbo¬ maschine
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung bei einer Turbomaschine mit einem Außen- und ei¬ nem Innengehäuse bzw. Leitschaufelträger zum Schubausgleich. Insbesondere liegt das Anwendungsgebiet der Erfindung bei Turbokraftmaschinen in Topfbauweise, wobei der Druck eines durch die Turbomaschine durchströmenden Fluides eine Axial- kraft in Längsrichtung der Welle mindestens auf das Innenge¬ häuse verursacht .
Es ist bekannt, daß bei Turbomaschinen mit einem hohen Innen¬ druck das Gehäuse in ein Innen- und ein Außengehäuse aufge¬ teilt wird. In der DE 22 18 500 ist ein mehrschaliges Gehäuse einer Dampfturbine für hohe Dampfdrücke und Dampftemperaturen beschrieben. Bei der vorliegenden Konstruktion der Hochdruck- turbine in Topfbauart tritt der Frischdampf mit hohem Druck in das Innegehäuse ein. Nach einer Expansion von ca. 20% des gesamten Gefälles der Teilturbine wird der Dampf durch Boh¬ rungen in das Außengehäuse geführt und preßt so im Bereich des weiteren Expansionsverlaufes das Innengehäuse im Bereich der Teilfugen zusammen. Bei unterkritischen Dampfzuständen wird die Konstruktion mit Leitschaufelträger gewählt. Hierbei steht der volle Frischdampfdruck im Raum zwischen Innen- und Außengehäuse an und preßt so die beiden Trägerhälften zusam¬ men. Im weiteren Verlauf der Beschreibung umfaßt der Begriff "Innengehäuse" auch immer die konstruktive Lösung mit Leit¬ schaufelträger. Die an verschiedenen Flächen angreifenden Drücke sorgen nun in ihrer Überlagerung weiterhin für einen resultierenden Schub auf die Bauteile, der durch entspre¬ chende Vorrichtungen am Innengehäuse und/oder Außengehäuse und/oder an der Welle aufgefangen werden muß. Dazu ist es weiterhin bekannt, daß der Zwischenraum zwischen dem Innen- und dem Außengehäuse gegen die Austrittsseite des durch die Turbomaschine durchströmenden Fluides abgedichtet ist, so daß vom Innengehäuse der Differenzdruck zwischen Ein- und Aus¬ tritt aufzunehmen ist, während das Außengehäuse abströmseitig dem Austrittsdruck und einströmseitig dem Druck zwischen Au- ßen- und Innengehäuse gegenüber dem Atmosphärendruck stand¬ halten muß. Die in den verschiedenen Räumen einer Turboma¬ schine anliegenden Drücke sorgen für hohe Axialkräfte, die über entsprechende Vorrichtungen, wie z. B. Bajonettringe, Gewinderinge, Uhde-Brettschneider-Verschlüsse oder Verschrau- bungen auf das Außengehäuse oder andere geeignete Vorrichtun¬ gen übertragen werden müssen. Diese Kräfte verursachen neben möglichen großen Verformungen auch hohe Flächenpressungen an entsprechenden AbStützungen.
Die DE 22 18 500 beispielsweise offenbart ein mehrschaliges
Gehäuse einer Dampfturbine für hohe Dampfdrücke und Dampftem¬ peraturen. Eine Innenschale wird mittels eines Stützringes gegen das Außengehäuse verspannt und somit axial fixiert. Die US 3,754,833 wiederum bzw. ihre Prioritätsschrift, die DE 20 54 465, beschreibt eine Einrichtung zur radial-zen¬ trisch wärmebeweglichen Lagerung und Zentrierung von Wellen¬ dichtungsgehäusen an äußeren Gehäuseschalen von Turbomaschi¬ nen. Die dort dargestellte Turbine weist ein Topfgehäuse mit einer achsnormalen Teilfuge auf. Ein die Leitschaufeln tra- gendes Innengehäuse wird in dem Topfgehäuse an einer Lager¬ und Zentrierstelle eingesetzt. Diese Zentrierstelle wird durch einen Uhde-Brettschneider-Verschluß ausgebildet. Im Be¬ reich der Wellendurchführungen durch das Topfgehäuse befinden sich Wellendichtungsgehäuse, auf denen Dichtungsdeckel aufge- setzt sind. Bypasskanäle im Innengehäuse dienen zum Axial¬ schubausgleich.
