EP2333253A1 - Innengehäuse für eine Strömungsmaschine - Google Patents

Innengehäuse für eine Strömungsmaschine Download PDF

Info

Publication number
EP2333253A1
EP2333253A1 EP09015210A EP09015210A EP2333253A1 EP 2333253 A1 EP2333253 A1 EP 2333253A1 EP 09015210 A EP09015210 A EP 09015210A EP 09015210 A EP09015210 A EP 09015210A EP 2333253 A1 EP2333253 A1 EP 2333253A1
Authority
EP
European Patent Office
Prior art keywords
inner housing
parting line
steam
housing
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09015210A
Other languages
English (en)
French (fr)
Inventor
Christian Cukjati
Heinz Dallinger
Thomas Müller
Norbert Thamm
Andreas Ulma
Michael Wechsung
Uwe Zander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09015210A priority Critical patent/EP2333253A1/de
Priority to EP10790396.5A priority patent/EP2510195B1/de
Priority to PCT/EP2010/069010 priority patent/WO2011069982A1/de
Priority to PL10790396.5T priority patent/PL2510195T3/pl
Priority to CN2010800555397A priority patent/CN102648335A/zh
Publication of EP2333253A1 publication Critical patent/EP2333253A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • F01D25/265Vertically split casings; Clamping arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within

Definitions

  • the invention relates to an inner housing for a turbomachine, wherein the inner housing comprises a first part and a second part.
  • a steam turbine conventionally includes a rotatably mounted rotor and a housing disposed about the rotor. Between the rotor and the inner housing, a flow channel is formed.
  • the housing in a steam turbine must be able to fulfill several functions.
  • the guide vanes are arranged in the flow channel on the housing and, secondly, the inner housing must withstand the pressure and the temperatures of the flow medium for all load and special operating cases.
  • the flow medium is steam.
  • the housing must be designed such that inlets and outlets, which are also referred to as taps, are possible. Another feature that a case must meet is the possibility of a shaft end passing through the case.
  • the high voltages, pressures, and temperatures that occur during operation require that the materials be properly selected and that the design be selected to provide mechanical integrity and functionality. This requires that high-quality materials are used, especially in the area of the inflow and the first Leitschaufelnuten.
  • nickel-based alloys are suitable because they are the high temperatures occurring loads withstand.
  • the use of such a nickel-based alloy is associated with new challenges.
  • the cost of nickel-base alloys is relatively high and also the manufacturability of nickel-based alloys, for example limited by limited casting possibility.
  • the use of nickel-based materials must be minimized.
  • the nickel-based materials are poor heat conductors.
  • the temperature gradients over the wall thickness are so rigid that thermal stresses are comparatively high.
  • Steam turbines which are designed for high pressures and high steam temperatures, usually have an inner housing and an outer housing.
  • the outer housing is usually designed in two parts and has a horizontal parting line, wherein embodiments are known in which the outer housing is designed as a pot housing.
  • the inner housing is usually made in two parts and has a horizontal parting line.
  • the inner housing has inlet openings, which must be sufficiently dimensioned to the necessary for the power generation and the steam valves supplied steam masses or Record vapor flow. In addition, the steam mass and the steam volume flow must be performed evenly to the turbine blading.