Der Bauaufwand bei Turbomaschinen zum Auffangen der Axial- kräfte ist, wie oben ausgeführt, insgesamt sehr hoch. Da der Wirkungsgrad einer Turbomaschine durch Strömungsverluste nun stark beeinflußt wird, müssen die Schubkräfte weiterhin so aufgefangen werden, daß bei entsprechenden Wärmedehnungen der Welle und des Innen- und Außengehäuses sich nur möglichst kleine Radialspalte an den Schaufelenden ergeben.
Aufgabe der vorliegenden Erfindung ist daher die Schaffung eines Verfahrens zum Schubausgleich bei einer Turbomaschine sowie eine entsprechende Ausgestaltung derselben. Insbeson¬ dere soll die Erfindung auftretende Axialkräfte in Längsrich¬ tung der Welle ausgleichen.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruches 1 und durch eine Turbomaschine mit den Merkmalen des Anspruches 6 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den jeweils abhängigen Ansprüchen be¬ schrieben.
Die Erfindung sieht vor, daß mindestens eine erste Fläche des Äußeren eines Teiles des Innengehäuses zu einem Axialschub¬ ausgleich in zwei Teilflächen zum Axialschubausgleich unter¬ teilt wird, die jeweils mit unterschiedlichem Druck beauf- schlagt werden, wobei eine Abgrenzung zwischen beiden Drücken durch mindestens ein Mittel, insbesondere eine Dichtung, ver¬ ursacht wird. Bevorzugt wird das Äußere eines Teiles des In¬ nengehäuses mit einem Druck zum Axialschubausgleich beauf¬ schlagt, der mindestens so groß wie der Austrittsdruck des Fluides ist, und vorzugsweise ungefähr so groß wie der Ein¬ trittsdruck.
In einer vorteilhaften Ausführung der Erfindung wirkt der Druck zum Axialschubausgleich der Axialkraft des Austritts- druckes am Innengehäuse entgegen. Aufgrund der Überlagerung beider Drücke ergibt sich ein verringerter resultierender Druck, der damit auch nur einen geringeren Schub verursacht. Dieser Axialschubausgleich ist insbesondere am Innengehäuse der Turbomaschine durchführbar. Dadurch wird erreicht, daß der bisherige hohe Bauaufwand zur Fixierung des Innengehäuses verringert werden kann. Die an den Fixierelementen auftreten¬ den Flächenpressungen sind daher geringer und führen deswegen auch zu geringeren Verformungen. In einer vorteilhaften Wei¬ terentwicklung der Erfindung wird der Druck auf den äußeren Teil des Innengehäuses entsprechend den Betriebsbedingungen wie beispielsweise Voll- oder Teillast eingestellt. Durch ge- eignete Steuerung des Druckes ist dann der am Innengehäuse auftretende Axialschub einstellbar.
Neben der Beaufschlagung eines äußeren Teiles des Innengehäu¬ ses mit einem Druck zum Axialschubausgleich wird weiterhin eine Begrenzung der Abmessung dieses äußeren Teiles durch das geeignete Mittel, vorzugsweise eine Dichtung, vorgenommen. Der Axialschubausgleich des Innengehäuses ist dadurch nicht nur über den Druck beeinflußbar, sondern auch über die dem Druck zur Verfügung stehende wirkende Fläche zur Bildung ei- ner Axialkraft. Diese wirkende Fläche als erste Fläche wird nun durch das Mittel in die zwei Teilflächen unterteilt. Vor¬ zugsweise umfaßt die wirkende Fläche dabei mindestens einen Teil der äußeren Stirnfläche des Innengehäuses. Je nach Aus¬ legung der Maschine besteht damit die Möglichkeit, eine ge- eignete Abmessung des äußeren Teiles des Innengehäuses zum Axialschubausgleich vorzunehmen, um diesen Schub so gering wie möglich zu halten. Entsprechend den jeweiligen Dampfpara¬ metern einer Teilturbine ist der Axialschub ebenfalls durch Variation der Flächen, festgelegt mittels des Durchmessers eines oder zweier I-Ringdichtungen, ebenfalls einstellbar. Die Dichtung selbst wird somit mit Druck beaufschlagt und insbesondere belastet. Aufgrund der Dichtung ist der auf bei¬ den Teilflächen jeweils wirkende Druck auch zwischen Innen- und Außengehäuse aufbringbar.
Weitere Vorteile und Eigenschaften der Erfindung werden an¬ hand der folgenden Zeichnungen erläutert. Vorteilhafte Ausge¬ staltungen der Erfindung sind durch Kombinationen der offen¬ barten Merkmale möglich. Es zeigen:
Figur 1 eine erfindungsgemäße stationäre Hochdrucktur¬ bine in Topfbauweise und Figur 2 eine schematische Anordnung eines Turbi¬ nenstranges.
Figur 1 zeigt als Ausführungsbeispiel einer erfindungsgemäßen Turbomaschine 1 eine Hochdruckturbine 1 in Topfbauweise, wel¬ che ein Innengehäuse 2 und ein Außengehäuse 3 aufweist. Das durch die Turbomaschine 1 durchströmende Fluid 4 tritt mit dem Eintrittsdruck Pl ein und verläßt die Hochdruckturbine 1 wieder mit dem Austrittsdruck P2. Die Druckdifferenz zwischen dem Ein- und dem Austrittsdruck führt zu einem Axialschub nicht nur an dem Innengehäuse 2 sondern auch an der Welle 5. Je nach Art der Leit- und Laufschaufein findet dort ein un¬ terschiedlicher Druckabbau des hindurchströmenden Fluides 4 statt, der sich auf die Welle 5 und das Innengehäuse 2 aus- wirkt. Das Innengehäuse 2 weist an seiner Außenseite eine Fläche AI auf, die mit dem Eintrittsdruck Pl beaufschlagt wird. Ein Druck auf die Fläche AI ist bevorzugt mindestens so groß wie der Austrittsdruck P2 des Fluides 4 aus der Turboma¬ schine 1. Insbesondere kann der Druck auf der Fläche AI auch so groß wie der Eintrittsdruck des Fluides und/oder ein Druck im Inneren des Innengehäuses 2 sein. Vorzugsweise umfaßt die Fläche AI einen Teil der Stirnfläche des Innengehäuses 2. Der auf dieser Fläche AI entstehende Axialschub überlagert die an der Fläche A2 ' entstandene Axialkraft am Innengehäuse 2, wo- durch ein Axialschubausgleich an diesem stattfindet. Die Fi¬ xierung 6 des Innengehäuses 2 gegenüber dem Außengehäuse 3 ist aufgrund dieses Axialschubausgleiches geringeren Flächen¬ pressungen unterworfen. Dieses erlaubt vielfältige Konstruk¬ tionsmöglichkeiten zur Einleitung einer AxialSchubkraft in das Außengehäuse 3, z. B. können die im früheren Stand der
Technik verwendeten Stützringe entfallen. Der Gesamtaufbau einer derartigen erfindungsgemäßen Turbomaschine läßt sich somit aufgrund des verbesserten Axialschubausgleiches verein¬ fachen.