  • Conventional steam turbines have an inner housing, which consists of an upper part and a lower part.
  • the distance from the horizontal parting line to the center of the steam turbine is defined by the required cross-section, which is required for the passage of the steam mass flow.
  • This definition also defines the requirements for the part-joint screws.
  • the partial joint screw design must be dimensioned such that the screw force is sufficient to counteract the compressive force resulting from the vapor pressure and the cross-sectional area and thus to ensure the Generalfugendimi.
  • the inflow takes place via two inlet openings in the lower part.
  • the supply of the upper part via the passage area in the region of the horizontal parting line.
  • the dimensioning of the parting screw is done via the cross-sectional area in the parting line. For large cross-sectional areas, higher-quality screw designs must be used.
  • the invention is based, whose task is to provide an inner housing can be used in the smaller-sized parting screws.
  • an inner housing for a turbomachine wherein the inner housing a first part and comprises a second part, wherein between the first part and the second part a vertical parting line is formed.
  • the invention is based on the aspect that a horizontal parting can be omitted and instead a vertical parting line is used.
  • the vertical parting line is thus in the 12 and 6 o'clock position. Due to the vertical parting line and the associated flow of the inflow channel, the cross-sectional area on which the screw dimensioning is based can be reduced.
  • the part-joint screws can be arranged closer to the center of the turbine, which is accompanied by a reduction of the dimensioning of the part-joint screw design pressure surfaces.
  • One effect of this is that smaller screw sizes can be used.
  • an inferior screw material as well as smaller inner shell castings can be used. The overall leads to a cost reduction.
  • the first part and / or the second part has inflow openings, which are advantageously made substantially symmetrical.
  • the steam turbine 1 shown in FIG. 1 is an embodiment of a turbomachine.
  • the steam turbine 1 comprises an outer housing 2 and an inner housing 3.
  • a rotor not shown, is rotatably mounted about a rotation axis 4.
  • the inner housing 3 comprises a first part 3a and a second part 3b.
  • the first part 3a and the second part 3b is formed via a vertical parting line 5.
  • the first part 3a and the second part 3b is held together by not shown detail part screws on the vertical parting line 5.
  • the vertical parting line 5 refers to a horizontal line 6, which corresponds to the natural horizontal in operation.
  • the vertical parting line 5 does not have to be rotated exactly 90 ° with respect to the horizontal line 6. Rather, the vertical parting line in an angular range of -10 ° to + 10 ° relative to the theoretically exact vertical line, which is shifted 90 ° relative to the horizontal line 6, be formed.
  • the first part 3a and the second part 3b each have an inflow opening 7, via which a steam flows in operation into a flow channel, not shown.
  • the outer housing 2 has a horizontal parting line 8. Therefore, the outer case 2 has an upper part 2a and a lower part 2b.
  • the steam turbine 1 can be used in the high pressure range or in the medium pressure range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Innengehäuse (3, 3a, 3b) für eine Strömungsmaschine, insbesondere für eine Dampfturbine, wobei das Innengehäuse (3, 3a, 3b) ein erstes Teil (3a) und ein zweites Teil (3b)umfasst, wobei zwischen dem ersten Teil (3a) und dem zweiten Teil (3b) eine vertikale Teilfuge (5) ausgebildet ist.

Description

  • Die Erfindung betrifft ein Innengehäuse für eine Strömungsmaschine, wobei das Innengehäuse ein erstes Teil und ein zweites Teil umfasst.
  • Unter einer Strömungsmaschine wird beispielsweise eine Dampfturbine verstanden. Eine Dampfturbine weist üblicher Weise einen drehbar gelagerten Rotor und ein Gehäuse, das um den Rotor angeordnet ist auf. Zwischen dem Rotor und dem Innengehäuse ist ein Strömungskanal ausgebildet. Das Gehäuse in einer Dampfturbine muss mehrere Funktionen erfüllen können. Zum einen werden die Leitschaufeln im Strömungskanal am Gehäuse angeordnet und zum zweiten muss das Innengehäuse den Druck und den Temperaturen des Strömungsmediums für alle Last- und besondere Betriebsfälle standhalten. Bei einer Dampfturbine ist das Strömungsmedium Dampf. Des Weiteren muss das Gehäuse derart ausgebildet sein, dass Zu- und Abführungen, die auch als Anzapfungen bezeichnet werden, möglich sind. Eine weitere Funktion, die ein Gehäuse erfüllen muss, ist die Möglichkeit, dass ein Wellenende durch das Gehäuse durchgeführt werden kann.
  • Bei den im Betrieb auftretenden hohen Spannungen, Drücken und Temperaturen ist es erforderlich, dass die Werkstoffe geeignet ausgewählt werden sowie die Konstruktion derart gewählt ist, dass die mechanische Integrität und Funktionalität ermöglicht wird. Dafür ist es erforderlich, dass hochwertige Werkstoffe zum Einsatz kommen, insbesondere im Bereich der Einströmung und der ersten Leitschaufelnuten.
  • Für die Anwendungen bei Frischdampftemperaturen von über 650°C, wie z.B. 700°C, sind Nickel-Basis-Legierungen geeignet, da sie den bei hohen Temperaturen auftretenden Belastungen standhalten. Allerdings ist die Verwendung einer solchen Nickel-Basis-Legierung mit neuen Herausforderungen verbunden. So sind die Kosten für Nickel-Basis-Legierungen vergleichsweise hoch und außerdem ist die Fertigbarkeit von Nickel-Basis-Legierungen, z.B. durch beschränkte Gussmöglichkeit begrenzt. Dies führt dazu, dass die Verwendung von Nickel-Basis-Werkstoffen minimiert werden muss. Des Weiteren sind die Nickel-Basis-Werkstoffe schlechte Wärmeleiter. Dadurch sind die Temperaturgradienten über der Wandstärke so starr, dass Thermospannungen vergleichsweise hoch sind. Des Weiteren ist zu berücksichtigen, dass bei der Verwendung von Nickel-Basis-Werkstoffen die Temperaturdifferenz zwischen Ein- und Auslass der Dampfturbine steigt.
  • Es werden derzeit verschiedene Konzepte verfolgt, um eine Dampfturbine bereitzustellen, die für hohe Temperaturen und für hohe Drücke geeignet ist. So ist es bekannt, eine aus mehreren Teilen umfassende Innengehäusestruktur in eine Außengehäusestruktur einzuarbeiten gemäß dem Artikel Y. Tanaka et al. "Advanced Design of Mitsubishi Large Steam Turbines", Mitsubishi Heavy Industries, Power Gen Europe, 2003, Düsseldorf, May 06.-08., 2003.
  • Es ist ebenso bekannt, ein Innengehäuse aus zwei Teilen auszubilden gemäß DE 10 2006 027 237 A1 .
  • In der DE 342 1067 wird ebenfalls eine mehrkomponentige Innengehäusestruktur offenbart sowie in der DE 103 53 451 A1 .
  • Dampfturbine, die für hohe Drücke und hohe Dampftemperaturen ausgelegt sind, weisen in der Regel ein Innengehäuse und ein Außengehäuse auf. Das Außengehäuse ist in der Regel zweiteilig ausgeführt und weist eine horizontale Teilfuge auf, wobei Ausführungsformen bekannt sind, in der das Außengehäuse als Topfgehäuse ausgebildet ist. Das Innengehäuse ist in der Regel zweiteilig ausgeführt und weist eine horizontale Teilfuge auf. Das Innengehäuse weist Einströmöffnungen auf, die ausreichend dimensioniert sein müssen, um den für die Leistungserzeugung notwendigen und über die Dampfventile zugeführten Dampfmassen bzw. Dampfvolumenstrom aufzunehmen. Darüber hinaus müssen der Dampfmassen- und der Dampfvolumenstrom gleichmäßig zu der Turbinenbeschaufelung geführt werden. Herkömmliche Dampfturbinen weisen ein Innengehäuse auf, das aus einem Oberteil und aus einem Unterteil besteht. Der Abstand der horizontalen Teilfuge zu der Dampfturbinenmitte wird durch den erforderlichen Querschnitt definiert, der für die Durchleitung des Dampfmassenstromes benötigt wird. Durch diese Definition sind auch die Erfordernisse für die Teilfugenschrauben definiert. Die Teilfugenschraubenauslegung muss dabei derart dimensioniert sein, dass die Schraubenkraft ausreicht, um die aus dem Dampfdruck und der Querschnittsfläche resultierende Druckkraft entgegenzuwirken und somit die Teilfugendichtigkeit zu gewährleisten. Je größer diese Durchtrittsfläche gewählt wird, umso größer müssen die Schrauben sein bzw. muss der Schraubenwerkstoff aus einem höherwertigen Material bestehen.