In der in der Figur 1 dargestellten Erfindung wird die axial- druckübertragende Fläche AI des äußeren Teiles des Innenge- häuses 2 durch ein, um die Welle 5 herum angeordnetes Mittel 7 begrenzt. Dieses Mittel 7, vorteilhafterweise eine Dich¬ tung, begrenzt den angreifenden Druck Pl auf die axialdruck- übertragende Fläche AI, so daß durch Verwendung des Mittels 7 ein genau definierter Axialschubausgleich stattfinden kann. Weiterhin bietet der Einsatz eines derartigen Mittels 7 die Möglichkeit, eine weitere Fläche A3 an dem äußeren Teil des Innengehäuses 2 mit einem weiteren Druck P3 zu beaufschlagen. Der Druck P3 in Verbindung mit der Fläche A3 erzeugt dann ebenfalls einen Beitrag zum Axialschubausgleich. Die Flächen AI und A3 zusammen bilden daher im Sinne der Erfindung eine erste Fläche des äußeren Teiles des Innengehäuses 2 aus. Die Flächen AI und A3 einzeln sind dann die Teilflächen.
Der Druck P3 , der gegenüber dem Druck Pl vorteilhafterweise niedriger ist, dient als Sperrdruck. Druck- und Strömungs¬ verluste über der oder den Dichtungen als Mittel 7 können mittels dieser vorteilhaften Druckstufung verringert werden. Dadurch ist die Dichtung, insbesondere eine I-Ringdichtung nicht nur mit Druck beaufschlagbar, sondern auch mit dem
Druck belastbar. Durch Verwendung mehrerer Mittel 7 können für eine günstige Druckstufung auch weitere, voneinander ge¬ trennte Flächen zum Axialschubausgleich geschaffen werden, wie dieses durch das gestrichelte Mittel 7 mit der Fläche A3 ' und dem Druck P3 ' angedeutet ist. Aufgrund der Baugeometrie der Turbomaschine 1 wird die Dichtung 7 vorteilhafterweise zwischen dem inneren Teil des Außengehäuses 3 und dem äußeren Teil des Innengehäuses 2 angebracht, insbesondere so, daß sie direkten Kontakt zu dem Innengehäuse 2 und dem Außengehäuse 3 hat. Als Dichtung 7 bietet sich eine I-Ringdichtung an, deren
Durchmesser D von der, die gewünschte Axialkraft übertragen¬ den Fläche AI bzw. A3 abhängt. Eine vorteilhafte Ausgestal¬ tung der Erfindung sieht vor, daß ein Axialschubausgleich nicht nur an dem Innengehäuse 2 sondern ebenfalls an der Welle 5 stattfindet. Dazu ist die Turbomaschine so gestaltet, daß eine axialdruckübertragende Fläche A2 ' ' mit dem Aus¬ trittsdruck P2 beaufschlagt wird. So kann der, aufgrund der Druckdifferenz des Eintrittsdruckes Pl und des Austrittsdruk- kes P2 über den Schaufeln, auftretende Axialschub an der Welle 5 zumindest teilweise ausgeglichen werden.
Figur 2 zeigt in einer schematischen Darstellung die Anord¬ nung eines Hochdruckteils HD, eines Mitteldruckteiles MD und eines Niederdruckteiles ND einer Turbine auf einer Welle. Diese Darstellung verdeutlicht, daß die Kräfte aus dem Druck Pl auf die Fläche AI und aus dem Druck P3 auf die Fläche A3 in negativer X-Richtung wirken. Die Kraft aus dem Druck P2 auf die Fläche A2 ' ' wirkt dagegen diesen Kräften in positiver X-Richtung entgegen. Die Erfindung ist somit nicht nur an ei¬ ner Teilturbine, sondern vielmehr auch an einem Strang von hintereinander geschalteten Turbomaschinen zum Axialschubaus- gleich anwendbar.