  • Bei einem Innengehäuse mit horizontaler Teilfuge erfolgt die Einströmung über zwei Einströmöffnungen im Unterteil. Die Versorgung des Oberteils erfolgt über die Durchtrittsfläche im Bereich der horizontalen Teilfuge.
  • Die Dimensionierung der Teilfugenschrauben erfolgt über die Querschnittsfläche in der Teilfuge. Bei großen Querschnittsflächen müssen höherwertige Schraubenauslegungen eingesetzt werden.
  • Wünschenswert wäre es, ein Innengehäusedesign zu haben, bei dem die Anforderungen an die Teilfugenschrauben geringer sind.
  • An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, ein Innengehäuse anzugeben, bei dem geringer dimensionierte Teilfugenschrauben eingesetzt werden können.
  • Gelöst wird diese Aufgabe durch ein Innengehäuse für eine Strömungsmaschine, wobei das Innengehäuse ein erstes Teil und ein zweites Teil umfasst, wobei zwischen dem ersten Teil und dem zweiten Teil eine vertikale Teilfuge ausgebildet ist.
  • Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
  • Die Erfindung geht von dem Aspekt aus, dass eine horizontale Teilfuge entfallen kann und stattdessen eine vertikale Teilfuge eingesetzt wird. Die vertikale Teilfuge befindet sich somit in der 12- und 6Uhr-Position. Durch die vertikale Teilfuge und die damit verbundene Beströmung des Einströmkanals kann die der Schraubendimensionierung zu Grunde liegende Querschnittsfläche reduziert werden. Die Teilfugenschrauben können näher zur Turbinenmitte angeordnet werden, womit eine Reduzierung der für die Teilfugenschraubenauslegung dimensionierenden Druckflächen einhergehen. Ein Effekt davon ist, dass kleinere Schraubengrößen eingesetzt werden können. Des Weiteren kann ein minderwertigerer Schraubewerkstoff sowie kleinere Innengehäusegussstücke verwendet werden. Die führt insgesamt zu einer Kostenreduktion.
  • Das erste Teil und/oder das zweite Teil weist Einströmöffnungen auf, die vorteilhafter Weise im Wesentlichen symmetrisch ausgeführt sind.
  • Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung beschrieben. Dies soll das Ausführungsbeispiel nicht maßstäblich darstellen, vielmehr ist die Zeichnung, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der aus der Zeichnung unmittelbar erkennbaren Lehren wird hier auf den einschlägigen Stand der Technik verwiesen.
  • Im Einzelnen zeigt die Zeichnung:
  • Figur 1
    eine Schnittdarstellung durch eine Strömungsmaschine.
  • Die in Figur 1 dargestellte Dampfturbine 1 ist eine Ausführungsform einer Strömungsmaschine. Die Dampfturbine 1 umfasst ein Außengehäuse 2 und ein Innengehäuse 3 auf. Innerhalb des Innengehäuses 3 ist ein nicht näher dargestellter Rotor um eine Rotationsachse 4 drehbar gelagert. Das Innengehäuse 3 umfasst ein erstes Teil 3a und ein zweites Teil 3b. Das erste Teil 3a und das zweite Teil 3b wird über eine vertikale Teilfuge 5 ausgebildet. Das erste Teil 3a und das zweite Teil 3b wird über nicht näher dargestellte Teilfugenschrauben an der vertikalen Teilfuge 5 zusammengehalten. Die vertikale Teilfuge 5 bezieht sich dabei auf eine horizontale Linie 6, die im Betrieb der natürlichen Horizontalen entspricht. Die vertikale Teilfuge 5 muss hierbei nicht exakt um 90° gegenüber der horizontalen Linie 6 gedreht sein. Vielmehr kann die vertikale Teilfuge in einem Winkelbereich von -10° bis +10° gegenüber der theoretisch exakten vertikalen Linie, die 90° gegenüber der horizontalen Linie 6 verschoben ist, ausgebildet sein.
  • Das erste Teil 3a und das zweite Teil 3b weisen jeweils eine Einströmöffnung 7 auf, über die im Betrieb ein Dampf in einen nicht näher dargestellte Strömungskanal strömt. Das Außengehäuse 2 weist eine horizontale Teilfuge 8 auf. Daher weist das Außengehäuse 2 ein Oberteil 2a und ein Unterteil 2b auf. Die Dampfturbine 1 kann im Hochdruckbereich oder im Mitteldruckbereich eingesetzt werden.