Claims

Patentansprüche
1. Verfahren zum Axialschubausgleich bei einer Turbomaschine
(1) mit einem Außen- (3) und einem Innengehäuse (2) bezie- hungsweise Leitschaufelträger, insbesondere einer Turbokraft¬ maschine in Topfbauweise, wobei der Druck eines durch die Turbomaschine strömenden Fluides (4) eine Axialkraft in Längsrichtung der Welle (5) mindestens auf das Innengehäuse
(2) verursacht und ein Äußeres eines Teiles des Innengehäuses (2) mit einem Druck zum Axialschubausgleich beaufschlagt wird, d a d u r c h g e k e n n z e i c h n e t, daß mindestens eine erste Fläche (A1+A3) des Äußeren des Teiles des Innenge¬ häuses (2) zu einem Axialschubausgleich in zwei Teilflächen (AI, A3) zum Axialschubausgleich unterteilt wird, die jeweils mit unterschiedlichem Druck (Pl, P3) beaufschlagt werden, wo¬ bei eine Abgrenzung zwischen beiden Drücken (Pl, P3) durch mindestens ein Mittel (7) , insbesonders eine Dichtung, verur¬ sacht wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß das Mittel (7) selbst, insbesondere eine I-Ringdichtung, mit Druck (Pl, P3) beaufschlagt, insbesondere belastet, wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß der auf bei¬ den Teilflächen (AI, A3) jeweils wirkende Druck (Pl, P3) zwi¬ schen Innen- (2) und Außengehäuse (3) aufgebracht wird.
4. Verfahren nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der Druck (Pl, P3) auf der Teilfläche (AI, A3) des Äußeren des Teiles des Innengehäuses (2) entsprechend einer jeweiligen Betriebs- bedingung der Turbomaschine eingestellt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der Druck
(Pl, P3) auf eine Stirnfläche des Innengehäuses (2) aufge¬ bracht wird.
6. Turbomaschine (1) mit einem Außen- (3) und einem Innenge¬ häuse (2) beziehungsweise Leitschaufelträger, insbesondere eine Turbokraftmaschine in Topfbauweise, wobei der Austritts- druck (P2) eines durch die Turbomaschine (1) strömenden Flui- des (4) eine Axialkraft in Längsrichtung der Welle (5) minde¬ stens auf das Innengehäuse (2) verursacht, d a d u r c h g e k e n n z e i c h n e t, daß ein Mittel (7) zwei axialdruckübertragende Teilflächen (AI, A3) einer ersten Fläche (A1+A3) an einem Äußeren eines Teiles des In- nengehäuses (2) voneinander trennt, die jeweils zu einem Axialschubausgleich (5) beitragen.
7. Turbomaschine nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die beiden axialdruckübertragenden Teilflächen (AI, A3) mit jeweils un¬ terschiedlichem Druck (Pl, P3) beaufschlagbar sind.
8. Turbomaschine nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, daß das Mittel (7) mit Druck (Pl, P3) beaufschlagbar ist, insbesondere mit zwei unterschiedlichen Drücken gleichzeitig.
9. Turbomaschine nach Anspruch 7 oder 8, d a d u r c h g e k e n n z e i c h n e t, daß das Mittel (7) zwischen dem Innengehäuse (2) und dem Außengehäuse (3) angeordnet ist, insbesondere so, daß es direkten Kontakt zu dem Innengehäuse (2) und dem Außengehäuse (3) hat.
10. Turbomaschine nach einem der Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß das Mittel
(7) eine Dichtung, vorzugsweise eine I-Ringdichtung, ist, die insbesondere um die Welle (5) herum angeordnet ist.
11. Turbomaschine nach einem der Ansprüche 6 bis 10, d a d u r c h g e k e n n z e i c h n e t, daß die druck¬ übertragende Teilfläche (AI, A3) zum Schubausgleich zumindest teilweise eine Stirnfläche des Innengehäuses umfaßt.
12. Turbomaschine nach einem der Ansprüche 6 bis 11, d a d u r c h g e k e n n z e i c h n e t, daß die druck¬ übertragende Teilfläche (AI, A3) zum Schubausgleich mit dem Eintrittsdruck (Pl) oder mit einem Druck aus dem Inneren des Innengehäuses (2) beaufschlagbar ist.
PCT/DE1997/000674 1996-04-11 1997-04-02 Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine WO1997038209A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT97918065T ATE219816T1 (de) 1996-04-11 1997-04-02 Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
EP97918065A EP0891471B1 (de) 1996-04-11 1997-04-02 Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
DE59707599T DE59707599D1 (de) 1996-04-11 1997-04-02 Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
JP9535741A JP2000508040A (ja) 1996-04-11 1997-04-02 タービン機械におけるスラストの補償方法及び装置
PL97329236A PL183594B1 (pl) 1996-04-11 1997-04-02 Sposób kompensowania sił poosiowych w maszynie wirnikowej i maszyna wirnikowa
US09/170,183 US6213710B1 (en) 1996-04-11 1998-10-13 Method and apparatus for thrust compensation on a turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19614335.7 1996-04-11
DE19614335 1996-04-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/170,183 Continuation US6213710B1 (en) 1996-04-11 1998-10-13 Method and apparatus for thrust compensation on a turbomachine