Claims (4)

  1. Innengehäuse (3, 3a, 3b) für eine Strömungsmaschine, wobei das Innengehäuse (3, 3a, 3b) ein erstes Teil (3a) und ein zweites Teil (3b)umfasst,
    dadurch gekennzeichnet, dass
    zwischen dem ersten Teil (3a) und dem zweiten Teil (3b) eine vertikale Teilfuge (5) ausgebildet ist.
  2. Innengehäuse (3, 3a, 3b) nach Anspruch 1,
    wobei das erste Teil (3a) und/oder das zweite Teil (3b) Einströmöffnungen (7) aufweist.
  3. Innengehäuse (3, 3a, 3b) nach Anspruch 1 oder 2,
    wobei das Innengehäuse (3, 3a, 3b) zum Aufnehmen eines um eine Rotationsachse (4) drehbar gelagerten Rotors ausgebildet ist.
  4. Innengehäuse (3, 3a, 3b) nach einem der vorhergehenden Ansprüche,
    wobei das erste Teil (3a) und das zweite Teil (3b) mittels Teilfugenschrauben miteinander verbunden sind.
EP09015210A 2009-12-08 2009-12-08 Innengehäuse für eine Strömungsmaschine Withdrawn EP2333253A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09015210A EP2333253A1 (de) 2009-12-08 2009-12-08 Innengehäuse für eine Strömungsmaschine
EP10790396.5A EP2510195B1 (de) 2009-12-08 2010-12-07 Innengehäuse für eine Dampfturbine
PCT/EP2010/069010 WO2011069982A1 (de) 2009-12-08 2010-12-07 Innengehäuse für eine strömungsmaschine
PL10790396.5T PL2510195T3 (pl) 2009-12-08 2010-12-07 Obudowa wewnętrzna dla turbiny parowej
CN2010800555397A CN102648335A (zh) 2009-12-08 2010-12-07 用于流体机械的内壳体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09015210A EP2333253A1 (de) 2009-12-08 2009-12-08 Innengehäuse für eine Strömungsmaschine

Publications (1)

Publication Number Publication Date
EP2333253A1 true EP2333253A1 (de) 2011-06-15

Family

ID=42167271

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09015210A Withdrawn EP2333253A1 (de) 2009-12-08 2009-12-08 Innengehäuse für eine Strömungsmaschine
EP10790396.5A Not-in-force EP2510195B1 (de) 2009-12-08 2010-12-07 Innengehäuse für eine Dampfturbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10790396.5A Not-in-force EP2510195B1 (de) 2009-12-08 2010-12-07 Innengehäuse für eine Dampfturbine

Country Status (4)

Country Link
EP (2) EP2333253A1 (de)
CN (1) CN102648335A (de)
PL (1) PL2510195T3 (de)
WO (1) WO2011069982A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH125062A (de) * 1927-03-16 1928-03-16 Oerlikon Maschf Hochdruck-Dampf- oder Gasturbine.
US3754833A (en) * 1970-11-05 1973-08-28 Kraftwerk Union Ag Device for radially centering turbine housings
DE3421067A1 (de) 1983-06-10 1984-12-13 Hitachi, Ltd., Tokio/Tokyo Hauptdampf-einlasseinheit fuer eine dampfturbine
WO1997038209A1 (de) * 1996-04-11 1997-10-16 Siemens Aktiengesellschaft Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
DE10336978B3 (de) * 2003-08-12 2005-01-13 Mtu Friedrichshafen Gmbh Trägergehäuse für einen oder mehrere Abgasturbolader einer Brennkraftmaschine
DE10353451A1 (de) 2003-11-15 2005-06-16 Alstom Technology Ltd Dampfturbine sowie Verfahren zum Herstellen einer solchen Dampfturbine
DE102006027237A1 (de) 2005-06-14 2006-12-28 Alstom Technology Ltd. Dampfturbine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609881B2 (en) * 2001-11-15 2003-08-26 General Electric Company Steam turbine inlet and methods of retrofitting
US6964554B2 (en) * 2003-03-31 2005-11-15 Siemens Westinghouse Power Corporation Drop-in nozzle block for steam turbine
JP2006016976A (ja) * 2004-06-30 2006-01-19 Toshiba Corp タービンノズル支持装置および蒸気タービン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH125062A (de) * 1927-03-16 1928-03-16 Oerlikon Maschf Hochdruck-Dampf- oder Gasturbine.
US3754833A (en) * 1970-11-05 1973-08-28 Kraftwerk Union Ag Device for radially centering turbine housings
DE3421067A1 (de) 1983-06-10 1984-12-13 Hitachi, Ltd., Tokio/Tokyo Hauptdampf-einlasseinheit fuer eine dampfturbine
WO1997038209A1 (de) * 1996-04-11 1997-10-16 Siemens Aktiengesellschaft Verfahren und vorrichtung zum schubausgleich bei einer turbomaschine
DE10336978B3 (de) * 2003-08-12 2005-01-13 Mtu Friedrichshafen Gmbh Trägergehäuse für einen oder mehrere Abgasturbolader einer Brennkraftmaschine
DE10353451A1 (de) 2003-11-15 2005-06-16 Alstom Technology Ltd Dampfturbine sowie Verfahren zum Herstellen einer solchen Dampfturbine
DE102006027237A1 (de) 2005-06-14 2006-12-28 Alstom Technology Ltd. Dampfturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARTIKEL Y. TANAKA ET AL.: "Advanced Design of Mitsubishi Large Steam Turbines", MITSUBISHI HEAVY INDUSTRIES, POWER GEN EUROPE, 2003

Also Published As

Publication number Publication date
EP2510195A1 (de) 2012-10-17
EP2510195B1 (de) 2016-03-23
WO2011069982A1 (de) 2011-06-16
PL2510195T3 (pl) 2016-10-31
CN102648335A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
EP2873921B1 (de) Brennkammerhitzeabschirmelement einer Gasturbine
EP2407646B1 (de) Verfahren und Vorrichtung zur Einstellung der Rotorlage bei einer Gasturbine oder Dampfturbine
EP2738470B1 (de) Schindelbefestigungsanordnung einer Gasturbinenbrennkammer
DE102006007088A1 (de) Turbinengehäuseaufbau
EP1816401B1 (de) Strömungsmaschine
EP3085888A1 (de) Turbinengehäuse und zugehöriger abgasturbolader
EP2344730B1 (de) Innengehäuse für eine strömungsmaschine
EP2396517B1 (de) Dreischalige dampfturbine
EP2510195B1 (de) Innengehäuse für eine Dampfturbine
EP2396518B1 (de) Dreischalige dampfturbine mit ventil
EP2216515A1 (de) Dreischalige Dampfturbine mit Ventil
DE102016006357A1 (de) Turbinengehäuse und Turbine mit einem solchen Turbinengehäuse
DE102018212257B4 (de) Abgasturbolader mit variabler Turbinengeometrie
EP2022951A1 (de) Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse
EP2333252A1 (de) Mehrteiliges Innengehäuse für eine Dampfturbine
EP2159380A1 (de) Gasturbinenanordnung mit pörosen Gehäuse und Herstellverfahren
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
EP2513432B1 (de) Dampfturbine in dreischaliger Bauweise
WO2012107140A1 (de) Dampfturbine in dreischaliger bauweise
EP1818510A1 (de) Schaufel für eine Turbine, insbesondere eine Gasturbine oder eine Dampfturbine
EP2274504A1 (de) Dampfturbine mit kühlvorrichtung
DE112022003962T5 (de) Dampfturbine
EP3572693A1 (de) Dichtungsanordnung für eine strömungsmaschine
EP3453848A1 (de) Dampfturbine mit anzapfkammer
WO2013017489A1 (de) Gehäuse für eine strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111216