Publications (1)

Publication Number Publication Date
WO1997038209A1 true WO1997038209A1 (de) 1997-10-16

Family

ID=7791006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000674 WO1997038209A1 (de) 1996-04-11 1997-04-02 Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine

Country Status (11)

Country Link
US (1) US6213710B1 (de)
EP (1) EP0891471B1 (de)
JP (1) JP2000508040A (de)
KR (1) KR20000005303A (de)
CN (1) CN1081724C (de)
AT (1) ATE219816T1 (de)
CZ (1) CZ326498A3 (de)
DE (1) DE59707599D1 (de)
PL (1) PL183594B1 (de)
RU (1) RU2175721C2 (de)
WO (1) WO1997038209A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894016B2 (en) * 2001-05-08 2005-05-17 Kao Corporation Liquid detergent composition
CH701914A1 (de) * 2009-09-30 2011-03-31 Alstom Technology Ltd Dampfturbine mit Entlastungsnut am Rotor im Bereich des Schubausgleichskolbens.
EP2333253A1 (de) * 2009-12-08 2011-06-15 Siemens Aktiengesellschaft Innengehäuse für eine Strömungsmaschine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234904B2 (ja) * 1997-11-03 2009-03-04 シーメンス アクチエンゲゼルシヤフト タービン車室とその製造方法
DE60121968T2 (de) * 2001-11-22 2006-12-07 Siemens Ag Verfahren zum Herstellen von Dampfturbinen
JP2006016976A (ja) * 2004-06-30 2006-01-19 Toshiba Corp タービンノズル支持装置および蒸気タービン
US8256575B2 (en) * 2007-08-22 2012-09-04 General Electric Company Methods and systems for sealing rotating machines
CN101952557A (zh) * 2008-03-31 2011-01-19 三菱重工业株式会社 回转机械
DE102008022966B4 (de) * 2008-05-09 2014-12-24 Siemens Aktiengesellschaft Rotationsmaschine
EP2192266A1 (de) * 2008-11-26 2010-06-02 Siemens Aktiengesellschaft Rotorvorrichtung für eine Dampfturbine und Dampfturbine
JP2010174795A (ja) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd タービン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE281253C (de) *
FR1094273A (fr) * 1953-08-31 1955-05-16 Siemens Ag Turbine à double enveloppe fonctionnant à forte pression d'échappement
DE1152703B (de) * 1959-12-14 1963-08-14 Licentia Gmbh Vielstufige Gleichdruckturbine
DE2218500A1 (de) * 1972-04-17 1973-10-31 Kraftwerk Union Ag Mehrschalige axialturbine fuer hohe dampfdruecke und -temperaturen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227282B2 (de) 1970-11-05 1977-07-19
JPS59213907A (ja) * 1983-05-19 1984-12-03 Fuji Electric Co Ltd つぼ型タ−ビン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE281253C (de) *
FR1094273A (fr) * 1953-08-31 1955-05-16 Siemens Ag Turbine à double enveloppe fonctionnant à forte pression d'échappement
DE1152703B (de) * 1959-12-14 1963-08-14 Licentia Gmbh Vielstufige Gleichdruckturbine
DE2218500A1 (de) * 1972-04-17 1973-10-31 Kraftwerk Union Ag Mehrschalige axialturbine fuer hohe dampfdruecke und -temperaturen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894016B2 (en) * 2001-05-08 2005-05-17 Kao Corporation Liquid detergent composition
CH701914A1 (de) * 2009-09-30 2011-03-31 Alstom Technology Ltd Dampfturbine mit Entlastungsnut am Rotor im Bereich des Schubausgleichskolbens.
US8684663B2 (en) 2009-09-30 2014-04-01 Alstom Technology Ltd. Steam turbine with relief groove on the rotor
EP2333253A1 (de) * 2009-12-08 2011-06-15 Siemens Aktiengesellschaft Innengehäuse für eine Strömungsmaschine

Also Published As

Publication number Publication date
ATE219816T1 (de) 2002-07-15
EP0891471A1 (de) 1999-01-20
JP2000508040A (ja) 2000-06-27
PL329236A1 (en) 1999-03-15
RU2175721C2 (ru) 2001-11-10
CN1215449A (zh) 1999-04-28
PL183594B1 (pl) 2002-06-28
CN1081724C (zh) 2002-03-27
CZ326498A3 (cs) 1999-02-17
KR20000005303A (ko) 2000-01-25
US6213710B1 (en) 2001-04-10
DE59707599D1 (de) 2002-08-01
EP0891471B1 (de) 2002-06-26

Similar Documents

Publication Publication Date Title
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP0005431A2 (de) Strömungsmaschine
WO1997038209A1 (de) Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
EP0953099B1 (de) Dampfturbine
DE102012008723A1 (de) Leitrad für Turbomaschinen und Herstellungsverfahren
WO2012022551A2 (de) Interne kühlung für eine strömungsmaschine
DE60125792T2 (de) Gehäuseanordnung eines turbogenerators
EP1206627A1 (de) Turbine sowie verfahren zur abführung von leckfluid
EP2526263B1 (de) Gehäusesystem für eine axialströmungsmaschine
CH714390B1 (de) Turbine und Turbolader.
EP2997236B1 (de) Dampfturbine
EP1280980A1 (de) Verfahren zur kühlung einer welle in einem hochdruck-expansionsabschnitt einer dampfturbine
DE68901768T2 (de) Kompressorgehaeuse mit regelbarem innendurchmesser fuer eine turbomaschine.
DE202014002981U1 (de) Axialturbine für einen Abgasturbolader
EP3155226A1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP2665896B1 (de) Zwischengehäuse einer Gasturbine mit einer aussen liegenden Begrenzungswand welche stromaufwärts einer Stützrippe eine in Umfangrichtung verändernde Kontur aufweist zur Verringerung der Sekundärströmungsverluste
DE102008045657B4 (de) Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen
DE10115947C2 (de) Verfahren zur Relativpositionierung von aufeinander folgenden Statoren oder Rotoren einer transsonischen Hochdruckturbine
DE3320190A1 (de) Lastverteilervorrichtung, insbesondere fuer die turbine eines gasturbinentriebwerks
EP2877699B1 (de) Niederdruck-turbine
DE102014218936A1 (de) Radialturbofluidenergiemaschine, Verfahren zur Montage
EP3670845A1 (de) Statische dichtungsanordnung und turbomaschine
EP1769137B1 (de) Dampfturbine umfassend eine lager- und dichtungsanordnung
WO2018157957A1 (de) Turbinengehäuse und verfahren zur montage einer turbine mit einem turbinengehäuses
DE2305123C3 (de) Kreiselpumpengehäuse

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97193662.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ JP KR PL RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997918065

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV1998-3264

Country of ref document: CZ

Ref document number: 1019980708015

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09170183

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997918065

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1998-3264

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019980708015

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997918065

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1998-3264

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1019980708015

Country of ref document: KR